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a b s t r a c t

Fighting movie piracy requires copy detection followed by the accurate frame align-

ments of master and copy videos, in order to estimate distortion model and capture

location in a theater. Existing research on pirate video registration utilizes only visual

features for aligning pirate and master videos, while no effort is made to employ

acoustic features. Further, most studies in illegal video registration concentrate on the

alignment of watermarked videos, while few attempts are made to address the

alignment of non-watermarked sequences. We attempt to solve these issues, by

proposing a novel spatio-temporal registration framework that utilizes content-based

multimodal features for frame alignments. The proposed scheme includes three stages:

first, a video sequence is compactly represented using Speeded Up Robust Features

(SURF) and audio spectral signatures; second, sliding window based dynamic time

warping (DTW) is employed to compute temporal frame alignments; third, robust SURF

descriptors are utilized to generate accurate geometric frame alignments. The results of

experiments on three different datasets demonstrate the robustness and efficiency of

the proposed method against various video transformations.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

We first define two terms, namely ‘‘master’’ and ‘‘pirate’’
video sequences. A master video corresponds to a reference/
database video; while a pirate video is derived from the
master sequence by applying different video and editing
transformations such as camcording, caption insertion and
frame rate changes. In this paper, the term ‘‘registration’’
defines a way of mapping master and pirate video contents
with an objective to compute frame-to-frame alignments. In
order to facilitate the discussion in this paper, we use the
three terms, ‘‘pirate sequence’’, ‘‘copy clip’’ and ‘‘query video’’
ll rights reserved.
interchangeably hereafter as we do not distinguish between
these three terms.

The massive growth of media streaming activities have
increased the amount of duplicate videos and caused a huge
loss to movie industry. CMPDA-2011 report (Canadian
Motion Picture Distributors Association) says that 133M
(Million) pirated movies were watched in Canada in 2010
[1]. This report also indicates a loss of C$413M to Canadian
economy due to Internet based digital piracy. Thus, rigorous
forensic analysis frameworks and countermeasures are
required for preventing illegal movie captures.

Fighting movie piracy requires copy detection as the
first step, which aims to determine the best matching
master video for a given query clip. There are two
approaches for detecting illegal videos: digital water-
marking and content-based video copy detection (CBCD)
[2]. CBCD techniques utilize content-based features of the
media to detect illegal videos [3]; hence, they are widely
popular compared to digital watermarking [3,4].
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Existing CBCD methods do not address frame align-
ments of a pirate content with the master sequence,
because their ultimate aim is to detect illegal videos by
comparing the perceptual similarity between the two
video sequences.

On the other hand, in case of camcorder capture in a
theater, significant mismatches may exist between mas-
ter and pirate contents [5]. These mismatches could be
temporal, geometric or combination of both; hence, after
copy detection frame alignment of two video contents is
very much essential for a number of applications such as
estimating distortion model, detecting forensic water-
marks and identifying capture location in a theater [6].

This paper focuses on the spatio-temporal alignment
of master and pirate video sequences by utilizing content-
based multimodal features. More precisely, we handle the
specific problem of locating a given pirate clip within a
master video sequence and obtaining accurate frame-to-
frame alignments of two video sequences.

1.1. Related work

The research of pirate video registration is brand new.
Early research focuses on the visual features for the
alignment of master and pirate video contents. Delannay
et al. [7] proposed a temporal registration technique by
matching restricted number of frames obtained from the
two video sequences, where the frame rates are assumed
constant. In case of high motion activity, this method
extracts different sets of key frames from the master and
pirate videos. Cheng [8] introduced an algorithm for
temporally matching two video contents using dynamic
programming. Although this method achieves good regis-
tration accuracy, it is severely affected by transformations
such as noise addition.

Cheng and Isnardi [9] developed a spatial, temporal
and histogram registration scheme for video sequences by
incorporating contextual costs and applied this algorithm
to digital forensic watermark detection. In [10], Cheng
reviewed and compared three different video registration
algorithms proposed for detecting forensic watermarks in
digital cinema applications.

Chupeau et al. [11] employed color histograms to
match two video contents using dynamic programming.
Due to the global descriptive nature of color histograms,
this method performs poor for region-based transforma-
tions. Baudry et al. [12] utilized both the global and local
fingerprints for registering video sequences, but this
method scores poor results for low motion frames and
complex transformations such as letterbox insertion and
subtitles.

Recently, Baudry et al. [13] designed a registration
scheme for video copies using temporally adaptive fin-
gerprints, which are computed based on hierarchical
encoding of the wavelet coefficients. Although this
method guarantees accurate alignments, the encoding of
wavelet coefficients is expensive in terms of CPU and
memory. Lee et al. [14] presented a scheme for matching
two video sequences using dynamic programming. This
method significantly reduces the probability of matching
errors by defining an effective matching cost function.
However, only few types of video modifications such as
frame insertions, shuffle, removal and compression
attacks are addressed in this study.

Delannay et al. [15] focused on the estimation of
geometric distortions that occur due to the camera
acquisition process in a theater. They presented a system
for compensating these distortions using a modified block
matching technique, in order to retrieve embedded
watermark information in digital cinema applications.
Chupeau et al. [16] introduced a registration framework
for estimating the distortion model and performing accu-
rate distortion compensations in video copies. This algo-
rithm attempts to align the pirate video frames with the
master content as a prerequisite to the recovery of
embedded forensic watermarks.

A common point of existing registration methods is
that they concentrate only on the visual features of videos
[7–14]. But, if audio content is available, it constitutes a
significant information source of a video. Further, in case
of illegal camcorder captures audio data is less affected
compared to its counterpart [17].

