Combustion aided in situ consolidation of high strength porous ceramic structures with a minimum thermal budget

No Thumbnail Available

Date

2020

Authors

Pujar, P.
Pal, A.
Mandal, S.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The exothermic reaction between a pair of combustible pore formers (urea-ammonium nitrate) is the driving force in realizing low-temperature consolidation of hydroxyapatite (HA) particles. The particles are allowed to sinter in the proximity to the combustible pore formers. The exothermic (?H rea = -898 kJ/mol) redox reaction between combustible pore formers is successfully utilized in deriving high compressive strength (~24 MPa) of HA at 300 C. The evolution of gaseous products of combustion results in an interconnected porous network of HA. The estimated compressive strength of sintered HA at 300 C is comparable with high temperature (1100 C) conventionally sintered HA, at a fixed open porosity (~40%); which depicts nearly ~82% achievement with a reduction of sintering temperature by ~72%. Also, the pellets sintered at 600 C have shown ~90% achievement in compressive strength of sintered HA. Further, the saturated pore area of 15% requires a sintering time of 9.58 h at a sintering temperature of 600 C. Thus, combustion-assisted sintering is an alternative technique proves its potentiality in achieving remarkable compressive strength and paves the way for low-cost porous ceramics. 2020 Elsevier B.V.

Description

Keywords

Citation

Materials Letters, 2020, Vol.265, , pp.-

Endorsement

Review

Supplemented By

Referenced By