Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ramesh, R."

Filter results by typing the first few letters
Now showing 1 - 20 of 24
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    5G to 6G: Empowering the Workforce Skills for Next-Gen Connectivity
    (IGI Global, 2025) Anurag, A.S.; Swathi, A.; Ramesh, R.; Johnpaul, M.
    The global launch of 6G communication is anticipated to occur in the near future. This high- speed communication technology will propel the growth of disruptive technologies that are currently underperforming due to our limited communication capabilities. With the establishment of 6G, advancements in AI, the Internet of Things, Machine Learning, and Edge Computing will reach new heights. These changes in the technological landscape will redefine workforce skills requirements. This chapter aims to examine the technological transformations resulting from the shift from 5G to 6G, particularly in the context of empowering workforce skills. Utilizing existing literature, the authors identified several workforce changes and proposed strategies to adapt to this evolving landscape. As communication speeds and data transfer rates increase, society will transition completely towards a smart and digital era. This paper will assist researchers, policymakers, and management personnel in preparing for the changes that 6G technology will bring. © 2025 by IGI Global Scientific Publishing. All rights reserved.
  • No Thumbnail Available
    Item
    A review on analysis of biochar produced from microwave-assisted pyrolysis of agricultural waste biomass
    (Elsevier B.V., 2023) Ramesh, R.; Surya, D.V.; Sankar Rao, C.S.; Yadav, A.; Sridevi, V.; Remya, N.
    Every year the agricultural product processing industries produce large quantities of agricultural waste biomass (AWB). Whose disposal has become a serious issue concerning solid waste management due to environmental and health issues. Microwave-assisted pyrolysis (MAP) is an intriguing technology for producing valuable products from waste feedstocks. AWB is converted into a valuable product like biochar by using MAP. The conversion of AWB into biochar by MAP is influenced by several factors such as type of feedstock, pyrolysis temperature, residence time, pressure, heating rate, susceptor, particle size, and microwave power. However, no review article is available to understand the role of MAP on biochar production from AWB. The current review focused on understanding the fundamentals of biochar production. It also reviews the challenges in producing biochar process by compatible, acceptable, and sustainable and its future directions to gain economic benefits even at small-scale applications. The generation of biochar from MAP and its uses in agriculture are discussed. The current review would address the knowledge gap and highlight the critical implications in biochar production and applications. © 2023 Elsevier B.V.
  • No Thumbnail Available
    Item
    Controlled crystallisation of thermal evaporated GST-on-SOI for photonic neuromorphic application
    (Optica Publishing Group (formerly OSA), 2021) Kallega, R.; Shekhawat, R.; Udaya Bhat, K.; Ramesh, R.; Selvaraja, S.K.
    In this paper, we demonstrate controlled phase tuning of thermally evaporated germanium antimony telluride (GST) integrated silicon ring-resonator for potential neuromorphic application. We present and correlate electrical and photonic phase transition of ring integrated GST. © OSA 2021.
  • No Thumbnail Available
    Item
    Coronal Magnetic Field Lines and Electrons Associated with Type III V Radio Bursts in a Solar Flare
    (2017) Kishore, P.; Kathiravan, C.; Ramesh, R.; Ebenezer, E.
    We recently investigated some of the hitherto unreported observational characteristics of the low frequency (85 35 MHz) type III V bursts from the Sun using radio spectropolarimeter observations. The quantitative estimates of the velocities of the electron streams associated with the above two types of bursts indicate that they are in the range ? 0.13 c 0.02c for the type V bursts, and nearly constant (? 0.4 c) for the type III bursts. We also find that the degree of circular polarization of the type V bursts vary gradually with frequency/heliocentric distance as compared to the relatively steeper variation exhibited by the preceding type III bursts. These imply that the longer duration of the type V bursts at any given frequency (as compared to the preceding type III bursts) which is its defining feature, is due to the combined effect of the lower velocities of the electron streams that generate type V bursts, spread in the velocity spectrum, and the curvature of the magnetic field lines along which they travel. 2017, Indian Academy of Sciences.
