Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMahesh, V.
dc.contributor.authorJoladarashi, S.
dc.contributor.authorKulkarni, S.M.
dc.identifier.citationKey Engineering Materials, 2019, Vol.801 KEM, , pp.59-64en_US
dc.description.abstractThe present paper deals with optimizing the stacking sequence configuration of flexible green composite for cladding application under low velocity impact regime. Initially six configurations of green composite comprising of jute fiber and natural rubber matrix are considered and their energy absorption behaviour and resistance to impact are studied using finite element analysis. The configurations considered are optimized for energy absorption and maximum contact force under low velocity impact condition. From the results it can be concluded that the variation in energy absorbed and sp. energy absorbed among the configurations are negligible and hence the configurations are prioritized based on contact force. JRJRJ configuration provides maximum contact force followed by JRJ, JRRJ, RJRJR, RJRJ and RJR. The configurations with rank 1, 2 and 3 should be taken into consideration for further analysis. Also the damage study shows that the stacking sequence with jute on impact side is better compared to rubber on impact side as tearing type of damage can be observed in sequences with rubber on impact side and no damage is visible with jute on impact side. � 2019 Trans Tech Publications, Switzerlanden_US
dc.titleStudy on stacking sequence of plies in green sandwiches for low velocity impact applicationen_US
dc.typeBook chapteren_US
Appears in Collections:2. Conference Papers

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.