Enhancement of thermal conductivity in silicone rubber nanocomposites via low loading of polydopamine-coated copper nanowires
No Thumbnail Available
Date
2025
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Ltd
Abstract
In recent years, thermally conductive polymer nanocomposites have garnered significant interest due to their wide application in the electronic industry. In the present work, we report thermally conductive silicone rubber-based nanocomposites at lower filler loading of polydopamine-coated copper nanowires (PDA@CuNW). First, copper nanowires (CuNW) are synthesized by the liquid phase reduction method and modified with polydopamine (PDA) by in-situ polymerization. The synthesized CuNW and PDA@CuNW are incorporated into Silicone rubber (SR) varying from 1 to 5 wt% via solution casting. The incorporation of 5 wt% PDA@CuNW resulted in a 62 % improvement in the thermal conductivity of SR. In addition, the nanocomposite showed the highest thermal effusivity of 735 Ws1/2m?2 K?1 even at 5 wt% loading. These results can be attributed to the better adhesion of PDA to the SR matrix confirmed by Field Emission-Scanning Electron Microscopy (FE-SEM). Thermogravimetric analysis showed that the modification of copper nanowires improved the thermal stability of SR. The electrical resistivity of SR increased with the addition of PDA@CuNW. The tensile stress-strain studies reveal that the strength of the SR/PDA@CuNW was improved compared to neat SR and SR/CuNW composites. Moreover, the elongation at break reached up to 972 % which is a 395 % improvement with respect to plain SR. In this work, simultaneous improvement in thermal conductivity and electrical resistivity is achieved while preserving the mechanical properties of the SR nanocomposites. Flexible nanocomposites with improved thermal and electrical properties and minimal filler loading have great significance in high-performance thermal management materials. © 2025 Elsevier Ltd
Description
Keywords
Concrete construction, Elastomers, Rubber coatings, Silicones, Surface discharges, Conductive Polymer, Copper nanowires, Filler loading, Low loading, Polydopamine, Polydopamine coating, Silicone rubber, Silicone rubber nanocomposites, Synthesised, Thermal, Silicone coatings
Citation
Materials Today Communications, 2025, 45, , pp. -
