Argyros, I.K.George, S.2020-03-312020-03-312016Communications on Applied Nonlinear Analysis, 2016, Vol.23, 1, pp.56-70https://idr.nitk.ac.in/handle/123456789/11919We present a local convergence analysis of inexact Gauss-Newton-like method for solving nonlinear least-squares problems in a Euclidian space setting. The convergence analysis is based on a combination of a weak Lipschitz and a center-weak Lipschitz condition. Our approach has the following advantages and under the same computational cost as earlier studies such as [5, 6, 7, 15]: A large radius of convergence; more precise estimates on the distances involved to obtain a desired error tolerance. Numerical examples are also presented to show these advantages.Local convergence of inexact Gauss-Newton-like method for least square problems under weak Lipschitz conditionArticle