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Abstract—3D visual modelling of indoor space will not only
provide the detailed knowledge about the environment but
also rich contextual information of the existing objects. In this
paper, we propose a parallel implementation of 3D modelling
of indoor environment using Microsoft Kinect depth camera.
3D maps are generated by Simultaneous Localization And
Mapping [SLAM] technique. These 3-D maps will be more
useful in Context aware and in Robotics applications.Iterative
Closest Point [ICP] with initial guess by RANSAC is used for
pair alignment.

Many tasks of pair registration are parallelised using
OpenMP and the performance evaluation of both sequential
and parallel implementations are compared. Simulation results
demonstrate that OpenMP based parallel implementation has
achieved a speedup factor of 3.7 .
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I. INTRODUCTION

3-D modelling is nothing but representing 3-D object in
3-D space with number of points or geometries. As in real
life all objects are in 3 dimensions, so representing them
in 3-D space provide much more information and realistic
view about object. Earlier work mostly refer to modelling
single object in 3-D space.

A 3-D model of an indoor environment include modelling
of indoor space, floor, wall, objects inside room. These 3-
D models will play more important role in context aware
and robotics applications such as automatic route tracking,
object detection. There are many 3-D modelling software
available but most of them are designing software and it
require designing skill to create model. Here we are going
to propose a system which will automatically generate 3-D
model from scan of indoor environment. Systems which are
generating 3-D model from scanned data, most of them are
using laser camera and robot to carry it. They are costly
and maps generated from them are not realistic. A technical
person is required to generate such models.

Kinect [1] is a motion sensing input device by Microsoft
for the Xbox 360 video game console. It enables users
to control and interact with the Xbox 360 without the
need to touch a game controller, through a natural user
interface using gestures and spoken commands. Kinect has

RGB camera, Depth camera (infrared projector and receiver)
and multi array micro-phone. Kinect is providing RGB
and Depth information per pixel. Due to its functionalities,
Kinect is used with PC for many applications. After the
launching of depth cameras like Microsoft’s Kinect or Prime
Sense, it is possible to access RGB plus Depth data for each
frame captured by single camera.

Here we are going to design a system using which if user
scan his indoor environment with any depth camera, then
the 3-D model of that environment will be automatically
generated. A system is capable of generate map of rooms
of 20 meter, with correct depth and colour information [2].

3-D localization and mapping is main issue for this type of
system [3]. Localization is nothing but detecting and keeping
track of camera trajectory. Many techniques can be used for
this problem like GPS, Wi-Fi but due to their limitations
and accuracy in indoor environment we are using technique
which is extracting and comparing features of neighbouring
frames to decide camera’s trajectory. We are using RANSAC
to filter out inliers for mapping from feature data set.Now
image based 3-D mapping is possible as mentioned by S.
Agarawal et. al in [4]. This technique can be used to model
3-D map using colour and depth information of image. But
as for indoor environment light conditions and texture less
wall may cause problem.

As application require high data computation, we used
multiple cores to parallelize it with OpenMP. We compare
our parallel algorithm results with serial implementation of
algorithm.

Applications:These 3-D maps can be used in gaming,
in robotics for robot navigation and object detection. 3-D
model of indoor environment can be added to map, to get
more information about internal infrastructure.

II. RELATED WORK

A. 3-D Localization

Geometrically modelling of physical environment is long
time done manually by specialists using specialized tools.
Automatically mapping an environment is challenging. Di-
eter Fox et al.[5] proposed a algorithm for effective position
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estimation of mobile robot which is using a laser scanner
to build map. Robot mapping has been shown to be robust,
but is mostly limited to 2D maps and relies on expensive
hardware. Jeffrey Hightower et al. [6] gave much more at-
tention over problems in location systems in the Ubiquitous
Computing, A variety of signals has been used in indoor
localization, such as 802.11, GSM , and recently power line
signals . There is a limit on the localization accuracy using
these low-rate signals, the state of the art being around 0:5
meters.