  • No Thumbnail Available
    Item
    Coronal Magnetic Field Lines and Electrons Associated with Type III–V Radio Bursts in a Solar Flare
    (Springer India sanjiv.goswami@springer.co.in, 2017) Kishore, P.; Kathiravan, C.; Ramesh, R.; Ebenezer, E.
    We recently investigated some of the hitherto unreported observational characteristics of the low frequency (85–35 MHz) type III–V bursts from the Sun using radio spectropolarimeter observations. The quantitative estimates of the velocities of the electron streams associated with the above two types of bursts indicate that they are in the range ? 0.13 c–0.02c for the type V bursts, and nearly constant (? 0.4 c) for the type III bursts. We also find that the degree of circular polarization of the type V bursts vary gradually with frequency/heliocentric distance as compared to the relatively steeper variation exhibited by the preceding type III bursts. These imply that the longer duration of the type V bursts at any given frequency (as compared to the preceding type III bursts) which is its defining feature, is due to the combined effect of the lower velocities of the electron streams that generate type V bursts, spread in the velocity spectrum, and the curvature of the magnetic field lines along which they travel. © 2017, Indian Academy of Sciences.
  • No Thumbnail Available
    Item
    Effect of current density and electrochemical cycling on physical properties of silicon nanowires as anode for lithium ion battery
    (Elsevier Inc. usjcs@elsevier.com, 2017) Ramesh, R.; H.S., N.
    Herein, we successfully fabricated vertically aligned silicon nanowires (Si NWs) via an electrochemical etching of n-type (100) silicon at different high current densities. The morphology of the prepared Si NWs was studied using SEM, FFT analysis and WSxM software. From FTIR spectroscopy analysis, the silicon dangling bonds of the as-prepared Si NWs layer have large amount of hydrogen to form weak Si[sbnd]H bonds. The blue shift was observed in Photoluminescence due to decrease in the size of silicon crystallites, the crystallite size in the Si NWs varied from 5.9 nm to 4.8 nm depending on the current density. The contact angle varied from 74.7° to 149.1°. From the wettability studies, the surface nature of the Si NWs was converted from hydrophilic to hydrophobic when the current density increased. The obtained Si NWs were used as an anode in lithium ion cell. The charge capacity of the anode is ~ 3452.47 mAh g? 1 at the first cycle with the coulombic efficiency over 85.8%, and faded to 1134.34 mAh g? 1 with coulombic efficiency over 81.6% after the 12th cycle at a current rate of 1C. Scanning electron microscopy and selected area electron diffraction are performed to study the morphology and crystalline structure of the anode, respectively. The dislocation density decreased from 46.2 × 1015 m? 2 to 0.06 × 1015 m? 2 and the surface area decreased from 1.5 × 103 ?m2 to 0.05 × 103 ?m2 with cycle number increased from 1 to 102 whereas the band gap increased from 2.2 eV to 2.9 eV. The above observations are well correlated. © 2017 Elsevier Inc.
  • No Thumbnail Available
    Item
    Effect of current density on morphological, structural and optical properties of porous silicon
    (Elsevier Ltd, 2017) Ramesh, R.; Nagaraja, H.S.
    The morphology of porous silicon (PS) layers produced by electrochemical etching of n-type (100) silicon (Si) at different low current densities was studied using SEM, image J analysis and WSxM software. From FTIR spectroscopy analysis, the Si dangling bonds of the as-prepared PS layer have large amount of Hydrogen to form weak Si–H bonds. From Raman analysis, a full width half maximum (FWHM) of the Raman peak was gradually increased with increased current density, shifted towards lower energies due to reduce of crystallite size, the crystallite size in the PS varied from 63 nm to 20 nm depending on the current density. The optical response of the PS layer has been performed by the absorbance and Photoluminescence was studied experimentally in the visible range. The optical absorption and photo luminescence in PS is due to excitonic recombination between the defect states as well as on the surface of nanocrystals, and this was attributed to the presence of silicon hydride species which are confirmed by FTIR spectra. The red shift was observed in absorbance and Photoluminescence due to decrease in the size of Si crystallites and growth of Si=O bonds. The contact angle varied from 76° to 120.1°. From the wettability studies, the surface nature of the PS was converted from hydrophilic to hydrophobic when the current density increased. © 2017 Elsevier Ltd
  • No Thumbnail Available
    Item
    Effect of dry torrefaction pretreatment of the microwave-assisted catalytic pyrolysis of biomass using the machine learning approach
    (Elsevier Ltd, 2022) Ramesh, R.; Suriapparao, D.V.; Sankar Rao, C.S.; Sridevi, V.; Kumar, A.
