Prasad, R.Gorjizadeh, N.Rajarao, R.Sahajwalla, V.Bhat, B.R.2020-03-312020-03-312015RSC Advances, 2015, Vol.5, 56, pp.44792-44799https://idr.nitk.ac.in/handle/123456789/12555Herein, in this work we synthesized plant root nodule like NiO-MWCNT nanocomposites by a simple, rapid and solvent-free method using nickel formate as a precursor. Using a first-principle simulation study the interactions and charge transfer behaviour of the NiO and MWCNT composite is investigated. The as-prepared NiO-MWCNT composite is employed to fabricate a modified non-enzymatic carbon paste electrode (CPE) for glucose sensing. From the electrochemical investigation, the fabricated sensor shows an excellent sensitivity of 6527 ?A mM-1 cm-2 with a detection limit of 19 ?M and a linear response over a range from 0.001 mM to 14 mM of glucose concentrations, at an applied potential of 0.5 V. Importantly the sensor also exhibits greater stability, selectivity and reproducibility. A first principle simulation study shows the differences in charge density and charge transfer behaviour from nanotubes to NiO nanoparticles, which in turn enhances the electro catalytic property of the NiO-MWCNT composite. Hence, these results indicate that the NiO-MWCNT composite is a potential material for non-enzymatic electrochemical glucose sensors. This journal is The Royal Society of Chemistry.Plant root nodule like nickel-oxide-multi-walled carbon nanotube composites for non-enzymatic glucose sensorsArticle