Buckling analysis of skew magneto-electro-elastic plates under in-plane loading
Date
2018
Authors
Kiran, M.C.
Kattimani, Subhas Chandra
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This article deals with the study of buckling behaviour of multilayered skew magneto-electro-elastic plate under uniaxial and biaxial in-plane loadings. The skew edges of the skew magneto-electro-elastic plate are obtained by transforming the local skew coordinate to the global using a transformation matrix. The displacement fields corresponding to the first-order shear deformation theory along with constitutive equations of magneto-electro-elastic materials are used to develop a finite element model. The finite element model encompasses the coupling between electric, magnetic and elastic fields. The in-plane stress distribution within the skew magneto-electro-elastic plate due to the enacted force is considered to be equivalent to the applied in-plane compressive loads in the pre-buckling range. This stress distribution is used to derive the potential energy functional of the skew magneto-electro-elastic plate. The non-dimensional critical buckling load is attained from the solution of the allied linear eigenvalue problem. Influence of skew angle, stacking sequence, span-to-thickness ratio, aspect ratio and boundary condition on the critical buckling load and their corresponding mode shapes is investigated. 2018, The Author(s) 2018.
Description
Keywords
Citation
Journal of Intelligent Material Systems and Structures, 2018, Vol.29, 10, pp.2206-2222