An investigation of slurry erosion behaviour in plasma-sprayed carbon nanotube-reinforced fly ash/alumina coatings using experimental analysis and artificial neural computing for marine and offshore applications

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Ltd

Abstract

This study investigates carbon nanotube (CNT)-reinforced alumina fly ash (FA) coatings, namely AF (unreinforced), 1CAF (with 1 wt% CNT), and 2CAF (with 2 wt% CNT), on marine-grade steel. Microstructural analysis shows 1CAF coatings denser by ∼15.32% due to CNT reinforcement, while 2CAF coatings display ∼9.68% increased porosity from CNT agglomeration. Raman spectroscopy confirms CNT retention. 1CAF coatings exhibit ∼14.66% higher microhardness, ∼15.96% higher adhesion strength, and ∼15.66% improved fracture toughness compared to AF coatings, attributed to pore sealing through CNT reinforcement. Enhanced erosion resistance (∼14.59%) in 1CAF coatings was observed due to improved mechanical properties and CNTs mitigating crack propagation. Validation through an artificial neural network (ANN) modeling and regression analysis supports 1CAF coatings’ promise for harsh marine environments, offering enhanced durability. © 2024 Elsevier Ltd

Description

Keywords

Alumina, Aluminum oxide, Ductile fracture, Erosion, Fly ash, Fracture toughness, Marine applications, Neural networks, Offshore oil well production, Plasma jets, Plasma spraying, Regression analysis, Reinforcement, Sprayed coatings, Alumina coating, Artificial neural network analysis, Carbon nanotube reinforcements, Erosion behavior, Experimental analysis, Neural computing, Offshore applications, Plasma spray, Plasma-sprayed, Slurry erosion, Carbon nanotubes

Citation

Tribology International, 2024, 196, , pp. -

Collections

Endorsement

Review

Supplemented By

Referenced By