From another perspective, most registration schemes
are focusing on the alignment of watermarked documents
[7–11,15,16], while only few efforts are made to address
the alignment of non-watermarked videos. In addition, it
is to be noted that not all copyrighted content is water-
marked [6]. To summarize, there are as yet no promising
schemes for pirate video registration that employ visual
and acoustic features in a unified framework, while this
research field is ongoing.

1.2. Motivation and contributions

If audio is present, then it is possible to significantly
improve the registration accuracy by jointly exploiting
the visual and acoustic fingerprints; hence, a novel pirate
video registration framework using content-based multi-
modal features is required, which is useful even in the
absence of forensic watermarks.

We propose a novel spatio-temporal registration
framework that exploits visual fingerprints extracted
from SURF interest points [18] and audio signatures based
on spectral centroid features [19]. First, we present a
novel visual-profile extraction method, which is compact
(1-D) compared to the existing multi-dimensional SURF
fingerprint methods [21,22]. Roth et al. [21] utilized 16-D
SURF descriptors, whereas Zhang et al. [22] used 64-D
SURF signatures for their CBCD task. Second, we employ
robust acoustic features for the temporal registration task
which noticeably improves accuracy compared to the
existing schemes[11,13].

To make registration efficient, we use a multimodal
frame matching scheme to align visual and acoustic
feature sequences, which considerably reduces false
frame matches. Further, we present an algorithm for
selecting a candidate segment of the master sequence
using sliding window based dynamic time warping (DTW)
technique [19], which substantially decreases the frame
matching cost.

The rest of this article is organized as follows: We
formulate the registration problem and detail the
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proposed framework in Section 2. In Section 3, temporal
alignment of frames including visual and acoustic profile
extraction followed by sliding window based DTW is
illustrated. Geometric alignment of frames is detailed in
Section 4. Section 5 explains the multimodal frame
matching scheme including frame matching using visual
and audio signatures. In Section 6, we describe the
extensive evaluation experiments on different datasets
and we summarize our conclusions in Section 7.

2. Proposed framework

2.1. Problem formulation

The proposed spatio-temporal registration framework is
formulated as follows: let PS¼ fpi9i¼ 1;2, . . . ,npg be a pirate
sequence with np frames, where pi is i-th copy frame; and let
MS¼ fmj9j¼ 1;2, . . . ,nmg be a master sequence with nm

frames, where mj is j-th master frame and nmbnp. Here PS

is derived from MS after applying transformations such as
camcording, noise, caption insertion and so on. We select a
subsequence of MS denoted as a candidate segment
CS¼ fmj,mjþ1, . . . ,mjþnc�1g with nc frames, using a sliding
window scheme. Our goal is to spatio-temporally match the
candidate and pirate sequences and as a result accurate
frame-to-frame alignments of CS and PS can be obtained.

2.2. Proposed methodology

We propose a novel spatio-temporal registration fra-
mework shown in Fig. 1, which consists of two stages. In
the first stage, when a copy clip is given, we scan the
master sequence with a sliding window of length equal to
the copy clip. In this stage, the similarity between the
pirate clip and the windowed sequence is measured based
on their temporal signatures derived from SURF interest
points and spectral centroid features. The windowed
sequence with minimum distance score is selected and
denoted as a candidate segment. More precisely, the
algorithm used to select the candidate segment of the
master sequence is detailed in Section 3.4. After this
Temporal frame alignment 

Frame matching using DTW 

1-D SURF & audio 
spectral features of 

copy clip 

1-D SURF & audio 
spectral features of 

master video 

Temporal frame matches 

Master
sequence 

Copy 
clip

Fig. 1. Overview of proposed
point, visual–audio fingerprints of two video contents
are matched separately using DTW technique and the
matching results are fused, in order to obtain temporal
frame-to-frame alignments.

In the second stage, from the temporally aligned pirate
and candidate frames, we select a set of highly similar frames
denoted as principal frames of two video sequences. More
specifically, principal frames are extracted using the algorithm
explained in Section 5. The resultant principal frames are
mapped using their SURF descriptors by means of enough
control points, in order to achieve accurate spatial frame
alignments.
3. Temporal alignment of frames

3.1. 1-D visual profile extraction

In the proposed framework, we employ SURF key
points-based signatures to extract the visual profile of
video contents. SURF is a scale and rotation invariant
descriptor [18]; hence, it is widely used in the CBCD
literature to detect pirate video clips [21–23]. The pro-
blems encountered during visual profile extraction and
the proposed solutions are detailed below.

Problem. SURF descriptor associates each key point
with a high dimensional feature vector typically 64
integers per key point. Each frame might contain multiple
SURF key points; hence, there would be too much of
information to process. Moreover, direct comparison of
SURF feature descriptors across all frames would be
computationally expensive.

From another perspective, existing multi-dimensional
SURF fingerprints consider only spatial content of frames
[21–23]. But, to generate a robust visual profile of a video,
both the spatial and temporal information of frames need to
be considered.

In order to solve the issues, in the proposed framework a
video sequence is compactly represented using 1-D SURF
signatures derived from SURF interest points of frames,
which efficiently characterize the spatio-temporal content
of frames. More precisely, we segment a video frame into
Principal frames from copy & master videos 

Mapping frames using SURF descriptors

Spatial frame alignment 

registration framework.
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k� k regions and compute 1-D SURF signatures as the mean
of differences between region-wise count of SURF interest
points of consecutive frames. Fig. 2 illustrates computation of
1-D SURF signatures from sample frames on a 3�3 partition.

Problem. The segmentation of a frame into k� k regions
plays a significant role in determining the registration
accuracy and the computation speed. Smaller values of k

increase the computational load, while larger values of k may
decrease robustness of the proposed system.