B. 3-D Modeling

Recently Noah Snavely et al. [7] showed, image-based
3D modelling is feasible. Photo Tourism being a prominent
example how 3D structures can be recovered by analysing
and matching photos. Sameer Agrawal’s et al. [4] research
work shows promising results on city-scale outdoor scenes.
Vision-based 3D modelling techniques have been gaining
popularity in recent years. Building on multi-view geometry
and in particular bundle adjustment algorithms, 3D struc-
tures can be recovered from a set of 2D views. PhotoTourism
designed by Noah Snavely et al. [7] is an example where
sparse 3D models are constructed from web photos.

There have been successful efforts to build real-time sys-
tems for 3D structure recovery. Davison et al. [8] built real-
time SLAM (simultaneous localization and mapping) sys-
tems using monocular cameras. Pollefeys et al. [9] proposed
real-time solutions for street-view reconstruction using GPS
and video data. Many real-time systems are limited to small-
scale spaces. Xiaodong Li et al. [10] designed system which
using SIFT and SURF for feature extraction and RANSAC
for navigation based on digital camera image. H. Du et al.
[2] design system which is using interactive user input to
design 3D model.

III. SYSTEM ARCHITECTURE

Figure 1 is showing system architecture. With the help
of depth camera, data is collected. Input consist of colour
plus depth information. As each input frame consist of
around 300K points so for further processing, input is
filtered and key features are extracted from it. Here we
are using Scale Invariant Feature Transformation(SIFT) as
keypoints of input cloud for further processing. Using visual
odometry local alignment between two consecutive frames
is calculated. From this local alignments global position of
each frame in model is calculated. Each frame is registered
to its global position and model is updated. This 3-D model
can be visualised by available 3-D visualizer.

A. Simultaneous Localization And Mapping

While preparing 3D map it is important to localize the
current camera location with respect to 3D co-ordinates.
SLAM is technique which is used generate map of unknown
location or update the map of known location.In SLAM

Figure 1. Block diagram of System Architecture

technique, it continuously captures data, by comparing this
data with consecutive frames it localize current frame.
Simultaneously it register this frame to global model to
generate complete map.

IV. FEATURE EXTRACTION

Depending on the number of points generated by the
kinect, it might make sense to use only a few selected points
to calculate the optimal transformation between two point
clouds, and then apply this transformation on all points.
Depending on the source of the data, it also turns out that
some points are more suitable than others as it is easier to
identify matches for them.
In case of RGB data, where SIFT features are more impor-
tant, while in case of planar objects with grooves normals
to the surface are more important features.

A. Surface Normals

Surface normals are important properties of a geometric
surface, and are heavily used in many areas such as computer
graphics applications, to apply the correct light sources that
generate shadings and other visual effects.

B. SIFT Key points

SIFT image features provide a set of features of an
object that are not affected by many of the complications
experienced in other methods, such as object scaling and
rotation. While allowing for an object to be recognized in a
larger image SIFT image features also allow for objects in
multiple images of the same location, taken from different
positions within the environment, to be recognized. SIFT
features are also very resilient to the effects of noise in the
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image. The SIFT approach, for image feature generation,
takes an image and transforms it into a large collection
of local feature vectors. Each of these feature vectors is
invariant to any scaling, rotation or translation of the image.
This approach shares many features with neuron responses
in primate vision.

C. Adaptation of SIFT Keypoints for 3D
The (r,g,b) coordinates of the point clouds are converted to

an intensity value i, so now p = (x, y, z, i). The modification
of the algorithm is applied in the scale-space extrema detec-
tion step. In the original algorithm, the key points are identi-
fied as local minima/maxima of the Difference-of-Gaussians
(DoG) images across scales. This is done by comparing each
pixel in the DoG images to its eight neighbours at the same
scale and nine corresponding neighbouring pixels in each of
the neighbouring scales. If the pixel value is the maximum
or minimum among all compared pixels, it is selected as a
candidate key point. In point clouds a 3D point is used as the
pixel and its neighbouring pixels are the nearest neighbours
in (x, y, z) coordinates obtained using approximate nearest
neighbour search within a fixed radius set by the scale in a
kd-tree representation of the point cloud.

That traditional 2D SIFT key points are computed by
repeatedly blurring an image with Gaussian filters of
increasing scale, subtracting the different scales to get a
difference-of-Gaussian (DoG) scale space, and then finding
local minima and maxima in that DoG scale space. So we
can do the same thing in a 3D point cloud as long as we
have a way of performing Gaussian blurs and searching for
local extrema.