    This study employs the Leave-One-Out cross-validation approach to build a machine-learning model using polynomial regression to predict pyro product yield through microwave-assisted pyrolysis of sawdust over KOH catalyst and graphite powder a susceptor. The determination of coefficient (R2) validates the developed models. All the developed models achieved a high prediction accuracy with R2 > 0.93, which signifies that the experimental values are in good agreement with the predicted one. The dependence of the catalyst loading and pretreatment temperature on dominating process parameters such as heating rate, pyrolysis temperature, susceptor thermal energy, and pyro products, namely bio-oil, biochar, and biogas, are explored. The yield of biochar is reduced; however, bio-oil and biogas are enhanced as the catalyst loading increased. On the other hand, increasing the temperature of pretreated sawdust decreased bio-oil and biogas yields while increasing biochar yields. Further, microwave conversion efficiency, and susceptor thermal energy increased with increased catalyst quantity and pretreatment temperatures of sawdust. It was observed that the average heating rate was increased by increasing the catalyst quantity while maintaining the same pyrolysis time until pretreatment temperatures of 150 °C were reached, after which the heating rate dropped due to the continuous microwave energy input to the system. © 2022 Elsevier Ltd
  • No Thumbnail Available
    Item
    Effect of solvent pre-treatment on microwave assisted pyrolysis of Spirulina (Algal Biomass) and Ficus benghalensis (Lignocellulosic Biomass) for production of biofuels: comparative experimental studies
    (Springer Science and Business Media Deutschland GmbH, 2025) Varma, J.V.; Sridevi, V.; Musalaiah, M.; King, P.; Hamzah, H.T.; Tanneru, H.K.; Ramesh, R.; Malleswari, G.B.
    The study focuses on the comparison of microwave-assisted pyrolysis (MAP) of Spirulina, (algal biomass), and aerial roots of Ficus benghalensis (lignocellulosic biomass) as feedstocks for biofuel production. Solvent ethanol was used to pretreat feedstocks. The experiments were carried out using a microwave power of 450 W, considering both fresh and solvent-pretreated feedstocks. Solvent-pretreated Spirulina demonstrated a high bio-oil yield of 56.1 wt. % and a biochar yield of 13.5 wt. %, whereas for solvent-pretreated Ficus benghalensis, the corresponding yields were 35.4 wt. % and 12.3 wt.%. Both solvent-treated and fresh algal biomass feedstocks showed higher yields than lignocellulose biomass. Pre-treatment of feedstocks showed positive results on microwave energy consumption and pyrolysis index. The average heating values were 27.3 0C/min for pretreated Spirulina and 46.2 0C/min for pretreated Ficus benghalensis. Fourier Transform Infrared (FTIR) characterized the obtained bio-oils and biochar. The FTIR results indicated the presence of distinctive functional groups such as N=C=O, O=C=O, N-O, and S=O in MAP of Spirulina bio-oil, and C=C and C-I stretching in MAP of Ficus benghalensis bio-oil. The FTIR results for biochar were consistent across both feedstocks, showing common functional groups such as C-Cl, C=C, C-H, O-H, C-F, and S=O. However, in the case of Spirulina, an extra functional group, C=N, was also detected. Pre-treatment of microalgal biomass is essential for the maximal recovery of biofuel precursors packed inside the complex microalgal cell wall. It was concluded that pre-treatment is an efficient way to improve the yield and composition of bio-oil with low microwave power and short microwave irradiation time. Efforts are still required to develop an economical and environmentally benign pre-treatment approach to facilitate 100% biomass conversion to added-value products. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
  • No Thumbnail Available
    Item
    Effective electronic waste valorization via microwave-assisted pyrolysis: investigation of graphite susceptor and feedstock quantity on pyrolysis using experimental and polynomial regression techniques
    (Springer, 2024) Mistry, C.; Surya, D.V.; Ramesh, R.; Basak, T.; Kumar, P.S.; Sankar Rao, C.S.; Gautam, R.; Sridhar, P.; Choksi, H.; Remya, N.
