1. Ph.D Theses

Permanent URI for this collectionhttps://idr.nitk.ac.in/handle/1/11

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Experimental Investigation of Coffee Husk Biodiesel as A Renewable Fuel In Compression Ignition Engine
    (National Institute Of Technology Karnataka Surathkal, 2023) Emma, Addisu Frinjo; A, Sathyabhama; Yadav, Ajay Kumar
    In the present study, coffee husk (CH) and spent coffee ground (SCG) are used for the production of biodiesel. The CH is a by-product of the coffee processing industry, and SCG is obtained after the coffee is brewed. Field Emission Gun Scanning Electron Microscope (FEG-SEM) is used to investigate the elemental composition of the CH and the SCG samples and identify the presence of different elements with their distribution and concentration. The compositional analysis indicates that the CH comprised 49.84% of carbon and 48.06% of oxygen by weight. On the other hand, it is found that the SCG had 67.72% of carbon and 26.18% of oxygen by weight. The CH is selected for further study for the production of oil due to its higher oxygen distribution than SCG. From 1Kg of CH, 250g of oil is produced. By using the transesterification process, the produced oil is converted into biodiesel. Subsequently, 700 mL of coffee husk oil methyl ester (CHOME) biodiesel was produced from 1000 mL of coffee husk oil. After characterization of obtained biodiesel, the experiments are conducted in a single-cylinder direct injection diesel engine at a constant speed by varying the loads (0%, 25%, 50%, 75%, and 100%) for different biodiesel-diesel blends (B10, B20, B30, B40, B50, B80, and B100), and the results are compared with the baseline diesel. The brake thermal efficiency (BTE) of the blends, B10, B20, B30, and B50, is reduced by 0.6, 0.7, 1.29, and 3%, respectively, compared to the regular diesel. Similarly, the brake specific energy consumption (BSEC) is increased by 0.1, 0.3, 0.44, and 0.77% for B10, B20, B30, and B50, respectively. Exhaust gas emissions are reduced for all biodiesel-diesel blends with a marginal increase in NOx emission. Compared to regular diesel, at full load, CO, HC, and smoke opacity of B30 are reduced by 13.2%, 4%, and 12%, respectively. Whereas NOx and CO2 of B30 at full load are increased by 3.8% and 8.63% respectively The viscosity of CHOME biodiesel is found to be higher than diesel; hence a preheating mechanism is set to reduce the viscosity and density of the fuel before injecting it into the combustion chamber. Preheating the neat CHOME biodiesel (B100) to 95 °C decreased its viscosity and density by 49.5% and 3.7%, respectively. Running the engine with preheated B100 reduces CO, HC, and smoke opacity by 34%, 34%, and 35%, respectively, compared to unheated regular diesel. The percentage of CO2 in the exhaust gas is increased by 45.5% for preheated B100 compared with unheated B0 at 100% load. Furthermore, the injection timing of the engine is altered to find the optimum injection timing of the biodiesel-diesel blend. The BSEC is increased by 0.53 kg/kWh and reduced by 1.4 kg/kWh for advanced and retarded injection timing, respectively. By advancing injection timing, the HC, CO, and smoke opacity were reduced by 7.4%, 36%, 5.7%, and 7%, respectively, compared to the B30 at standard injection timing.
  • Item
    Effect of High Temperature Biodiesel Injection In Compression Ignition Engines
    (National Institute of Technology Karnataka, Surathkal, 2022) Kodate, Shankar; Yadav, Ajay Kumar; G. N., Kumar
    Extensive research is being done to produce and utilise a variety of renewable fuels to meet the growing global energy demand and combat many issues such as environmental pollution, high costs of fossil fuels, and dependence on foreign energy sources. The current research aimed to extract and characterize Vateria indica and Karanja biodiesels through the transesterification process. The use of extracted biodiesels in a diesel engine leads to lesser brake thermal efficiency (BTE) and increased brake specific energy consumption (BSEC) due to higher viscosity and lower calorific value of biodiesels. This problem of higher viscosity is resolved by fuel preheating before injecting into the engine cylinder. The current research aims to evaluate the engine performance, emission, and combustion characteristics of Karanja oil methyl ester (KOME) and Vateria indica methyl ester (VIME) biodiesels blended with diesel at elevated fuel inlet temperatures ranging from 35 °C to 95 °C. The tests are carried out using two different engines, mainly the conventional DI engine (low-pressure injection at 180 bar) and CRDI engine (high-pressure injection at 1000 bar). In the CRDI engine, the effects of fuel injection timings and exhaust gas recirculation (EGR) rates on the engine parameters are also investigated. Results are obtained in terms of brake thermal efficiency, brake specific energy consumption, in-cylinder pressure, heat release rate, exhaust emissions of carbon monoxide (CO), hydrocarbon (HC), nitrogen oxide (NOX), carbon dioxide (CO2), and smoke opacity. It is observed from the findings of both the engines that the preheating of blends decreases viscosity which enhances engine performance, lower CO, HC, and soot emissions with a slight increase in NOX emissions. It is found that advancing the injection timing to 15° bTDC in a CRDI engine improves engine performance and reduces CO, and HC emissions with an increase in NOX emission compared to standard injection timing of 12° bTDC and retarded injection timing of 9° bTDC. As the EGR rate increases, engine performance decreases, and exhaust emissions like CO and HC increase with a reduction in NOX emission.
  • Thumbnail Image
    Item
    Application of Polyoxometalates as Efficient and Green Catalyst for Catalytic Upgrading of Cellulosic Biomass
    (National Institute of Technology Karnataka, Surathkal, 2020) Tiwari, Ritesh; Mal, Sib Shankar; Dutta, Saikat
    In recent years, the research on the sustainable production of energy, transportation fuels, and materials has been incentivized. Non-food and preferably waste biomass has been identified as a commercially-feasible renewable alternative to fossilized carbons for producing fuels and chemicals. The chemocatalytic value addition of biomass, where the oxygen-rich biopolymers are selectively deconstructed into functionally-rich small organic molecules, is of particular interest. A new generation of robust, inexpensive, and environment-friendly catalysts are crucial for the chemocatalytic route. Over the past years, heteropolyacids (HPAs) are increasingly being used as a catalyst in the chemistry of renewables and biomass value addition. HPAs have been used in the hydrolysis and dehydration of pentose and hexose sugars in biomass into furfural and 5- (hydroxymethyl)furfural (HMF), respectively. Furfural, levulinic acid, and HMF act as renewable chemical building blocks that can be converted into commodity chemicals and materials via chemical or catalytic transformations. The proposed work is intended to explore the efficiency of various homogenous and heterogeneous HPA catalysts for the catalytic upgrading of biomass-derived chemical intermediates into value-added chemicals. HPA-based homogeneous and heterogeneous catalysts were used for the acetalization, esterification, and Baeyer-Villiger oxidation reactions of various biomass-derived chemical intermediates. The reaction conditions were optimized on various parameters such as temperature, duration, loading of reactant, and loading of catalyst. The cyclic acetals of biomass-derived furfural were prepared in high isolated yields in refluxing benzene in the presence of the phosphotungstic acid (PTA) catalyst. The PTA catalyst was successfully recovered and reused several times without significant loss in mass or activity. The esterification of saturated and unsaturated free fatty acids such as oleic acid and stearic acid were conducted in the presence of PTA catalyst as an efficient and recyclable catalyst. 2-Furanone was prepared by the selective oxidation of furfural using hydrogen peroxide as an inexpensive oxidant and PTA supported on ammonium zeolites as the catalyst. A scalable and high yielding preparation of alkyl benzoates and alkyl 2-furoates has also been reported.