Mane, V.Rajappa, S.Rao, S.Vittal, Hegde, A.2020-03-312020-03-312011International Journal of Naval Architecture and Ocean Engineering, 2011, Vol.3, 2, pp.150-158https://idr.nitk.ac.in/handle/123456789/12735Present study aims to investigate the influence of relative breakwater width W/L (W=width of breakwater, L=wavelength), wave steepness Hi/gT2 (Hi=incident wave height, T=wave period) and relative wave height d/W (d=water depth) on forces in the moorings of horizontal interlaced multi-layered moored floating pipe breakwater (HIMMFPB) model. Studies were conducted on scaled down physical models having three layers of Poly Vinyl Chloride (PVC) pipes, wave steepness Hi/gT2 varying from 0.063 to 0.849, relative width W/L varying from 0.4 to 2.65 and relative spacing S/D=2 (S=horizontal centre-to-centre spacing of pipes, D=diameter of pipes). Peak mooring forces were also measured and data collected is analyzed by plotting non-dimensional graphs depicting variation of fs/?W2 (fs=Sea side Mooring force, ?=specific weight of water) & fl/?W2 (fl=Lee side Mooring force) with Hi/gT2 for d/W varying from 0.082 to 0.276 and also variation of fs/?W2 and fl/?W2 with W/L for Hi/d varying from 0.06 to 0.400. SNAK, 2011.Peak mooring forces in the horizontal interlaced multi-layered moored floating pipe breakwaterArticle