    Waste printed circuit board (WPCB) was subjected to microwave-assisted pyrolysis (MAP) to investigate the energy and pyrolysis products. In MAP, pyrolysis experiments were conducted, and the effects of WPCB to graphite mass ratio on three-phase product yields and their compositions were analyzed. In addition, the role of the initial WPCB mass (10, 55, and 100 g) and susceptor loading (2, 22, and 38 g) on the quality of product yield was also evaluated. By using design of experiments, the effects of graphite susceptor addition and WPCB feedstock quantity was investigated. A significant liquid yield of 38.2 wt.% was achieved at 38 g of graphite and 100 g of WPCB. Several other operating parameters, including average heating rate, pyrolysis time, microwave energy consumption, specific microwave power used, and product yields, were optimized for the MAP of WPCB. Pyrolysis index (PI) was calculated at the blending of fixed quantity WPCB (100 g) and various graphite quantities in the following order: 2 g (21) > 20 g (20.4) > 38 g (19.5). The PI improved by increasing the WPCB quantity (10, 55, and 100 g) with a fixed quantity of graphite. This work proposes the product formation and new reaction pathways of the condensable compounds. GC–MS of the liquid fraction from the MAP of WPCBs without susceptor resulted in the generation of phenolic with 46.1% relative composition. The addition of graphite susceptor aided in the formation of phenolic and the relative composition of phenolics was found to be 83.6%. The area percent of phenol increased from 42.8% (without susceptor) to 78.6% (with susceptor). Without a susceptor, cyclopentadiene derivative was observed in a very high composition (~ 31 area %). © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023.
  • No Thumbnail Available
    Item
    Face Parts Recognition Using Deep Neural Networks
    (Institute of Electrical and Electronics Engineers Inc., 2021) Krishna, M.S.; Nali, A.; Aggarwal, N.; Krishna, T.; Ramesh, R.
    This paper has expressed overall procedure of the facial recognition with its importance and essential beneficial factors. CNN and ML methods are used to find out the accuracy of the model for which data test train and features extraction has been processed. The output accuracy is observed to be 91.8%. Involvement of optimizers, batch normalization and dropout functionalities reported advantages in proposed CNN model. © 2021 IEEE.
  • No Thumbnail Available
    Item
    Hospital plastic waste valorization through microwave-assisted Pyrolysis: Experimental and modeling studies via machine learning
    (Elsevier Ltd, 2025) Ramesh, R.; Sankar Rao, C.; Surya, D.V.; Kumar, A.