In order to solve this discrepancy, experiments are
conducted and registration performances are compared
for different values of k ranging from 2 to 8. More
specifically, we experiment on a dataset including 112
pirate clips and 198 master videos, where the copy clips
vary between 18 and 35 s. Fig. 3 indicates the average
registration results obtained for different k values and
concludes that maximum accuracy (91.8%) is achieved at
k¼3. Thus, we set the value of k as 3 in the subsequent
experiments, which yields the best balance of robustness
and effectiveness.

3.2. 1-D acoustic profile extraction

In the literature of sound synthesis, spectral centroid is
proved to be an important timbrel descriptor, which specifies
the center of gravity of the signal spectrum [19,20]. Specifi-
cally, centroid is a highly robust spectral feature that
describes brightness of a sound signal [24]; hence, it is
popularly used in speech recognition applications [25]. On
the other hand, the most important perceptual audio features
exist in the frequency domain. Due to these reasons, we
utilize 1-D spectral centroid signatures to describe the
acoustic profile of video contents, which is computed as
follows.
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First an audio signal is down sampled to 22 050 Hz, in
order to reduce the size of data to be processed. The
magnitude spectrum of the audio signal behaves almost
stationary for 10–30 ms of window length; hence, the
down sampled audio signal is segmented into 11.60 ms
windows using Hamming window function with an over-
lap factor of 80% [26]. From the power spectrum of the
audio signal, the Spectral Centroid descriptor SC is com-
puted using frequency distribution values as follows:

SC ¼
XN

k ¼ 1

k� xd½k�

,XN

k ¼ 1

xd½k� ð1Þ

where xd½k� represents the magnitude of k-th frequency
bin of d-th frame and N is the frame length. As compared
with [26], we use absolute values of spectral centroid
features for the proposed framework. In addition, we
apply normalization to the resultant features in order to
improve the robustness of audio signatures considered in
this framework.

3.3. Introduction to dynamic time warping

Dynamic time warping (DTW) is extremely efficient in
synchronizing two time-dependent sequences, because it
minimizes shifting effects in time by allowing elastic
transformation of sequences [19,27]. Therefore, DTW is
extensively explored in a wide range of applications such
as speech recognition [28], sequence alignment and
information retrieval [27].

Given two time-dependent feature sequences
X ¼ fxi91r irNg of length N and Y ¼ fyj91r jrMg of
length M. A local cost measure C indicating the distance
between xi and yj is formulated as

Cðxi,yjÞ ¼Distðxi,yjÞ ð2Þ

where Dist denotes Manhattan/Euclidean distance metric
in the proposed registration framework. In order to find
an alignment of X and Y, we need to compute a warping
path W ¼ fw1,w2, . . . ,wLg with wl ¼ ðxl,ylÞ 2 ½1 : N� � ½1 : M�

for l 2 ½1 : L�. The accumulated Path Cost PC associated
with W of sequences X and Y is defined as

PCW ðX,YÞ ¼
XL

l ¼ 1

Cðxil ,yjl
Þ ð3Þ

The goal of DTW is to find an optimal warping path of
sequences X and Y having minimal path cost among all
possible warp paths [27], which is denoted as

DTWðX,YÞ ¼Wop ¼minfðPCW ðX,YÞÞ9W 2 PN�M
g ð4Þ

where Wop is the optimal warping path and PN�M repre-
sents the set of all possible warping paths. The optimal
warping path Wop ¼ fwp1,wp2, . . . ,wpLgwith wpl ¼ ðxl,ylÞ 2

½1 : N� � ½1 : M� for l 2 ½1 : L�. The accumulated path cost of
DTWðX,YÞ is denoted as

PCdtwðX,YÞ ¼
XL

l ¼ 1

Cðxnl
,yml
Þ ð5Þ

Let DðN,MÞ be the global cost matrix of size N�M. DTW
algorithm determines the warping path Wop based on
dynamic programming [27] in three steps as follows:
a:
 Initialization:
Dð1;1Þ ¼ 0;
First column: Dði,1Þ ¼
Pi

k ¼ 1

Cðxk ,y1Þ,i 2 ½1 : N�;
First row: Dð1,jÞ ¼
Pj

k ¼ 1

Cðx1 ,ykÞ,j 2 ½1 : M�.
b:
 Recursion:
All other elements of Dði,jÞ are recursively computed as

Dði,jÞ ¼minfðDði�1,j�1Þ,Dði�1,jÞ,Dði,j�1ÞÞþCðxi,yjÞg ð6Þ
where i 2 ½1 : N� and j 2 ½1 : M�.
c:
 Termination:
Once the entire D matrix is computed, backtracking is done to deter-

mine the optimal alignments starting from Wop¼(M,N) to Wop¼(1,1).
In this study, the optimal warping path Wop specifying the
alignment of sequences X and Y satisfies the following
conditions:
(a)
 Endpoint constraints:
For the warping path Wop, starting point is wp1 ¼ ð1;1Þ and

ending point is wpL ¼ ðN,MÞ.
(b)
 Monotonicity conditions:
In order to preserve temporal continuity, the warping function

is monotonically increasing as given by
x1 rx2 r � � �rxL and y1 ry2 r � � �ryL .
(c)
 Local continuity constraints:
This criteria constraints slope of the warping path by limiting

long jumps in the alignment of X and Y sequences. Generally,

the possibility of huge changes in the feature sequences of

consecutive frames is very low and thus we considered the step

size condition formulated as
wplþ1�wpl 2 fð1;0Þ,ð0;1Þ,ð1;1Þg for l 2 ½1 : L�1�.
3.4. Sliding window based DTW

The computational complexity of DTW algorithm to
match two sequences of size M and N is O(MN); hence, if
sequence size increases, the performance of the algorithm
degrades. In order to overcome this problem, we com-
puted frame matches between the copy clip and the
candidate segment instead of the entire master sequence.
Algorithm 1 explains the steps used to select a candidate
segment of the master sequence.