V. PAIR ALIGNMENT

While collecting data, we scanned the area by moving
depth camera inside room. Microsoft Kinect collect data at
the rate of 30FPS , so to keep some noticeable difference
between each frame we captured every fifth frame. We
may consider any nth frame depend on speed of movement
of camera provided that there must be more overlapping
between two consecutive frames. Now each frame is slightly
different and more overlapped with its previous frame. We
have to find out the exact Transformation i.e. Rotation and
Translation of that frame with respect to previous frame.

Figure 2 is showing results of pair alignment. In first part
inside red circles there are duplicated objects i.e. Notebook
and Box. This is because there are two frames captured from
slightly different locations and overlapped together without
any transformation. We can see inside green circles, after the
alignment of two frames, two objects are aligned properly.

ITERATIVE CLOSEST POINT

To localize new arriving frame it is aligned with its just
previous frame. This alignment is in terms of transformation

Figure 2. Pair alignment output

matrix (consist of rotation and translation matrix). Here
Iterative Closest Point[11] algorithm is used to find out
alignment. ICP is basically used to find the best transforma-
tion that minimizes the distance between two point clouds.

ICP is a registration technique that uses geometry infor-
mation (X, Y, Z) and not intensity/color to register the source
point cloud to the target point cloud. It works iteratively to
find out best solution.

Figure 3. Working of ICP Algorithm

Figure 3 is giving idea about working of ICP. Two lines
are considered as point clouds. The blue part is showing
overlapped part in two consecutive frames. Initially the
source cloud is completely misaligned with respect to the
target cloud, after n iterations the source cloud seems to be
aligned in terms of rotation. Next, after a few more iterations
(n + m), the source is now completely aligned to the target
cloud in terms of Rotation and Translation. Source cloud is
overlapped with target cloud. ICP allows us to converge a
source point cloud having 6 degrees of freedom (DoF) from
the target point cloud.

A. Euclidean distance

To define which is closest point on the target cloud , the
point which has the smallest Euclidean distance from a point
on the source cloud is considered. If we had two points p (on
the target cloud) and q (on the source cloud), the Euclidean
distance would be the line segment connecting point p and
q. The distance can be quantitatively calculated by the below
formula . For point P and Q, in our point cloud (3D) case
we have P (x,y,z) and Q (x,y,z):
p1 = x co-ordinate — q1 = x co-ordinate
p2 = y co-ordinate — q2 = y co-ordinate
pn = z co-ordinate — qn = z co-ordinate
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d(p, q) =
√
(q1 − p1)2 + (q2 − p2)2 + · · ·+ (qn − pn)2

=

√√√√ n∑
i=1

(qi − pi)2

(1)

Each ICP Iteration consist of the following steps:

1) Find Closest Points: Using the k-d search tree find out
the Euclidean distance between the target/source point
clouds.

2) Calculate Alignment: Calculate what is the best rota-
tion/translation required to be performed on the source
point cloud to align it with the target point cloud.

3) Regenerate Source Cloud: After applying the trans-
formation (rotation and/or translation) to the source
cloud, regenerate the modified point cloud. The visual
effect of this is the source cloud either appears closer
or further from the target cloud.
The transformation matrix is composed of an inner 3*3
rotation matrix and the 4th column is the translation
vector (3*1).

TransformationMatrix =

∣∣∣∣∣∣∣∣
R1 R2 R3 x
R4 R5 R6 y
R7 R8 R9 z
0 0 0 1

∣∣∣∣∣∣∣∣
B. Local Alignment

Local alignment is frame to frame registration step. So
by using (n-1) th cloud as source and (n) th cloud as
target the transformation matrix is calculated. With this local
transformation matrix, source cloud is transformed to align
properly with target cloud. This local alignment is refer to
alignment with respect to only consecutive frame.

C. Global Alignment

To prepare one consistent model, every frame should be
transformed with respect to one frame i.e. first frame.With
local alignment we are getting alignment with respect to
consecutive frame. This local alignment can be used to find
out global alignment.

