Please use this identifier to cite or link to this item:
Title: Circular-Pattern Photonic Crystal Fiber for Different Liquids with High Effective Area and Sensitivity
Authors: Senthil, R.
Soni, A.
Bir, K.
Senthil, R.
Krishnan, P.
Issue Date: 2019
Citation: Plasmonics, 2019, Vol.14, 6, pp.1783-1787
Abstract: A solid core photonic crystal fiber (PCF) is preferred to signify the work of circular-pattern PCF for chemical identifying motive. Finite element method is used to obtain several properties of PCF. Various computations are applied to numerically explore the use of PCF for sensing justifications at different wavelengths ranging between 1.4 and 1.65 ?m. The solid core is filled with liquid glycerol (n = 1.4722), ethanol (n = 1.354), and toluene (n = 1.4968), and on applying various geometric parameters of the fiber, 65.16%, 61.65%, and 64.05% of sensitivity are observed respectively. Transmission of heavy data with high speed depends on effective mode area. For glycerol and toluene, the effective area is observed as 2.81 ?m2 and 3.07 ?m2 respectively. Perfectly matched layer is applied in outer most cladding to overcome reflection. Higher sensitivity is observed by this design operating at different wavelengths. Similarly, properties like confinement loss and effective area are also computed. Design containing core material such as glycerol, ethanol, and toluene has been compared by different properties. The core materials employed in this paper are used to analyze the potential of sensors. This PCF can be used in diverse application of bio sensing or sensing related areas. 2019, Springer Science+Business Media, LLC, part of Springer Nature.
Appears in Collections:1. Journal Articles

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.