Algorithm 1. Selection of a candidate segment
1:
 Divide the master sequence into overlapping segments of length

equal to the query clip.
2:
 Extract 1-D visual and audio profiles for each segment using the

procedures explained in Sections 3.1 and 3.2.
3:
 Let a master sequence MS be
MS 2 fSi9 1r irmg ð7Þ
where Si is the i-th segment and m is total segments of MS. Here,

each segment Si of MS can be represented as

Si 2 fðV
k
i [ Ar

i Þ91rkrn, 1rrrpg ð8Þ
where Vi

k
is k-th feature vector of visual fingerprint of Si and n

indicates total feature vectors. Here, Ai

r
is r-th vector of audio

fingerprint of Si and p represents number of feature vectors.
4:
 Let a pirate sequence PS is compactly represented as

PS 2 fðQVk
[ QAr

Þ91rkrnq , 1rrrpqg ð9Þ
where QVk is the k-th feature vector of visual fingerprint of PS

and nq is total vectors. Here, QAr is r-th vector of audio

fingerprint of PS and pq indicates total feature vectors.
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5:
ig.
arp
Compute the segment similarity Segsim between Sk of MS and PS

using DTW as follows:
SegsimðSk ,PSÞ ¼ PCdtwðVk ,QVÞþPCdtwðAk ,QAÞ ð10Þ
where PCdtw represents the accumulated path cost of optimally

warped visual sequences (i.e., Vk and QV) and audio feature

sequences (i.e., Ak and QA), respectively.
6:
 Select Si having lowest Segsim value (i.e., distance score) as a

candidate segment of the master sequence for further

comparison.
4. Multimodal frame matching

In this scheme, the visual-acoustic fingerprints of two
video sequences are matched separately and the resultant
matches are fused in order to get final temporal alignments.
The multimodal frame matching scheme is implemented as
follows.

4.1. Frame matching using visual signatures

Let CS be a candidate segment of the master sequence
with nc frames and PS be a pirate sequence with np

frames. Let VF is the visual fingerprint of CS such that, CS 2

fVFi9 1r irnvf g with nvf signatures. Consider QVF is the
visual fingerprint of PS such that PS 2 fQVFj9 1r jrnqvf g

with nqvf signatures. In this study, we assume that the
length of candidate sequence is equal to size of the query
clip; hence, nvf Cnqvf . The cost measure Cvis denoting the
dissimilarity between two visual signatures is computed
using comparative Manhattan distance metric as follows:

CvisðCSk,PSkÞ ¼
9ðVFk�QVFkÞ9

9ðVFkÞ9þ9ðQVFkÞ9
, 1rkrnvf ð11Þ

After this, the optimal alignments between the visual finger-
prints of two video sequences are computed using DTW
algorithm described in Section 3.3. The resultant frame
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4. Frame alignments of copy and candidate feature sequences: (a) globa

ed path.
matches FMvis based on visual signatures is formulated as

FMvis ¼ ffcvi,pvjg91r irnc , 1r jrnpg ð12Þ

where cv and pv indicate the matching frames of candidate
and pirate video sequences, respectively.

Fig. 4 shows the frame alignments of copy and candi-
date feature sequences in terms of global cost matrix D

and optimally warped path. The dark strips in matrix D

indicate high similarity between the two video contents.

4.2. Frame matching using acoustic signatures

Let SF is the spectral centroid-based audio fingerprint
of CS such that CS 2 f SFm,91rmrnsf gwith nsf signatures.
Let QSF is the audio fingerprint of PS such that
PS¼ fQSFm91rmrnqsf gwith nqsf signatures. In this study,
nsf Cnqsf . The cost measure Caud denoting the difference
between two audio signatures is computed using squared
Euclidean distance as follows:

CaudðCSk,PSkÞ ¼ 9ðSFk�QSFkÞ
29, 1rkrnsf ð13Þ

After this, the optimal warping path specifying the frame
alignments of SF and QSF signatures is computed using DTW
algorithm described in Section 3.3. The resultant frame
matches FMaud based on audio spectral signatures is formu-
lated as

FMaud ¼ ffcsi,psjg9 1r irnc , 1r jrnpg ð14Þ

where cs and ps indicate the matching frames of candidate
and pirate sequences, respectively.

4.3. Decision fusion

Frames mapped by both the visual and audio signa-
tures are considered as final frame matches of two video
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l cost matrix D, darker regions indicate high similarity; (b) optimally
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contents, which is given by

FMfinal ¼ ffFMvisg \ fFMaudgg ð15Þ

where FMfinal provides frame-to-frame alignments of CS and
PS sequences, respectively. The advantage of proposed multi-
modal frame matching scheme is, it significantly reduces
false frame matches, because only frames with similar visual
and audio signatures are mapped. In addition, the proposed
matching scheme noticeably improves registration accuracy
which is evident in Section 6.

5. Geometric alignment of frames

Performing the geometric alignment across all tempo-
rally aligned frames of two video contents is not feasible
due to computational load. Further, all video frames may
not provide necessary key points to enable accurate
geometric registration.

In order to solve this problem, we employ a small set of
highly similar frames, denoted as principal frames for imple-
menting the geometric registration task. The SURF descrip-
tors and DTW optimal paths computed for temporal
registration provide significant guidelines for selecting prin-

cipal frames. More specifically, principal frames are extracted
from temporally aligned candidate and pirate feature
sequences using Algorithm 2, which is detailed as follows.

