Sen, S.Arumuga Perumal, D.Yadav, A.K.2026-02-062021Communications in Computer and Information Science, 2021, Vol.1345, , p. 122-13318650929https://doi.org/10.1007/978-981-16-4772-7_9https://idr.nitk.ac.in/handle/123456789/30342The lattice Boltzmann method (LBM) has been gaining popularity over the last two decades and the method has been extended from simple fluid flow problems to problems involving heat transfer. In the present work, an attempt is made to model cases involving mixed convection. Two types of problems are considered in this study; the first one dealing with mixed convection in a single-sided lid-driven cavity and the second one dealing with mixed convection in a double-sided lid-driven cavity in parallel and anti-parallel configurations at constant Prandtl number and various values of Richardson number. For the first problem, a square domain is considered with a moving lid at a lower temperature while the stationary wall at the bottom at a higher temperature. The cavity side walls are treated with an adiabatic boundary condition. In LBM, a forcing term dependent on temperature difference is utilized to vary the value of y-velocity in order to satisfy the effects of gravity on mixed convection. A grid independence study is conducted to show that the results are independent of the grid chosen, and good agreement with literature is achieved. The second problem is an extension of the first one; the cavity bottom wall is first given a velocity in the opposite direction, and then in the same direction, and the velocity streamlines, temperature contours and local Nusselt number variation in the top wall for these cases are plotted. The developed method helps in the visualization of various phenomena such as splitting of flow into two halves for the parallel configuration and formation of secondary vortices with high Reynolds number. © 2021, Springer Nature Singapore Pte Ltd.LBMLid driven cavityMixed convectionNumerical Study of Mixed Convection in Single and Double Lid Driven Cavity Using LBM