Statistics for Open die extrusion (ODE) has been done on AISI 1020 steel, commercial purity aluminium and commercial purity titanium, in both direct and inverted modes. It was found that inverted extrusion requires lesser forces than direct extrusion. Limit strains are more for the former than for the later as measured experimentally and as calculated theoretically. Theoretical limit strains are lesser than experimental ones in both the case of rods and tubes. ODE is only for shorter components due to unsupported billet and interference from buckling. It is also only for smaller strains due to interference from upsetting of unsupported billet above the die rather than extrusion through the die. © 2004 Elsevier B.V. All rights reserved.

Total visits

views
Open die extrusion (ODE) has been done on AISI 1020 steel, commercial purity aluminium and commercial purity titanium, in both direct and inverted modes. It was found that inverted extrusion requires lesser forces than direct extrusion. Limit strains are more for the former than for the later as measured experimentally and as calculated theoretically. Theoretical limit strains are lesser than experimental ones in both the case of rods and tubes. ODE is only for shorter components due to unsupported billet and interference from buckling. It is also only for smaller strains due to interference from upsetting of unsupported billet above the die rather than extrusion through the die. © 2004 Elsevier B.V. All rights reserved. 0

Total visits per month

views
August 2025 0
September 2025 0
October 2025 0
November 2025 0
December 2025 0
January 2026 0
February 2026 0