Hospital plastic waste valorization through microwave-assisted Pyrolysis: Experimental and modeling studies via machine learning

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Ltd

Abstract

The COVID-19 pandemic generated a global upsurge in hospital plastic waste (HPW) as a consequence of the widespread utilization of personal protective equipment (PPE) composed of diverse polymer materials. The constant demand for PPE worldwide led to the accumulation of substantial volumes of high-polymer-based plastic waste. To tackle this challenge, researchers delved into the conversion of HPW into valuable chemicals through a process known as microwave-assisted pyrolysis (MAP). This method entails the transformation of HPW into high-quality char and liquid oil, which can serve as a source of fuel. In this study, our primary focus was to understand how the ratio of HPW (hospital plastic waste) to susceptor weight influenced the yields and characteristics of the resulting products in the context of the MAP process. To facilitate the experimental setup, a Central Composite Design (CCD) was employed. The impact of varying HPW weights and susceptor quantities on the production of value-added products was investigated. The analysis of condensed organic vapor decomposition revealed an increase in liquid yields (73.6 wt %, 76.6 wt %, 80.7 wt %) as the graphite content increased at a constant 30 g HPW. Conversely, gas yield decreased with higher susceptor and HPW quantity. Keeping the graphite constant at 4g, the gas yield declined (32.5 wt %, 30.7 wt %, and 24.7 wt %) as HPW increased. Additionally, gas yield exhibited a drop (32.5 wt % to 18.1 wt %) with an increase in both graphite and HPW. Furthermore, the residual yield decreased (from 1.7 wt % to 1.2 wt %) with a 30 g increase in HPW. In-depth analysis incorporated machine learning techniques to understand the behavior of response variables about susceptor and HPW quantities. The optimization of the MAP process for HPW encompassed various supplementary operational parameters, including susceptor thermal energy, average heating rate, microwave energy, specific microwave power, and product yields. Moreover, the residue generated from the MAP of HPW underwent characterization through X-ray diffraction (XRD), FTIR, and BET analysis. © 2025 Elsevier Ltd

Description

Keywords

Cracking (chemical), Microwave materials processing, Central composite designs, Gas yields, Hospital plastic waste, Machine-learning, Microwave pyrolysis, Microwave-assisted pyrolysis, Personal protective equipment, Plastics waste, Pyrolysis process, Susceptors, Plastic parts

Citation

Journal of Cleaner Production, 2025, 514, , pp. -

Collections

Endorsement

Review

Supplemented By

Referenced By