Maity S.Vannathan A.A.Kumar K.Das P.P.Mal S.S.2021-05-052021-05-052021Journal of Materials Engineering and Performance Vol. 30 , 2 , p. 1371 - 1377https://doi.org/10.1007/s11665-020-05349-whttps://idr.nitk.ac.in/handle/123456789/16200Successful exploration of supercapacitor (SC) material to integrate with high energy and high power density storage device still remains a daunting challenge. Conducting carbon nanostructures have been primarily used for this purpose; however, most of their surface area remains unutilized throughout the storage process. Herein, a new type of hybrid material has been reported by effectively using active sides of carbon nanostructures. Insertion of faradaic-type polyoxometalates (POMs), namely phosphotetradecavanadate (Na7[H2PV14O42], hereafter described as PV14), into the graphene oxide (GO) matrix creates a novel hybrid material for SC applications. Owing to the formation of nanohybrid, it can store charges both electrostatically and electrochemically. PV14/GO composite’s electrochemical behavior in different electrolyte (acidic/neutral) solutions shows different types of characteristics. The PV14/GO composite as a working electrode exhibits a high galvanostatic capacitance of 139 F/g while maintaining at a power density of 97.94 W/kg in 0.25 M H2SO4 electrolyte. The specific energy density was also found out to be around 56.58 Wh/kg at a 5 mV/s scan rate for the same electrolyte. Furthermore, in 1 M Na2SO4 solution, PV14/GO composite demonstrates a specific capacitance of 85.4 F/g at a scan rate of 5 mV/s. The equivalent series resistance for the device was found to be approximately 0.51 Ω with a circuit resistance of 3.881 Ω, using electrochemical impedance spectroscopy. The cell capacitance, employing the Nyquist plot, was calculated to be around 2.78 mF. © 2021, ASM International.Enhanced Power Density of Graphene Oxide–Phosphotetradecavanadate Nanohybrid for Supercapacitor ElectrodeArticle