Partially polynomial kernels for set cover and test cover
No Thumbnail Available
Date
2016
Authors
Basavaraju, M.
Francis, M.C.
Ramanujan, M.S.
Saurabh, S.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
An instance of the (n-k)-Set Cover or the (n-k)-Test Cover problems is of the form (U, S, k), where U is a set with n elements, S ? 2U with |S| = m, and k is the parameter. The instance is a Yes-instance of (n - k)-Set Cover if and only if there exists S' ? S with |S'| ? n - k such that every element of U is contained in some set in S'. Similarly, it is a Yes-instance of (n - k)-Test Cover if and only if there exists S' ? S with |S'| ? n - k such that for any pair of elements from U, there exists a set in S' that contains one of them but not the other. It is known in the literature that both (n - k)-Set Cover and (n - k)-Test Cover do not admit polynomial kernels (under some well-known complexity theoretic assumptions). However, in this paper we show that they do admit \partially polynomial kernels": we give polynomial time algorithms that take as input an instance (U, S, k) of (n - k)-Set Cover (respectively, (n - k)-Test Cover) and return an equivalent instance (U, S, k) of (n-k)-Set Cover (respectively, (n-k)-Test Cover) with k ? k and |?| = O(k2) (respectively, |?| = O(k7)). These results allow us to generalize, improve, and unify several results known in the literature. For example, these immediately imply traditional kernels when input instances satisfy certain \sparsity properties." Using a part of our partial kernelization algorithm for (n - k)-Set Cover, we also get an improved fixed-parameter tractable algorithm for this problem which runs in time O(4kkO(1)(m + n) + mn) improving over the previous best of O(8k+o(k)(m+n)O(1)). On the other hand, the partially polynomial kernel for (n-k)-Test Cover gives an algorithm with running time O(2O(k2)(m + n)O(1)). We believe such an approach could also be useful for other covering problems. Copyright by SIAM.
Description
Keywords
Citation
SIAM Journal on Discrete Mathematics, 2016, Vol.30, 3, pp.1401-1423