Please use this identifier to cite or link to this item:
Title: Studies on development of high performance, self-compacting alkali activated slag concrete mixes using industrial wastes
Authors: Manjunath, R.
Narasimhan, M.C.
Umesh, K.M.
Shivam, Kumar
Bala, Bharathi, U.K.
Issue Date: 2019
Citation: Construction and Building Materials, 2019, Vol.198, , pp.133-147
Abstract: In the present study, development of a class of High Performance Alkali Activated Slag Concrete mixes (hereafter referred to as HPAASC mixes) is discussed. These mixes are developed using three industrial wastes from Iron and Steel industry. While Ground granulated blast furnace slag (GGBFS) was used as the main binder, in the development of these HPAASC mixes, steel slag sand and Electric Arc Furnace slag (EAF slag) have been employed in the fine aggregate and coarse aggregate fractions of them. Higher flow characteristics, as those of self-compacting concrete mixes, as well as enhanced mechanical strength properties of these mixes are discussed in detail. The alkaline solutions used consist mixtures of sodium hydroxide and sodium silicate solutions, with a constant activator modulus (ratio of SiO2/Na2O) of one maintained in them. Taguchi design of experiments methodology was used to reduce the experimental efforts. The formulation of all the mixes developed herein was based on Taguchi's L-9 orthogonal array. Flow and strength properties of a set of nine mixes were used for performance evaluation purposes in an initial, calibration phase. Strength prediction equations were derived based on such results, the predictive capability of which were then assessed and ascertained with actual results of experiments on the next six new mixes, in the prediction phase. Test results indicated a higher flowability values for all the mixes (with slump flows greater than 700 mm), good filling and passing abilities, all satisfying the EFNARC (European Federation of Specialist Construction Chemicals and Concrete Systems) recommendations for SCC mixes. Higher compressive strengths (65 90 MPa), split-tensile strengths (4.8 5.3 MPa), flexural strengths (6.5 7 MPa), and Modulus of Elasticity (30.4 36.2 GPa) were observed along with lower water absorption values (2.1 2.7%) for all the HPAASC mixes tested herein. Microstructure studies were conducted on samples from the fractured surfaces of test specimens from different mixes, using advanced SEM, EDX and XRD analyses and the results are discussed. 2018 Elsevier Ltd
Appears in Collections:1. Journal Articles

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.