1. Journal Articles
Permanent URI for this collectionhttps://idr.nitk.ac.in/handle/1/6
Browse
48 results
Search Results
Item Wave steepness and relative width: Influence on transmission coefficient of horizontal interlaced, multilayered, moored floating pipe breakwater with five layers(2011) Rajappa, S.; Hegde, A.V.; Rao, S.; Channegowda, V.This paper presents the results of a series of physical model scale experiments conducted to determine the transmission characteristics of a horizontal interlaced, multilayered, moored floating pipe breakwater. The studies are conducted on physical breakwater models having five layers of PVC pipes. The wave steepness (H i/gT 2, where H i is incident wave height, g is acceleration due to gravity, and T is time period) was varied between 0.063 and 0.849, relative width (W/L, where W is width of breakwater and L is the wavelength) was varied between 0.4 and 2.65, and relative spacing (S/D, where S is horizontal centre to centre spacing of pipes and D is the diameter of pipes) was set equal to 2. The transmitted wave height is measured, and the gathered data are analyzed by plotting nondimensional graphs depicting the variation of K t (transmission coefficient) with Hi/gT 2 for values of d/W (d is depth of water) and of K t with W/L for values of H i /d. It is observed that K t decreases as H i /gT 2 increases for the range of d/W between 0.082 and 0.139. It is also observed that K t decreases with an increase in W/L values for the range of H i /d from 0.06 to 0.40. The maximum wave attenuation achieved with the present breakwater configuration is 78%.Item Wave transmission and reflection for two rows of perforated hollow piles(2002) Rao, S.; Shirlal, K.G.; Rao, N.B.S.A laboratory investigation on perforated hollow piles in two rows was conducted in a two dimensional regular wave flume to study the wave transmission and reflection characteristics. The influence of incident wave steepness, relative clear spacing between the piles and rows of piles on transmission co-efficient and reflection co-efficient have been investigated. The effect of staggering of piles in the rows on both transmission and reflection co-efficients was also studied. The present study has revealed that for perforated pile groups incident wave steepness, relative clear spacing between the piles, relative clear spacing between the rows of piles influence both transmission and reflection co-efficients. Staggering of piles reduces reflection from the perforated piles. Perforated piles have smaller transmission and reflection co-efficient values compared to that of non-perforated piles at lower wave steepness.Item Wave runup, rundown and stability analysis on berm breakwater with 20% reduced armour weight(2005) Rao, S.; Subrahmanya, K.; Rao, K.B.; Chandramohan, V.R.This paper presents the results of the experimental investigation of the stability, wave runup and rundown characteristics of the statically stable berm breakwater with a wide berm. Armour weight calculated using Hudson's formula for design wave height has been reduced to an extent of 20% in the present study. The variations of non-dimensional runup values (Rd/Ho) and the rundown values (Rd/Ho) with deep- water wave steepness (Ho/gT2), damage level (S) with stability number (Ns) are investigated for different depths of still water level (SWL). A decrease in runup and rundown with wave steepness has been observed. Location of berm near SWL has been found to be more effective in reducing the wave runup. Damage level increases with decrease in wave period within the limits of experimental variables studied. � 2005 Taylor & Francis Group, LLC.Item Wave Reflection and Loss Characteristics of an Emerged Quarter Circle Breakwater with Varying Seaside Perforations(2017) Binumol, S.; Rao, S.; Hegde, A.V.Breakwaters are one of the most important harbour structures constructed to withstand and dissipate the dynamic energy due to the action of the waves. Due to fast growing need of the universe and advances in technology different types of breakwaters are being developed. Quarter circle breakwater is a new type of breakwater emerged from semi circular breakwater and the first model was developed in Peoples Republic of China (2006). Quarter circle breakwater with perforations posses merits of caisson as well as perforated breakwaters such as low weight, requires less materials, suited for poor soil conditions, easily transported, handled and placed at the site, aesthetically pleasing, cost effective, eco-friendly and stable. Therefore it is necessary to carry out detailed studies on hydrodynamic characteristics to investigate the suitability and applicability of various types of quarter circle breakwaters. The present study investigates the wave reflection and loss characteristics of an emerged seaside perforated quarter circle breakwater of radius 55�cm and with varying ratios of spacing to diameter of perforations, for different water depths and wave conditions. The tests were conducted in the two-dimensional monochromatic wave flume available in Marine Structures laboratory of Department of Applied Mechanics and Hydraulics of National Institute of Technology, Surathkal, Karnataka, India. The results were plotted as non-dimensional graphs and it was observed that the reflection coefficient increases with increase in wave steepness for all values of ratio of height of breakwater structure to water depth. For a constant water depth, wave reflection increases with increase in ratio of spacing to diameter of perforations. It was also found that the loss coefficient decreases with increase in wave steepness for all values of ratio of height of breakwater structure to water depth, and ratio of spacing to diameter of perforations. � 2017, The Institution of Engineers (India).Item Variation of transmission coefficient and mooring forces with wave steepness on horizontal interlaced multilayered moored floating pipe breakwater with three layers(2011) Rajappa, S.; Pramod, K.; Vittal, Hegde, A.; Rao, S.The paper presents the results of a series of physical model scale experiments conducted for the study of the transmission characteristics and mooring forces of horizontal interlaced, multi-layer, moored floating pipe breakwater, part of which have been presented in conferences. The studies are conducted on physical breakwater models having three layers of PVC pipes, wave steepness, Hi/L (Hi is incident wave height and L is incident