Please use this identifier to cite or link to this item:
Title: Synthesis and biological evaluation of new imidazo[2,1-b][1,3,4]thiadiazole-benzimidazole derivatives
Authors: Ramprasad, J.
Nayak, N.
Udayakumar, D.
Yogeeswari, P.
Sriram, D.
Peethambar, S.K.
Achur, R.
Kumar, H.S.S.
Issue Date: 2015
Citation: European Journal of Medicinal Chemistry, 2015, Vol.95, , pp.49-63
Abstract: In this report, we describe the synthesis and biological evaluation of a new series of 2-(imidazo[2,1-b][1,3,4]thiadiazol-5-yl)-1H-benzimidazole derivatives (5a-ac). The molecules were analyzed by 1H NMR, 13C NMR, mass spectral and elemental data. The structure of one of the pre-final compounds, 6-(4-methoxyphenyl)-2-(4-methylphenyl)imidazo[2,1-b][1,3,4]thiadiazole-5-carbaldehyde (4d) and that of a target compound, 2-[2-methyl-6-(4-methyl phenyl) imidazo[2,1-b][1,3,4]thiadiazol-5-yl]-1H-benzimidazole (5aa) were confirmed by single crystal XRD studies. All the target compounds were screened for in vitro anti-tuberculosis activity against Mycobacterium tuberculosis H37Rv strain. Seven (5c, 5d, 5l, 5p, 5r, 5z and 5aa) out of twenty nine compounds showed potent anti-tubercular activity with a MIC of 3.125 ?g/mL. A p-substituted phenyl group (p-tolyl or p-chlorophenyl) in the imidazo[2,1-b][1,3,4]thiadiazole ring and/or a chloro group in the benzimidazole ring enhance anti-tuberculosis activity whereas a nitro group in the benzimidazole ring reduces the activity. In the antibacterial screening, compounds 5i, 5w and 5ac showed promising activity against the tested bacterial strains. Further, antifungal and antioxidant activities of these molecules were also investigated. In the cytotoxicity study, the active antitubercular compounds exhibited very low toxicity against a normal cell line. 2015 Elsevier Masson SAS.
Appears in Collections:1. Journal Articles

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.