Algorithm 2. Principal frames extraction
1:
 Let the optimal warping path Wop specifies the alignment of two

feature sequences VF and QVF, such that

Wop ¼ fwp1 ,wp2 , . . . ,wpLg with wpl ¼ ðxl ,ylÞ 2 ½1 : N� � ½1 : M� for

l 2 ½1 : L�. Here, VF and QVF represent the visual fingerprints of

candidate and pirate sequences, respectively.
2:
 Consider a cost vector Wc
op representing the feature distances in

terms of cost in each entry of optimal path Wop as follows:
Wc

op ¼ fwpc
1 ,wpc

2 , . . . ,wpc
Lg, ð16Þ
where wpc
1 indicates the cost given in entry wp1 and so on.
3:
 Sort the Wc
op vector to generate the sorted list of costs

represented in DTW path.
4:
 Lower cost values in the Wc
op vector indicate highly similar

frames; hence, select frame pairs corresponding to lower cost

values in Wc
op as principal frames.
The resultant principal frames are characterized by a

list of interest points and their associated SURF descrip-
tors. Two control points are matched, if the squared
Euclidean distance between their feature vectors is mini-
mum. On the other hand, blind comparison of all feature
vectors of two frames is computationally expensive and
may lead to false correspondences. In order to solve this
discrepancy, feature vectors with minimum feature dis-
tances are computed and mapped in terms of their
descriptors to provide accurate pixel correspondences of
frames.

6. Experimental setup and results

The proposed framework is evaluated on three differ-
ent datasets, namely TRECVID sound & vision data [29],
CC_WEB_VIDEO dataset [30] and a set of real data con-
sisting of camcorded copies of master video files.
6.1. Master video database and query dataset construction

6.1.1. TRECVID dataset

TRECVID sound & vision data [29] is a benchmark
dataset, which covers a wide variety of contents including
science news, reports, documentaries and educational
programming. Our TRECVID master database comprises
approximately 110 h of sound & vision data used in
TRECVID-2009 copy detection task, plus another 80 h of
sound & vision data used in TRECVID-2008 copy detection
task. We transformed entire video data into the following
uniform format: 352�288 pixels and 15 fps (frames/s). It
is not necessary to utilize every frame in a video sequence
for registration; hence, when a copy clip is given with a
different frame rate, it is resampled to 15 fps, in order to
synchronize it with the master sequence. For example, a
5-s copy clip with 60 fps becomes a 240-frame sequence
after performing the resampling procedure.

In case of piracy, normally users capture videos by
using camcorders and distribute them with some mod-
ifications [30]. Thus, most of the pirate videos suffer from
distortions such as camcording, photometric variations
(lighting changes), editing operations (pattern insertions),
frame rate changes, format changes (mp3 format), crop-
ping, rotation attacks and so on; hence, in this context we
considered 15 types of transformations listed in Table 1 to
generate the query dataset. From the TRECVID master
database, 50 video clips are randomly selected and
Table 1 transformations are applied to produce the query
clips. The resulting 750 (50n15) video sequences of dura-
tion 20–35 s are used as query clips for the proposed
temporal registration task.

6.1.2. CC_WEB_VIDEO dataset

CC_WEB_VIDEO dataset [30] includes video collections
from video sharing websites and search engines such as
YouTube, Google Video and Yahoo ! Video. Our CC_WEB_
VIDEO master database includes 24 most viewed and top
favorite videos provided by CC_WEB_VIDEO collection
[30]. The representative snapshots of all 24 master videos
are shown in Fig. 5. From the CC_WEB_VIDEO collection,
we retrieved duplicate and near-duplicate videos ranging
from 15 to 25 for each of the master video. In total, our
CC_WEB_VIDEO query dataset includes approximately
600 video files with two different classes of distortions
namely formatting and content distortions.

Formatting distortions include changes in frame rate,
bit rate, encoding format and frame resolution. Photo-
metric variations (lighting changes), editing variations
(e.g., logo insertions) and content modifications such as
addition of unrelated frames with different content are
categorized into content distortions type.

6.1.3. Camcorded copies

To assess the performances of our algorithm against
camcorder captured videos, we worked on a dataset of 30
master videos and their camcorded versions. We gener-
ated 75 camcorded copies of master videos ranging from
1.55 mn to 15 mn. The quality of camcorded copies varies
from clean copies to heavily modified ones with a large
amount of lighting, cropping and compression distortions.



Fig. 5. Snapshots of 24 master videos of CC_WEB_VIDEO collection [30].

Table 1
List of transformations used in the proposed registration framework.

# Category Description

T1 Zoom in Zoom in to the frame by 19%

T2 Slow motion Halve the video speed

T3 Fast forward Double the video speed

T4 Pattern insertion Insert text pattern into selected frames

T5 Moving caption Insert moving titles into entire video

T6 Rotation Rotating by 10–121

T7 Random noise Add 10% gaussian noise

T8 Blurring Blur by 13%

T9 Brightness change Increase brightness by 10%

T10 Cropping Crop top and bottom regions by 20% each

T11 Picture-in-picture Insert smaller resolution picture into selected frames

T12 3 combined Cropping by 15%, 10% of noise and moving caption

T13 5 combined 14% noise, 11% blurring, 14% brightness, cropping and pattern insertion

T14 Mp3 compression Change audio file format

T15 Single band compression Compress only specific frequency band
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6.2. Overview of evaluated methods

We implemented the following six methods for eval-
uating performance:
(1)
 The SURF signatures based matching (abbreviated
as SURF).
(2)
 The spectral centroid features based matching (SC).

(3)
 SURF and spectral features without sliding window

(SURFþSC).

(4)
 SURF and spectral signatures with sliding

window (ALL).

(5)
 Chupeau et al.’s method [11] (CHE).

(6)
 Baudry et al.’s method [13] (BA).
Our methods [methods (1)–(4)] evaluated different
combinations of the proposed techniques. Methods (1)
and (2) used different video signatures (namely SURF and
spectral centroids) to implement the temporal registra-
tion of two video contents. We implemented methods (3)
and (4), to see the effect of sliding window scheme for the
proposed registration task.

