
while 

I- RC2 
72 -- 

1-K’ r:= RC,, 

rf = RC,, and r;= RC,. 

Thus the only nonzero coefficients are p12, p2s, /It, f12, and &. 
Any one of these coefficients can be taken as unity, and the 
other four expressed in terms of it. The resulting transfer func- 
tion can be then shown to have the form (after cancelling the 
common s factor) 

H(s)= 

1 
. (10) 

CONCLUSION 

A method has been presented for the analysis of active RC 
networks which is modular, effective, and intuitive to apply. 
Complex impedance calculations are unnecessary, and the final 
form of the transfer function is obtained immediately. A com- 
putation graph was developed which permits swift ordering of 
the time, constant/pole calculations, thus permitting the method 
to be easily applied when the network is degenerate. The decom- 
position technique should prove to be a useful method for the 
analysis of practical active RC networks. 
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A Generalized Algorithm for the Inversion of Cauer 
Type Continued Fractions 

&r(s) = 
1 

a1 + 
b, 

62 a,+ - 
b3 u3+ - . 

R. PARTHASARATHY AND SARAN JOHN where u,‘s and hi’s are defined as in Table I. 

Abs?mct-A new generalized algurithm, wbkb cao be pmgmmmed on a 
digital computer, is established for performing the inversion of the Gwer 
type euntinued fractions. 

I. INTRODUCTION 

The inversion of a continued fraction to a rational transfer 
function is of considerable practical interest in the area of 
circuits and systems [13], [14]. The use of continued fraction 
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TABLE I 

I 1 

Modified 
Cauer ki I e I ’ I 

allows the construction of functional approximations to a given 
function without unwieldy calculations; this finds application in 
system reduction [lo]; [ 111. 

The first solution for the inversion problem was proposed by 
Chen and Shieh [1] and this was followed by the procedures in 
[2] and [3]. All the three procedures involve tedious computa- 
tions. In [4]-[S] algorithms based on the Routh array for the 
inversion of Cauer I or Cauer II forms have been developed. 
These inversion algorithms start with the last quotient and 
successive quotients are added in the reverse order. 

In contrast, the algorithm presented in this letter begins with 
the first quotient and progresses in the forward direction. It can 
be terminated at any desired point and a number of approxima- 
tions of different orders are directly available from the rows of 
the inversion table. 

II. THREE CAUER FORMS OF CONTINUED FRACXON 

Consider the following rational transfer function: 

&T(s) = 
41+42s+. . . +q,sn-’ 
Pl +P2s + . . . +A+ IS” 

where pi’s and q,‘s are constants. Equation (1) can be expanded 
into the following generalized form of continued fraction: 

(2) 

The Cauer I and Cauer II forms, which are well known in the 
literature [lo], give, respectively, a satisfactory approximation in 
the transient portion and in the steady-state portion of the 
system response. To obtain a good approximation to both the 
initial and steady-state portions of the response, Chuang [9] 
carried out the expansion about s =0 and s = cc alternately 
resulting in the following representation, which we call the 
modified Cauer form [ 151: 

g(s) = 
1 

S (3) 
k,+ 

k,+A 
k,+- 
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III. FORMULATIONOFTHEALGORITHM 

Let the continued fraction representation (2), employing 
quotients from a, to 9 be denoted by gij(s), i.e., 

‘d-rows 

TABLE II 

‘Y-rows 

(4) 

1 
=,I 0 
%I 1 
=31 a32 0 

0 
1 
c21 

c31 1 
c41 c42 

%I 92 1 
c61 c62 c63 

g&v) = $$ 
GJ 

1 = 
a, + bi 

ai+l + 

b.- +/L 
ai 

Then, obviously, 

From (6) 

&j(s) = 
1 

ai + bigi+ 12(s) ’ 

%Js) _ Pi+ IjCs) 
PijCs) agi+ Ig(s) +biqi+ IJs) . 

This can be put in the form, analogous to that in [12] 

where 

(5) 
041 a42 1 
a51 a52 =53 0 
a61 a62 a63 1 

relations for a and c rows: 

(6) 

(7) 

Uij=Ui-*jhi+ai-2j-1 Cij=Ci-]jhi+Ci-zj-] 

ai, I = ai- I, I h i Ci,,=Ci-,,,h~ 
for i=2,3,*+. for i=2,3;. . 

j=2,3,. f. f +lforieven j=2,3,***; forieven 

i+3 j=2,3,*-- 2 for i odd j=2,3,.. . $-! for i odd. (14) 

Once the table is formed, the transfer function corresponding to 
the continued fraction with m quotients, m = 1,2,. . . can be 

(8) directly written from the entries in the (m + 1)th row as 

(9) 

g,*,(s) = * = $$. 
,m 

Now g,,,,(s) represents the transfer function. of a contmued 
fraction with ‘m’ quotients from i = 1 to j= m. From (8), we 
obtain 

where 

When the continued fraction is truncated after ‘m’ quotients, 
that is, g,,,+,+(s)=O, we have 

IV. THE ALGORITHM 

(12) 

A. Cauer I 

The entries of [M(“)] defined in (11) for m = 1,2, * * . can be 
evaluated recursively using (9) and (11); e.g., [A4(3)] can be 
written as 

[&j(3)] = h,h,h,s’+(h,+h,)s h,h,s+l 
h,h,s + 1 h, 1 (13) 

and so on. Thus it will be seen that the entries ‘a’ and ‘c’ of the 
matrices M(,), M@), . . . possess the format given in Table II. 

