Please use this identifier to cite or link to this item: https://idr.nitk.ac.in/jspui/handle/123456789/9836
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKulkarni, S.H.-
dc.contributor.authorSukumar, D.-
dc.date.accessioned2020-03-31T06:51:33Z-
dc.date.available2020-03-31T06:51:33Z-
dc.date.issued2010-
dc.identifier.citationStudia Mathematica, 2010, Vol.197, 1, pp.93-99en_US
dc.identifier.uri10.4064/sm197-1-8-
dc.identifier.urihttp://idr.nitk.ac.in/jspui/handle/123456789/9836-
dc.description.abstractLet A be a complex commutative Banach algebra with unit 1 and ? > 0. A linear map ?: A ?C is said to be ?-almost multiplicative if |?(ab) - ? (a) ? (b)| ? ?en_US
dc.description.abstractaen_US
dc.description.abstractben_US
dc.description.abstractfor all a, b ? A. Let 0 < e < 1. The e-condition spectrum of an element a in A is defined by ?e.(a) := {? ? C:en_US
dc.description.abstract?-aen_US
dc.description.abstract?- aen_US
dc.description.abstract-1en_US
dc.description.abstract? 1/e} with the convention thaten_US
dc.description.abstract?- aen_US
dc.description.abstract(? - a)-1en_US
dc.description.abstract= ? when ? - a is not invertible. We prove the following results connecting these two notions: (1) If ?(1) = 1 and ? is ?-almost multiplicative, then ?(a) ? ?e(a) for all a in A.then (2) If ?is lenear and ?(a) ??e(a) for all a in A ,then ?-is ? almost multiplicative for some ?. The first result is analogous to the Gelfand theory and the last result is analogous to the classical Gleason-Kahane- ?elazko theorem.en_US
dc.titleAlmost multiplicative functions on commutative Banach algebrasen_US
dc.typeArticleen_US
Appears in Collections:1. Journal Articles

Files in This Item:
File Description SizeFormat 
9836.pdf162.32 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.