wave length) varying from 0.01384 to 0.0661, relative width, W/L (W is width of breakwater) varying from 0.4 to 2.65 and relative spacing, S/D = 3 (S is horizontal spacing of pipes and D is diameter of pipe). The transmitted wave height is measured and data gathered is analyzed by plotting non-dimensional graphs depicting the variation of Kt (transmission coefficient) with Hi/L for values of d/W (d is depth of water) varying between 0.082 to 0.276 and Kt with W/L for values of d/W varying between 0.082 to 0.221. It is observed that Kt marginally decreases as Hi/L increases for the range of d/W between 0.082 and 0.221, considered in the present study. The maximum wave attenuation achieved with present breakwater configuration is 68%. The variation of measured mooring forces are analyzed by plotting non-dimensional graphs depicting fs/?w2 and fl/?W2 (fs and fl are the forces in the seaside and leeside moorings per unit length of the breakwater, ? is the unit weight of sea water) as a function Hi/L for various values of d/W. The mooring force parameter (fs /?W2) increases with an increase in wave steepness (Hi/L) for a range of d/W values studied. It is observed that for d/W = 0.082, maximum force parameter attained was 2.11E-04, and for d/W = 0.276 maximum force parameter was 6.88E-04. A similar trend is observed for leeside side force parameter. Hence, it clearly indicates the influence of d/W on f/?W2. � 2011 CAFET-INNOVA technical society. All right reserved.Item Stability of tandem breakwater(2003) Shirlal, K.G.; Rao, S.; Prasad, S.K.M.The concept of rubble mound breakwater and submerged reef breakwaters, operating together as a single unit, is called the tandem breakwater. The effect of the submerged reef breakwater on the stability of non-overtopping rubble mound breakwater on its leeside was investigated in the present study, The tandem breakwater was tested for two spacings between the breakwaters, ie,for 1 m and 2,5 m. For each of the spacing, the effect of water depth, wave-period and wave height on the stability of tandem breakwater was studied. In the present study, the damage level of tandem breakwater for a relative spacing varying from 2.22 to 7.14 was 10% to 40% less compared to that of a single breakwater designed to meet the same operating criteria.Item Stability of berm breakwater with reduced armor stone weight(2004) Rao, S.; Pramod, Ch.; Rao, B.The basic principle involved in the design of S-shaped breakwater is the provision of a wide berm at or around the water level with smaller size armor stones than that used in conventional design, which are allowed to reshape till an equilibrium slope is achieved. An attempt is made to assess the influence of wave height, wave period, and berm width on the stability of S-shaped breakwater with reduced (30% reduction in armor stone weight) armor unit weight. From the investigation, it is found that the berm breakwater with 30% reduced armor weight would be stable for the design wave height if the berm width is 60 cm and wave period 1.2 s. For higher wave periods studied, zero damage wave height reduces by 20-40% of the design wave height. Wave period has large influence on the stability of berm breakwaters. The runup increases with decrease in weight up to Wo/W=0.9. 2004 Elsevier Ltd. All rights reserved.Item Stability of breakwater defenced by a seaward submerged reef(2006) Shirlal, K.G.; Rao, S.; Ganesh, V.; ManuThe stability of a uniformly sloped conventional rubble mound breakwater defenced by a seaward submerged reef is investigated using physical model studies. Regular waves of wide ranging heights and periods are used. Tests are carried out for different spacings between two rubble mound structures (X/d=2.5-13.33) and for different relative heights (h/d=0.625-0.833) and relative widths (B/d=0.25-1.33) of the reef. It is observed that a reef of width (B/d) of 0.6-0.75 constructed at a seaward distance (X/d) of 6.25-8.33 breaks all the incoming waves and dissipates energy and protects the breakwater optimally. 2005 Elsevier Ltd. All rights reserved.Item Stability aspects of nonreshaped berm breakwaters with reduced armor weight(2008) Rao, S.; Subrahmanya, K.; Rao, B.K.; Chandramohan, V.R.The present work involves the investigation of the influence of wave height, wave period, water depth, and sea-ward slope on the stability, wave runup, and wave rundown of statically stable rubble-mound berm breakwater. The weight of armor stones used in the present study is 20% lighter than the weight that is required for a conventional breakwater, designed using Hudson formula for a wave height of 0.1 m in the model. In the present work models with a berm width of 0.6 m, at constant depth of 0.32 m from the seabed were tested. The damage to the breakwater model with the berm was compared with the results on a model without the berm using different armor weights. The variation of relative runup and rundown was found for different values of wave steepness and water depths in front of the structure. The damage to the breakwater, wave runup, and rundown for the structure with seaward slope 1:2 and 1:1.5 were compared. The investigation was carried out in the Marine Structures Laboratory, Department of Applied Mechanics and Hydraulics, National Institute of Technology Karnataka, Surathkal. 2008 ASCE.Item Stability equation for breakwater sheltered by a seaward submerged reef(2007) Shirlal, K.G.; Rao, S.; Manu, M.Breakwater's vulnerability to extreme events such as storms is a reality. To avert the failure of the breakwater, one of the things engineers can do is to design a seaward reef which breaks steep waves and attenuates them. The stability of such a reef, a conventional rubble mound breakwater and a breakwater protected by a seaward submerged reef is investigated through physical model study using regular waves. Tests are carried out for different relative spacings between two rubble mound structures (X/d = 2.5 to 13.33) and for different relative heights (h/d = 0.625 to 0.833) while keeping reef crest width B constant at 0.1m (i.e. the relative crest width B/d = 0.25 to 0.33). The submerged reef of crest width 0.1m located at a seaward distance X of 1 m, 2.5 m and 4.0 m reduces the breakwater damages by a range of 4 to 41 %, 40 to 66% and 63 to 80% respectively. The stability equations for reef and defenced breakwater are derived from curve fitting through the experimental data. 2007 Taylor & Francis Group, LLC.