Please use this identifier to cite or link to this item:
Title: Reduced graphene oxide/vanadium pentoxide nanocomposite as electrode material for highly rate capable and durable supercapacitors
Authors: Viswanathan, A.
Shetty, A.N.
Issue Date: 2020
Citation: Journal of Energy Storage, 2020, Vol.27, , pp.-
Abstract: The nanocomposite from reduced graphene oxide (rGO) and vanadium pentoxide (V2O5) was synthesized by the chemical method to obtain a nanocomposite of rGO 7.69% /V2O5 92.31% (GV). The role of faradaic V2O5 in storing high energy, in combination with rGO was studied and the energy storing parameters were determined from the liner discharge (from the slope of the discharge curve) approach and the non-linear discharge approach (from the integrated area of the discharge curve). The appropriateness of these methods is a matter of diverse views among the researchers when the specific capacitance (Cs) of the composite electrode material, comprising of both non-faradaic and faradic material, has to be determined. The energy storage parameters obtained from these two different approaches are found to be differing to a large extent. The energy storage parameters obtained from linear discharge approach are, a high specific capacitance (Cs) of 120.62 F g?1, a specific capacity (Q) of 144.74 C g?1, an energy density (E) of 24.12 W h kg?1 a power density (P) of 2.647 kW kg?1 and a columbic efficiency (?) of 79.22% at a current density of 2 A g?1. The nanocomposite retained 100% of its initial Cs up to 5000 cycles. Also retained 38% of its initial Cs, after 10,600 cycles at a potential scan of 400 mV s?1. 2019
Appears in Collections:1. Journal Articles

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.