Poddar M.K.Jalalzai P.Sahir S.Yerriboina N.P.Kim T.-G.Park J.-G.2021-05-052021-05-052021Applied Surface Science Vol. 537 , , p. -https://doi.org/10.1016/j.apsusc.2020.147862https://idr.nitk.ac.in/handle/123456789/16711Effects of single and mixed oxidants of Fe(NO3)3 and H2O2 containing acidic silica slurries were studied to investigate the mechanism of tungsten (W) chemical mechanical planarization (CMP). The W polishing rate obtained from the CMP test depicted high W polishing rate in the presence of mixed oxidants of Fe(NO3)3 and H2O2 as compared to a single oxidant of either H2O2 or Fe(NO3)3. The formation of a passive layer of tungsten oxide (WO3) and W dissolution could be the reason for these results as confirmed by XPS. Further investigation revealed that the generation of much stronger oxidants of hydroxyl radicals ([rad]OH) was solely responsible for WO3 layer formation. Quantitative evaluation of [rad]OH generation was estimated using a UV–visible spectrophotometer and confirmed that in-situ generation of hydroxyl radicals ([rad]OH) could be a main driving force for the high W polishing rate by converting a hard W film into a soft passive film of WO3. WO3 film formation was further confirmed using potentiodynamic polarization studies, which showed a smaller value of corrosion current density (Icorr) in mixed oxidants of Fe(NO3)3 and H2O2 as compared to the large values of Icorr observed for H2O2 alone. This study revealed that a single oxidizer of either Fe(NO3)3 or H2O2 was not capable of achieving a high W removal rate. Rather, only mixed oxidants of Fe(NO3)3 and H2O2 could cause a high W polishing rate due to excessive in-situ generation of [rad]OH radicals during the W CMP process. © 2020Tungsten passivation layer (WO3) formation mechanisms during chemical mechanical planarization in the presence of oxidizersArticle