    The COVID-19 pandemic generated a global upsurge in hospital plastic waste (HPW) as a consequence of the widespread utilization of personal protective equipment (PPE) composed of diverse polymer materials. The constant demand for PPE worldwide led to the accumulation of substantial volumes of high-polymer-based plastic waste. To tackle this challenge, researchers delved into the conversion of HPW into valuable chemicals through a process known as microwave-assisted pyrolysis (MAP). This method entails the transformation of HPW into high-quality char and liquid oil, which can serve as a source of fuel. In this study, our primary focus was to understand how the ratio of HPW (hospital plastic waste) to susceptor weight influenced the yields and characteristics of the resulting products in the context of the MAP process. To facilitate the experimental setup, a Central Composite Design (CCD) was employed. The impact of varying HPW weights and susceptor quantities on the production of value-added products was investigated. The analysis of condensed organic vapor decomposition revealed an increase in liquid yields (73.6 wt %, 76.6 wt %, 80.7 wt %) as the graphite content increased at a constant 30 g HPW. Conversely, gas yield decreased with higher susceptor and HPW quantity. Keeping the graphite constant at 4g, the gas yield declined (32.5 wt %, 30.7 wt %, and 24.7 wt %) as HPW increased. Additionally, gas yield exhibited a drop (32.5 wt % to 18.1 wt %) with an increase in both graphite and HPW. Furthermore, the residual yield decreased (from 1.7 wt % to 1.2 wt %) with a 30 g increase in HPW. In-depth analysis incorporated machine learning techniques to understand the behavior of response variables about susceptor and HPW quantities. The optimization of the MAP process for HPW encompassed various supplementary operational parameters, including susceptor thermal energy, average heating rate, microwave energy, specific microwave power, and product yields. Moreover, the residue generated from the MAP of HPW underwent characterization through X-ray diffraction (XRD), FTIR, and BET analysis. © 2025 Elsevier Ltd
  • No Thumbnail Available
    Item
    Hydrothermally synthesized reduced graphene oxide and Sn doped manganese dioxide nanocomposites for supercapacitors and dopamine sensors
    (Elsevier Ltd, 2017) Shanbhag, D.; Bindu, K.; Aarathy, A.R.; Ramesh, R.; Moolayadukkam, M.; Nagaraja, H.S.
    ?-MnO2 nanowires and its nanocomposites (rGO-MnO2 and Sn@rGO-MnO2) were synthesized by a facile hydrothermal technique. Two important electrochemical applications of nanocomposites, viz, electrodes for supercapacitor and sensors for a biomolecule, dopamine are reported. The prepared nanowires have been characterized by XRD, which reveals smaller crystallite size of rGO- MnO2 composites compared to pristine MnO2 and the trend is supported by BET analysis. The wrapping of MnO2 NWs with rGO sheets increases the surface area, as well as, creates more dislocations at the interfaces. The correlation between physicochemical properties leads to an enhancement in the electrochemical performance of the materials. The as-fabricated Sn@rGO-MnO2 supercapacitor electrode reveals superior performance. The specific capacitance of 139.05, 309.7 and 460.9 F/g at a scanning rate of 20 mV/s, in an aqueous Na2SO4 solution (1 M) is obtained for MnO2, rGO-MnO2 and Sn@rGO-MnO2 respectively. Also, the reported nanocomposites show excellent performance towards detection of dopamine. Among ?-MnO2/GCE, rGO-MnO2/GCE and Sn@rGO-MnO2/GCE based sensors for Dopamine detection, rGO-MnO2/GCE sensor exhibits the highest sensitivity of 433.6 ?A/mM and broad linear range, whereas Sn@rGO-MnO2 exhibits lower detection limit of 0.13 ?M. © 2017 Elsevier Ltd
  • No Thumbnail Available
    Item
    LOW-FREQUENCY RADIO OBSERVATIONS of the SOLAR CORONA with ARCMINUTE ANGULAR RESOLUTION: IMPLICATIONS for CORONAL TURBULENCE and WEAK ENERGY RELEASES
    (2016) Mugundhan, V.; Ramesh, R.; Barve, I.V.; Kathiravan, C.; Gireesh, G.V.S.; Kharb, P.; Misra, A.
    We report on the first long baseline interferometer (length ?8 km) observations of the solar corona at 37 MHz that were carried out recently with an angular resolution of ?1?. The results indicate that, (1) discrete radio sources of the aforesaid angular size or even lesser are present in the solar corona from where radiation at the above frequency originates. This constrains the angular broadening of radio sources at low frequencies due to scattering by density turbulence in the solar corona; and (2) the observed sources in the present case correspond to the weakest energy releases in the solar atmosphere reported so far. 2016. The American Astronomical Society. All rights reserved.
