Antibiofouling hollow-fiber membranes for dye rejection by embedding chitosan and silver-loaded chitosan nanoparticles

No Thumbnail Available

Date

2019

Authors

Kolangare, I.M.
Isloor, A.M.
Karim, Z.A.
Kulal, A.
Ismail, A.F.
Inamuddin
Asiri, A.M.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The removal of toxic dyes from the wastewater and industrial effluents is a major environmental challenge. Various techniques have been employed for the removal of dyes, including the application of nano-sized adsorbents, nanocomposite membranes and photodegradation. Membrane filtration is an alterntive but suffers from drawbacks such as fouling. Here we present a simple approach for the development of antibiofouling membranes based on chitosan. The application of chitosan-based nanoparticles as additives for wastewater treatment is poorly explored. The chitosan and silver-loaded chitosan nanoparticles were synthesized by ionic gelation method and incorporated to fabricate hollow-fiber membranes by dry wet spinning technique. The prepared membranes were characterized by morphological study, permeability test, antibiofouling study and dye rejection study. The nanocomposite hollow-fiber membranes displayed superior performance than their pristine form. The incorporation of 0.30 weight percent of the chitosan and silver-loaded chitosan nanoparticles into the hollow-fiber membranes enhanced the antifouling property with flux recovery ratio of 81.21 and 86.13%, respectively. The dye rejection results showed maximum rejection of 89.27 and 86.04% for Reactive Black 5 and Reactive Orange 16, respectively. Hence, it can be concluded that hollow-fiber membranes with silver-loaded chitosan nanoparticles are pertinent in developing antibiofouling membranes for the treatment of industrial dye effluents. 2018, Springer Nature Switzerland AG.

Description

Keywords

Citation

Environmental Chemistry Letters, 2019, Vol.17, 1, pp.581-587

Endorsement

Review

Supplemented By

Referenced By