Please use this identifier to cite or link to this item: https://idr.nitk.ac.in/jspui/handle/123456789/16276
Title: Free vibration and stability of graphene platelet reinforced porous nano-composite cylindrical panel: Influence of grading, porosity and non-uniform edge loads
Authors: C.M. T.
Pitchaimani J.
Issue Date: 2021
Citation: Engineering Structures Vol. 230 , , p. -
Abstract: Buckling and vibration characteristics of functionally graded(FG) porous(P), graphene platelet (GPL) reinforced cylindrical panel are presented. A multilayer model is considered for analysis with graphene and internal pores distribution varying in an uniformly or two different non-uniformly manner along the thickness. To evaluate the effective mechanical properties, extended rule of mixture together with modified Halpin-Tsai micromechanics model and mechanical properties of open-cell metal foams is used. Considering a higher order shear deformation theory, characteristics of the FG-P-GPL reinforced cylindrical panel under different edge loads such as uniform, triangular, trapezoidal and parabolic are investigated. The Hamilton's principle is used to formulate the governing partial differential equations and buckling and free vibration solutions are obtained by employing the Galerkins method. The influences of grading of GPL and internal pores, porosity coefficient on buckling and dynamic characteristics of functionally graded GPL reinforced porous cylindrical panel under uniform and non-uniform in-plane loads are presented. © 2020 Elsevier Ltd
URI: https://doi.org/10.1016/j.engstruct.2020.111670
http://idr.nitk.ac.in/jspui/handle/123456789/16276
Appears in Collections:1. Journal Articles

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.