  • No Thumbnail Available
    Item
    LOW-FREQUENCY RADIO OBSERVATIONS of the SOLAR CORONA with ARCMINUTE ANGULAR RESOLUTION: IMPLICATIONS for CORONAL TURBULENCE and WEAK ENERGY RELEASES
    (Institute of Physics Publishing helen.craven@iop.org, 2016) Mugundhan, V.; Ramesh, R.; Barve, I.V.; Kathiravan, C.; Gireesh, G.V.S.; Kharb, P.; Misra, A.
    We report on the first long baseline interferometer (length ?8 km) observations of the solar corona at 37 MHz that were carried out recently with an angular resolution of ?1?. The results indicate that, (1) discrete radio sources of the aforesaid angular size or even lesser are present in the solar corona from where radiation at the above frequency originates. This constrains the angular broadening of radio sources at low frequencies due to scattering by density turbulence in the solar corona; and (2) the observed sources in the present case correspond to the weakest energy releases in the solar atmosphere reported so far. © 2016. The American Astronomical Society. All rights reserved.
  • No Thumbnail Available
    Item
    Microwave assisted catalytic co-pyrolysis of banana peels and polypropylene: experimentation and machine learning optimization
    (Royal Society of Chemistry, 2025) Rajpurohit, N.S.; Sinha, S.; Ramesh, R.; Sankar Rao, C.; Harshini, H.
    The growing accumulation of agricultural and plastic waste poses serious environmental challenges, necessitating sustainable and efficient valorization strategies. This study investigates the microwave-assisted catalytic co-pyrolysis of banana peels and polypropylene, using graphite as a susceptor and potassium hydroxide as a catalyst. Experiments were conducted by varying biomass and plastic quantities and microwave power levels to study their effects on product yields and thermal performance. The process effectively converted waste materials into valuable products, with oil yield increasing with microwave power and optimized biomass-to-plastic ratios. The rate of mass loss and heating rate were found to significantly influence overall conversion efficiency. A support vector regression (SVR) model was developed to predict yields based on input parameters, achieving a coefficient of determination ranging from 0.81 to 0.99, which demonstrates the reliability of machine learning in capturing complex thermochemical behavior. 3D plots illustrated the nonlinear effects of process variables on yields. Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD) analyses of char confirmed functional groups and crystalline phases, suggesting its suitability for applications like adsorbents or catalysts. Brunauer-Emmett-Teller (BET) analysis showed multilayer adsorption, while thermogravimetric analysis (TGA) highlighted distinct thermal degradation patterns of the feedstocks. These results affirm the promise of integrating experiments with ML for efficient waste-to-energy conversion. © 2025 The Royal Society of Chemistry.
  • No Thumbnail Available
    Item
    Microwave-assisted torrefaction of lignocellulosic biomass: A critical review of its role in sustainable energy
    (Elsevier Ltd, 2025) Ramesh, R.; Sankar Rao, C.S.; Lenka, M.; Sridevi, V.; Basak, T.
    Lignocellulosic biomass is a promising renewable energy source that can help reduce reliance on fossil fuels. However, its raw form presents challenges for practical use. To overcome this, the Microwave-assisted torrefaction (MAT) process has emerged as a successful method for enhancing the quality of biomass and generating energy. This article aims to provide a comprehensive review of recent scientific research on MAT of biomass. It explores torrefaction indices and discusses the impact of key parameters such as biomass composition, temperature, residence time, heating rate, particle size, and microwave power on MAT. The article also addresses potential applications and challenges associated with MAT. Furthermore, it evaluates the hurdles in achieving compatibility, acceptability, and sustainability of the process, along with future directions to realize economic benefits even in small-scale applications. Ultimately, MAT holds promise as an energy-efficient approach to enhance the effectiveness of biomass utilization. © 2025
  • No Thumbnail Available
    Item
    Microwave-assisted torrefaction of lignocellulosic biomass: A critical review of its role in sustainable energy
    (Elsevier Ltd, 2025) Ramesh, R.; Sankar Rao, C.; Lenka, M.; Sridevi, V.; Basak, T.