In method (1), 1-D visual signatures of the pirate clip
are matched with that of the entire master sequence (i.e.,
query clip is matched with all segments of the master
sequence). In method (2), 1-D spectral signatures of the
query clip are mapped with the acoustic profile of the
complete master sequence. Method (3) utilizes both 1-D
SURF and spectral centroid signatures for temporally
registering the video contents. In this method, visual–
audio fingerprints of the query clip are separately aligned
with that of the entire master sequence.

In method (4), we employed a sliding window
mechanism to align multimodal signatures of the copy
clip with the corresponding features of the candidate
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segment, instead of entire master sequence. The candi-
date segment of the master sequence is selected using
Algorithm 1 explained in Section 3.4.

Chupeau et al. [11] utilized color histograms for
calculating frame-to-frame correspondences between
pirate and master contents. It is implemented as follows:
color histograms of size 512 bins are extracted from
consecutive video frames. A sequence of distances
(Euclidean distance) between color histograms of succes-
sive frames are utilized as temporal fingerprints of videos
and dynamic programming is applied to achieve temporal
registration of frames.

Baudry et al.’s method [13] is one of the latest methods
that uses fingerprints based on wavelet coefficients for
temporally registering query and master video sequences.
In this method, first the difference between successive
frames is computed and transformed into wavelet coeffi-
cients. Then the resultant coefficients are hierarchically
encoded and temporal frame alignments are computed
using dynamic programming.

6.3. Temporal registration results

In the following subsections, we show and discuss the
registration performances of six compared methods
tested on different datasets against different types of
video transformations.

6.3.1. Registration results for TRECVID dataset

Table 2 shows the temporal registration performances
of six compared methods in terms of percentage of
perfectly matched frames (MF) for T1–T7 types. The bold
font indicates the highest MF scores in the table.

The performance of spectral centroid-based methods
(methods (2), (3) and (4)) is superior compared to other
methods for all seven types. This is because, applying
transformations on the visual content would not affect
acoustic features substantially. Method (4) slightly
improves the registration accuracy (by 1%) compared to
that of method (3), because of the incorporation of sliding
window scheme, which reduces false positives. Though
1-D SURF and spectral centroid signatures have their
own constraints, they balance each other very well;
hence, their integrated usage in a sliding window manner
noticeably improves the registration accuracy. The
Table 2
Registration results for T1–T7 types. MF: % of perfectly matched frames.

Attacks SURF
(1)

SC
(2)

SURFþSC
(3)

All
(4)

CHE
(5)

BA
(6)

MF MF MF MF MF MF

Zoom in 71.9 92.7 93.2 93.2 55.8 69.8

Slow motion 78.1 79.5 89.9 90.4 60.0 68.8

Fast forward 84.7 85.6 91.0 91.0 59.8 61.2

Pattern

insertion

81.7 92.5 93.7 94.2 54.8 54.0

Moving

caption

88.0 93.8 93.8 93.8 50.7 62.7

Rotation 84.6 92.8 95.2 95.2 68.9 59.8

Random noise 89.7 92.4 94.7 94.8 64.2 51.2
improved results of method (4) shown in Table 2 prove
this view point.

On the other hand, Chupeau et al.’s method [11] yields
poor results for moving caption and pattern insertion types in
terms of low MF rates. This is because, inserting patterns or
adding captions noticeably changes color histogram proper-
ties. The MF rate of Baudry et al.’s method [13] declines
sharply for random noise type. The reason is, adding random
noise might alter the wavelet coefficients substantially,
which leads to false fingerprints.

Table 3 lists the temporal registration accuracy of six
compared methods for T8–T15 types in terms of MF rates.
Method (4) generally performs well for all eight types and
improves the MF rates (up to 15%) compared to the
reference methods. Method (4) slightly enhances the
registration accuracy (by 1%) compared to method (3).
The reason for this improvement is, when the sliding
window scheme is utilized, query features are matched
only with that of candidate segment and thus false
positive rate is reduced.

The MF rate of Chupeau et al.’s method [11] is severely
decreased for cropping and picture-in-picture types. This
is because, cropping introduces black borders on top and
bottom regions that might generate very different signa-
tures for master and query clips. In case of picture-in-
picture type, insertion of picture produces different sig-
nature pattern for the query video compared to the
original file.

On the other hand, Baudry et al.’s method [13] yields
poor MF rates for picture-in-picture and five combined
types. In picture-in-picture type, there exists a discre-
pancy between the wavelet coefficients extracted from
master and query videos, because of the insertion of a
picture. This discrepancy leads to mismatches and thus
reduces the accuracy of method (6). In case of five
combined type, the wavelet coefficients vary widely after
applying noise, cropping and pattern insertions and hence
a lot of mismatches are retrieved.

The accuracy of method (2) is sharply reduced for mp3
and single band compression types. Audio spectral features
are much affected by these two types and hence MF rates
decline sharply. Yet our methods using SURF features (meth-
ods (1), (3) and (4)) are less affected by these two types.
Table 3
Registration results for T8–T15 types. MF: % of perfectly matched

frames.

Attacks SURF
(1)

SC
(2)

SURFþSC
(3)

ALL
(4)

CHE
(5)

BA
(6)

MF MF MF MF MF MF

Blurring 82.7 91.5 93.5 94.2 53.8 55.8

Brightness 90.0 95.8 95.9 95.9 62.0 59.7

Cropping 80.0 90.0 92.4 92.4 44.8 50.5

Picture-in-

picture

75.4 92.3 92.9 93.0 39.7 42.0

3 combined 88.7 92.6 94.2 94.4 50.9 53.6

5 combined 89.1 92.7 92.8 93.1 53.9 44.8

Mp3 90.8 78.9 90.6 90.6 86.6 89.0

Single band 93.7 75.6 94.6 94.7 85.7 87.0
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Although the SURF and spectral features have their own
advantages and limitations, they complement each other by
their different characteristics; hence, the combination of local
and spectral features not only improves the registration
accuracy, but also widens the coverage to more number of
transformations. The promising results of method (4) provide
good evidence for supporting this viewpoint.

Fig. 6(a) shows the registration results of six compared
methods for T1–T7 types, in terms of Average Distance
between true and estimated frame indexes (AD). The
curves indicate the better performance of spectral signa-
ture based methods (methods (2), (3) and (4)), compared
to other methods because their AD rates are always less
than 1. It is clear that method (4) yields lowest AD rates
and significantly improves accuracy compared to other
methods. The combined utilization of robust visual and
acoustic features in a sliding window manner is the exact
reason for the enhanced performance of method (4).

Fig. 6(b) indicates the registration results of six com-
pared methods for T8–T15 types in terms of their AD
rates. We observe that the curves show the superior
performance of method (4), compared to other methods
because its AD rates are always less than 1. For T12 and
T13 types, only visual features based methods (methods
(1), (5) and (6)) indicate poor results in terms of higher AD
rates. However, spectral signature based methods (meth-
ods (2), (3) and (4)) are less affected by this category.
Table 4
Computational cost comparison.

Process SURF
(1)

SC
(2)

SURFþSC
(3)

ALL
(4)

CHE
(5)

BA
(6)

Signature

extraction

68.1 21.1 90.1 90.1 47.4 59.8

Frame matching 108.0 87.4 95.0 4.1 66.8 74.1

Total cost 176.1 108.5 185.1 94.2 114.2 133.9
6.3.2. Computational cost comparison

Table 4 shows the total time costs of methods (1)–(6),
which includes signature extraction and frame matching
costs. The program is executed in MATLAB and run on a
PC with 2.8 GHz CPU and 3 GB RAM. They are measured
by implementing frame alignment of a 298 s query clip
with a 3041 s master sequence.

The signature extraction cost of method (4) is higher
(up to 47%), compared to two reference methods. Inter-
estingly, the frame matching cost of method (4) is
noticeably reduced (up to 94%) compared to methods
(5) and (6). This is because, in method (4) query clip
signatures are aligned only with the corresponding can-
didate segment features instead of the entire master
sequence. Thus, in method (4), the usage of sliding
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Fig. 6. Comparison of AD curves for different
window scheme significantly reduces the total time cost
(up to 32%) and yields lowest computational cost.
6.3.3. Registration results for CC_WEB_VIDEO dataset

Table 5 lists the registration results of five compared
methods for first 12 master videos of CC_WEB_VIDEO
dataset in terms of percentage of Incorrectly matched
Frames (IF). The bold font indicates the lowest IF scores in
the table.

In case of the first master video, the visual content is
affected by distortions such as encoding format change
and logo insertions; hence, only visual feature based
methods (methods (1), (4) and (5)) yield higher IF rates.
For the second master video, few unrelated frames are
added with same acoustic information; hence, method (2)
leads to lot of false matches. However, characteristics of
SURF and spectral features complement each other and
hence method (3) improves accuracy and yields lowest IF
rate for the second video.

In case of fourth master video, acoustic information is
removed and captions are inserted to create the query
videos; hence, method (2) leads to null matches. How-
ever, method (3) scores lowest IF rates, because of the
robust nature of SURF-based visual signatures. For the
fifth video, Chupeau et al. [11] and Baudry et al. [13]
methods score poorly in terms of higher IF rates. The
reason is, visual descriptors might be affected substan-
tially due to the application of photometric and format-
ting variations such as color, lighting, frame rate and
resolution changes. For the ninth video, Baudry et al.’s
method [13] gives highest IF rate compared to other
methods. This is because, editing and encoding format
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Table 5
Registration results for 1–12 master videos. IF: % of incorrectly matched

frames.

# Video name SURF
(1)

SC
(2)

SURFþSC
(3)

CHE
(5)

BA
(6)

IF IF IF IF IF

(1) The lion sleeps

tonight

15.7 13.9 10.4 28.1 26.4

(2) Evolution of dance 24.4 42.3 23.6 29.5 30.4

(3) Fold shirt 27.5 14.6 12.3 38.4 40.9

(4) Cat massage 20.2 – 20.2 39.3 25.0

(5) Ok go here it goes

again

40.5 34.0 23.1 55.6 53.9

(6) Urban ninja 38.2 46.6 35.5 38.2 39.4

(7) Real life Simpsons 41.4 52.6 39.1 43.3 42.2

(8) Free hugs 39.1 25.6 20.6 42.0 40.2

(9) Where the hell is

Matt

21.6 13.3 11.2 29.1 34.2

(10) U2 and green day 12.6 14.9 10.4 28.1 21.6

(11) Little superstar 41.3 38.5 33.6 44.1 42.0

(12) Napoleon dynamite

dance

31.5 46.1 27.5 37.1 33.2

Table 6
Registration results for 13–24 master videos. IF: % of incorrectly

matched frames.

# Video name SURF
(1)

SC
(2)

SURFþSC
(3)

CHE
(5)

BA
(6)

IF IF IF IF IF

(13) I will survive Jesus 9.2 10.5 7.2 19.2 15.4

(14) Ronaldinho ping

pong

12.5 11.1 11.0 20.9 19.5

(15) White and Nerdy 15.6 10.2 10.0 25.6 21.8

(16) Korean karaoke 26.0 35.5 24.1 32.5 31.0

(17) Panic at the

disco...

18.3 17.3 15.0 22.6 25.5

(18) Bus uncle 27.2 42.6 25.7 28.5 32.6

(19) Sony Bravia 20.7 40.2 30.1 31.5 33.3

(20) Changes Tupac 35.1 20.6 18.5 40.7 38.2

(21) Afternoon delight 12.5 11.2 11.1 19.6 20.5

(22) Numa Gary 14.5 40.2 14.1 18.6 16.2

(23) Shakira hips don’t

lie

40.3 36.2 33.5 41.3 42.5

(24) India driving 49.3 25.6 23.1 52.8 50.9
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Fig. 7. Comparison of accuracy and time cost
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changes widely vary wavelet coefficients and lead to lot of
false positives.

Table 6 lists the registration accuracy of five compared
methods for 13–24 master videos of CC_WEB_VIDEO
dataset in terms of IF rates. Among all the methods,
method (3) yields more accurate results due to the
combined usage of visual and acoustic features against
various types of formatting and editing attacks.

Chupeau et al.’s method [11] performs well for 22-nd
and 13-th master videos but not as well for the 23-rd and
24-th master videos. This is because, color histograms are
robust against lighting changes that are applied to the
former videos, while the latter videos suffer from com-
bined lighting and editing attacks.

On the other hand, Baudry et al.’s method [13] yields
less accurate results for 24-th video in terms of higher IF
rate. The reason is, 24-th video is modified by editing
differences such as overlay text and addition of borders
around frames, which in turn noticeably vary wavelet
coefficients.

6.3.4. Registration results for camcorded videos

In the subsequent experiments, for comparison pur-
pose we evaluated the following three methods:
(1)
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: (a)
Chupeau et al.’s method [11] (CHE);

(2)
 Baudry et al.’s method [13] (BA);

(3)
 SURFþSCþsliding window for matching (Proposed).
Fig. 7(a) lists the registration results of three compared
methods in terms of MF and AD rates. The proposed
method gives extremely good results and improves the
MF rates (up to 44%), compared to two reference methods.
Although SURF and audio features have their own limita-
tions, they balance each other; hence, the integrated
utilization of visual and acoustic features significantly
improves the registration accuracy. The promising results
of method (3) against heavily modified camcorded copies
of master videos support this view point.

Among all the three methods, the proposed method
yields more accurate results, because the AD rate is lesser
than the reference methods. Chupeau et al. [11] and
Baudry et al. [13] methods score poor MF rates compared
to the proposed method. The reason is, heavy cropping
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and compression distortions might substantially alter
visual descriptors such as color histograms and wavelets
coefficients-based signatures.

Fig. 7(b) shows the total time costs of methods (1)–(3),
which includes feature extraction and frame matching
costs. They are measured by implementing the frame-to-
frame mapping of a 215 s query sequence with 2493 s
master sequence. Although the feature extraction cost of
proposed method is higher, its frame matching cost is
lower (by 97.5%) compared to the reference methods. This
is because, query clip features are aligned only with the
candidate segment instead of the entire master sequence.
Thus, in the proposed method, usage of sliding window
scheme noticeably reduces the total time cost up to 46.8%
and provides lowest computational cost.

6.4. Geometric registration results

Table 7 shows the geometric registration results of the
proposed method for different video transformations in
terms of mean and maximum pixel distances. Although
the query video (i.e., camcorded version of the master
video) is modified by heavy cropping, lighting and com-
pression attacks; still the proposed method provides more
accurate results in terms of low pixel distances. The
spatial registration performance of the proposed method
is very efficient, because the mean pixel distance is
always less than one. The robust nature of powerful SURF
Table 7
Geometric registration results.

Attacks Mean distance Maximum distance

Zoom in 0.60 1.20

Pattern insertion 0.62 1.30

Moving caption 0.62 1.24

Rotation 0.85 1.62

Random noise 0.63 1.30

Blurring 0.62 1.18

Brightness change 0.59 1.17

Cropping 0.63 1.41

Picture-in-picture 0.85 1.67

3 combined 0.62 1.12

5 combined 0.64 1.29

Camcording 0.69 1.23

Fig. 8. Pairs of matched interest points of candidate (left) and query (righ
descriptors is the exact reason for this enhanced perfor-
mance of the proposed method.

For illustration purpose, we considered temporally
aligned master and query sequences, consisting of 984
and 375 frames, respectively. We selected 74 principal
frames from the temporally aligned video segments using
Algorithm 2 described in Section 5 and utilized them for
the geometric alignment task. Fig. 8 shows the geome-
trical mapping of the sample candidate and query frames,
in which extracted control points are highlighted with
crosses. Here, query video is generated as the camcorded
version of the master video.

Summary. The experiments conducted on different
datasets demonstrate that the proposed method consis-
tently outperforms the reference methods for different
types of transformations. It achieves promising results
with higher MF and AD rates, by integrating visual and
acoustic features for the registration task. Frame match-
ing in a sliding window manner is another good char-
acteristic of the proposed method which proves that
effective performance can be achieved with lowest com-
putational cost, though the feature extraction cost is
higher.
7. Conclusion

This paper proposes a novel spatio-temporal frame-
work by utilizing local and spectral features for aligning
master and pirate contents. It can be used for video
forensic activities such as estimating distortion model
and capture location in a theater. Further, the proposed
framework can be utilized for sensor forensics, which
attempts to identify the acquisition device that captured
the video.

To the best of our knowledge, this is the first paper to
discuss the frame alignment of master and pirate videos
by exploiting content-based multimodal features. The
experiments carried out on three different datasets
demonstrate the promising results of the proposed
method compared to the reference methods. Our future
work will focus on how to enhance the robustness of
proposed framework against attacks such as strong
encoding, mix with speech and changing the back-
ground/foreground content.
t) video frames; here, query is camcorded copy of the master video.
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