We start with the entries of. [M(l)] built out of the first 
quotient to form the first two rows as a,,, = 1, a,, = h,, c,, =O, 
and c,, = 1. The remaining rows are formed using the following 

(15) 

where n = m/2 for m even and (m + 1)/2 for m odd. It follows 
by inspection that 

am,,+l=O or 1, for m odd or even 

and 

Gl,ll= 1, for m odd. (16) 

By substituting ~,,,~=q”-~+, and a,,,i=p,-i+2, we can reduce 
(15) to the form of (1). 

B. Cauer ZZ 

It can be easily seen that the inversion array defined in the 
M-table is equally applicable to the Cauer II form. Thus the 
transfer function for the Cauer II form can be derived from (15) 
as 

(17) 

With the substitution c,,,~ = qi and a,,,i=pi, (17) can be brought 
to the form in (1). 

C. Modified Cauer Form 

For performing the inversion of the modified Cauer continued 
fraction, the M-table is constructed with the following modifica- 
tions. The first two rows are the same as those in Table II where 
a,, = k,. The subsequent rows are obtained through the recursive 
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relations: 

Ujj=Ui-ljki+ai-2j-1 

ai,l=ai-,,lb 

WI 

Cij=Ci-]jkj+Cj-2j-] t131 

Cj,]=Cj-],]ki ’ 
iI41 

C. F. Chen and W. T. Chang, “A matrix method for continued fraction 
inversion,” Proc. IEEE, vol. 62, pp. 636-637, May 1974. 
Y. Shamash, “Continued fraction methods for the reduction of linear 
time-invariant systems,” IEEE Conj on Computer Aided Control System 
Design, Cambridge University, England, pp. 220-227, Apr. 1973. 
R. Parthasarathy, “System realization and identification using state- 
space technique,” Ph.D. dissertation, ch. IV, Univ. of Roorkee., Roor- 
kee, India, 1975. 
R. Parthasarathy and S. John, “System reduction using Cauer con- 
tinued fraction expansion about s = 0 and s = 00 alternately,” Electron. 
Left., vol. 14, no. 8, pp. 261-262, Apr. 1978. 

v51 

.,.. 

for i=2,4,. . . for i=2,4;. . 

j=2,3;--,f+l j=2,3,. . . i ,- 2 

and 

aij=ai-ljki+ai-lj cij=ci-,jki+ci-2j 

for i=3,5,-. . for i=3,5,. . * 

j= 1,2,. . . , .k!$ j=1,2 ,..., .!I+!+ 

From the M-table g,,,(s) can be written as 

5 cm)--+ 

g,,,(s) = ‘n;: 
x am&-l ’ 

j=l 

It will be noted that 

am,n+l =O or 1, for m odd or even 

and 

C,,” = k2, for m even. 

V. CONCLUSION 

v-9 

(19) 

(20) 

A new algorithm for inverting the Cauer I and Cauer II and 
modified Cauer forms of continued fraction is presented. Com- 
pared with the existing methods [4], [5], [8], [ 151, the>proposed 
algorithm is superior computationally, when we bear in mind 
that a number of functions of different orders are simultaneously 
generated as the algorithm progresses. 

[Il. 

PI 

[31 

[41 

WI 

[71 

PI 

t91 

WI 

ttr1 
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A Radial Exploration Algorithm for the Statistical 
Analysis of Linear Circuits 

KIRPAL S. TAI-IIM AND ROBERT SPENCE, PELLQW, IEEE 

AbSM-Ibis eommtmication presents a new approach to the statistl- 
calanalysisofliwarcircults.Themethodisbasedonatwo-stngesampllng 
scbemc in which random directions are fii generated in multi-parameter 
amponent space, and then sample points are selected in each direction, 
tbc points being generated according to a modified probability density 
function within the tolerance region. An efficient hcking-se&tlvity a@ 
ritbm based on a matrix scrics expansion is utilized to approximate the 
circuit response values at the sample points. A technique for redudng the 
variance associated with the yield estimate is also discussed.Tlteresulla 
arc compared with those obtained by conventional Monte Carlo meti 
for a test example. Considerable savings in computational effort have been 
ObSWWd. 

I. I~~~R~DuCTION 

Manufacturing yield is defined as the proportion of manufac- 
tured circuits which meet the performance specifications, and 
has become an important parameter in computer-aided circuit 
design. Traditionally, straightforward Monte Carlo methods 
have been employed for yield estimation: circuits are simulated, 
analyzed, and tested against the specifications, and the propor- 
tion satisfying the specifications is taken to be an unbiassed 
estimate of the manufacturing yield. While intuitively simple to 
implement, this approach can, nevertheless, be computationally 
expensive and often prohibitively so. Recently, several attempts 
have been made to seek a less expensive approach. Initially, 
small-change sensitivity methods were used to estimate circuit 
responses at the sample points (1,2). To overcome approxima- 
tion errors, large-change sensitivity methods with systematic 
exploration of a regionalised tolerance space were developed 
(3,4), but suffered from dimensional dependence. Other ap- 
proaches (5,6) attempt to obtain a direct approximation to the 
Region of Acceptability. Quantile arithmetic operations have 
also been employed to compute the response probability density 
function (7). A recent development is aimed towards a reduction 
in the variance associated with the yield estimate by using 
importance sampling techniques (8,9). 
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