Effect of Magnetic Field on HER of Water Electrolysis on Ni W Alloy

No Thumbnail Available

Date

2017

Authors

Elias, L.
Chitharanjan, Hegde, A.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Electroactive Ni W alloy coating with a specific composition was developed as an efficient electrode material for hydrogen evolution reaction (HER) through electrodeposition technique. The high overvoltage towards HER at the electrode surface was reduced by an applied magnetic field during water electrolysis. The effect of introduced magnetic was studied under different applied magnetic field strengths (varying from 0.1 T to 0.4 T) to epitomize the HER efficiency. The enhancement in HER efficiency of the Ni W alloy electrode in the presence of the applied magnetic field was established through electrochemical analysis and also by quantifying the amount of H2 gas evolved during the analysis. The improvement in HER efficiency of Ni W alloy under induced magnetic field may be attributed to the magnetohydrodynamic (MHD) force-induced convection and H2 bubble disentanglement. The coating was characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) analyses. The magnetic field-induced efficient water electrolysis is explained with plausible mechanisms, and the results are discussed. 2017, Springer Science+Business Media New York.

Description

Keywords

Citation

Electrocatalysis, 2017, Vol.8, 4, pp.375-382

Endorsement

Review

Supplemented By

Referenced By