    Lignocellulosic biomass is a promising renewable energy source that can help reduce reliance on fossil fuels. However, its raw form presents challenges for practical use. To overcome this, the Microwave-assisted torrefaction (MAT) process has emerged as a successful method for enhancing the quality of biomass and generating energy. This article aims to provide a comprehensive review of recent scientific research on MAT of biomass. It explores torrefaction indices and discusses the impact of key parameters such as biomass composition, temperature, residence time, heating rate, particle size, and microwave power on MAT. The article also addresses potential applications and challenges associated with MAT. Furthermore, it evaluates the hurdles in achieving compatibility, acceptability, and sustainability of the process, along with future directions to realize economic benefits even in small-scale applications. Ultimately, MAT holds promise as an energy-efficient approach to enhance the effectiveness of biomass utilization. © 2025
  • No Thumbnail Available
    Item
    Synthesis of sustainable chemicals from waste tea powder and Polystyrene via Microwave-Assisted in-situ catalytic Co-Pyrolysis: Analysis of pyrolysis using experimental and modeling approaches
    (Elsevier Ltd, 2022) Suriapparao, D.V.; Sridevi, V.; Ramesh, R.; Sankar Rao, C.S.; Tukarambai, M.; Kamireddi, D.; Gautam, R.; Dharaskar, S.A.; Pritam, K.
    In the current study, catalytic co-pyrolysis was performed on waste tea powder (WTP) and polystyrene (PS) wastes to convert them into value-added products using KOH catalyst. The feed mixture influenced the heating rates (17–75 °C/min) and product formation. PS promoted the formation of oil and WTP enhanced the char formation. The maximum oil yield (80 wt%) was obtained at 15 g:5 g, and the maximum char yield (44 wt%) was achieved at 5 g:25 g (PS:WTP). The pyrolysis index (PI) increased with the increase in feedstock quantity. High PI was noticed at 25 g:5 g, and low PI was at 5 g:5 g (PS:WTP). Low energy consumption and low pyrolysis time enhanced the PI value. Significant interactions were noticed during co-pyrolysis. The obtained bio-oil was analyzed using GC–MS and a plausible reaction mechanism is presented. Catalyst and co-pyrolysis synergy promoted the formation of aliphatic and aromatic hydrocarbons by reducing the oxygenated products. © 2022 Elsevier Ltd
  • No Thumbnail Available
    Item
    The effect of torrefaction temperature and catalyst loading in Microwave-Assisted in-situ catalytic Co-Pyrolysis of torrefied biomass and plastic wastes
    (Elsevier Ltd, 2022) Ramesh, R.; Suriapparao, D.V.; Sankar Rao, C.S.; Sridevi, V.; Kumar, A.; Shah, M.
    In the current study, the effect of torrefaction temperatures (125–175 °C) and catalyst quantity (5–15 g) on co-pyrolysis of torrefied sawdust (TSD) and polystyrene (PS) are investigated to obtain value-added products. The role of torrefaction in co-pyrolysis of TSD: PS was analyzed to understand the product yields, synergy, and energy consumption. As the torrefaction temperature increases, oil yield (48.3–59.6 wt%) and char yield (24.3–29 wt%) increase while gas yield (27.4–11.4 wt%) decreases. Catalytic co-pyrolysis showed a significant level of synergy when compared to non-catalytic co-pyrolysis. For the conversion (%), a positive synergy maximum (-2.6) exists at a torrefaction temperature of 175 °C and 15 g of KOH catalyst. To develop the model, polynomial regression-based machine learning was used to predict pyrolysis product yields and energy usage variables. The developed models showed significant prediction accuracy (R2 > 0.98), suggesting the experimental values and the predicted values matched well. © 2022 Elsevier Ltd
  • «
  • 1 (current)
  • 2
  • »

Maintained by Central Library NITK | DSpace software copyright © 2002-2026 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify