Please use this identifier to cite or link to this item:
https://idr.nitk.ac.in/jspui/handle/123456789/9836
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kulkarni, S.H. | - |
dc.contributor.author | Sukumar, D. | - |
dc.date.accessioned | 2020-03-31T06:51:33Z | - |
dc.date.available | 2020-03-31T06:51:33Z | - |
dc.date.issued | 2010 | - |
dc.identifier.citation | Studia Mathematica, 2010, Vol.197, 1, pp.93-99 | en_US |
dc.identifier.uri | 10.4064/sm197-1-8 | - |
dc.identifier.uri | http://idr.nitk.ac.in/jspui/handle/123456789/9836 | - |
dc.description.abstract | Let A be a complex commutative Banach algebra with unit 1 and ? > 0. A linear map ?: A ?C is said to be ?-almost multiplicative if |?(ab) - ? (a) ? (b)| ? ? | en_US |
dc.description.abstract | a | en_US |
dc.description.abstract | b | en_US |
dc.description.abstract | for all a, b ? A. Let 0 < e < 1. The e-condition spectrum of an element a in A is defined by ?e.(a) := {? ? C: | en_US |
dc.description.abstract | ?-a | en_US |
dc.description.abstract | ?- a | en_US |
dc.description.abstract | -1 | en_US |
dc.description.abstract | ? 1/e} with the convention that | en_US |
dc.description.abstract | ?- a | en_US |
dc.description.abstract | (? - a)-1 | en_US |
dc.description.abstract | = ? when ? - a is not invertible. We prove the following results connecting these two notions: (1) If ?(1) = 1 and ? is ?-almost multiplicative, then ?(a) ? ?e(a) for all a in A.then (2) If ?is lenear and ?(a) ??e(a) for all a in A ,then ?-is ? almost multiplicative for some ?. The first result is analogous to the Gelfand theory and the last result is analogous to the classical Gleason-Kahane- ?elazko theorem. | en_US |
dc.title | Almost multiplicative functions on commutative Banach algebras | en_US |
dc.type | Article | en_US |
Appears in Collections: | 1. Journal Articles |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.