Studies on free and forced vibration of functionally graded back plate with brake insulator of a disc brake system
No Thumbnail Available
Date
2020
Authors
Patil R.
Joladarashi S.
Kadoli R.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The back plate with brake insulator of a disc brake system used in automobile is a sandwich structure. Mitigating brake squeal associated with the operation of the disc brake has been a focus of many automobile researchers. As on today’s practice, steel–acrylic–steel is used for back plate–brake insulator assembly. The present study focuses on proposing Al - Al 2O 3 functionally graded metal ceramic composite material (FGM) for the back plate attached with conventional Steel–Acrylic brake insulator. Accordingly, a comparison study is presented in terms of the free and forced vibration characteristics of different material combinations for back plate–brake insulator sandwich beams such as steel–acrylic–steel, FGM–acrylic–steel, FGM–acrylic–aluminium and steel–acrylic–aluminium. The associated governing equations for sandwich beam which are well established in the literature are presented, and they are solved for simply supported conditions using trigonometric displacement functions. The real and imaginary parts of the various parameters come into the picture because of complex shear modulus of viscoelastic core. The comparison study among the combinations reveals that the natural frequency, loss factor and with regard to dynamic loading the imaginary part of transverse displacement, axial displacement, stress and strain of FGM–acrylic–steel are higher. As a result, FGM–acrylic–steel is suitable combination for back plate and brake insulator assembly which enhances the damping capacity of overall disc brake system and also helps in reducing brake squeal problem associated with operation of disc brake system. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.
Description
Keywords
Citation
Archive of Applied Mechanics Vol. 90 , 12 , p. 2693 - 2714