INITIAL TRANSFORMATION GUESS

The ICP method has seen many improvements from its
original form, from using non-linear optimization meth-
ods, finding good initial guesses, or estimating better point
features, to addressing the problem of ICP‘s computa-
tional complexity. Initial guess for ICP is calculated using
RANSAC inliers found by FPFH descriptors [12].

D. FPFH Descriptor

Fast Point Feature Histograms (FPFH) are informative
pose-invariant local features which represent the underlying
surface model properties at a point p. Their computation is
based on the combination of certain geometrical relations be-
tween p‘s nearest k neighbours. Descriptors are determined
over the points where SIFT keypoints are found. So now
these descriptors giving more information calculated based
on neighbours in the form of histogram. The FPFH features
[13] are pose invariant and their discriminative power makes
them good candidates for point correspondence search in 3D
registration.

E. Correspondence Estimation

Correspondence grouping algorithms cluster the set of
point-to-point correspondences obtained after the 3D de-
scriptor matching stage. Using correspondence algorithm we
are finding set of points in target frame which are matching
with source frame descriptors.

1) Correspondence Using SIFT points We can feed SIFT
points obtained from frames to find out correspon-
dence based on x,y,z co-ordinates matching.

2) Correspondence Using FPFH Descriptors FPFH de-
scriptors are feed to correspondence finding algorithm.
It compare the histograms of the key points and
determine the correspondence.

F. Finding Inliers and Initial Transformation Guess

Most of the obtained correspondences are wrong, which
are negatively affecting registration results. So to remove
wrong correspondences and find out inliers which are fit into
appropriate geometrical model RANSAC algorithm [10] is
used. With these inliers the transformation matrix required
to map source cloud on target cloud is calculated. This
transformation matrix is used as initial guess for ICP.

Figure 4. Comparison of methods of finding correspondence between two
clouds using FPFH descriptor and using SIFT keypoints.
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In Figure 4, left part of first row is showing two cloud
frames captured at different time from different locations
so not aligned, middle part is showing correspondence pairs
fond using FPFH and right part is showing correspondence
pairs found using only SIFT points. In row two, middle
and right part are showing respective inliers after applying
RANSAC. In row three, middle and right part, point clouds
are shown after applying transformation obtained from re-
spective methods. We can see alignment using FPFH is
better than SIFT points.

G. Point Density due to Redundant Data

As to get better results from ICP we have to capture
frames in such way that they are mostly overlapped but
after getting transformation matrix for each frame if we
transform every frame into result we will get very dense
cloud and in which most of the part will be drawn again.
To solve this problem we are using transformation matrix. If
the translation of any frame is more than certain limit then
we are transforming that frame in to resultant cloud. Here
10cm as limit is used.

PARALLEL MODULES

As serial version of algorithm require high computing
time because of huge data computation, it is possible to use
multiple cores for data parallelism. OpenMP is used for data
parallelism. Different modules without any dependency are
created.
Following modules are parallelize using OpenMP

1) Cloud filtering
2) Computing normals
3) Computing SIFT key points
4) Computing FPFH descriptor
5) Finding correspondences, inliers and initial guess
6) Finding transformation between consecutive frames
7) Transforming point cloud

Captured input consist of n frames then each frame can be
given to each core to run these modules. So as many cores
are there those many frames will be processed together. With
this approach running time is considerably reduced.

VI. RESULTS

Figure 5 shows the result after registration of 40 captured
frames with constantly moving kinect.Here we can see it has
detected proper position of each frame and registered at its
location. Edge of the two walls is also aligned.

Frame registration module consist of cloud filtering, find-
ing sift points, finding local alignment between pair of
clouds and finding global alignment for each cloud. These
steps are independent of each other so we can parallelize
them on multi cores. The i7 system with, 8 cores processor
is used.Table I showing Time required for Serial and Par-
allel implementation of Frame Registration Module using
OpenMP on 8 core machine. By looking at values we can

Figure 5. Snapshot of 3D model captured in the lab.

see that parallel algorithm took much less time compare to
serial algorithm. We have calculated Speed Up factor and
algorithm Efficiency using following formula.

Speedupfactor = SerialT ime/ParallelT ime (2)

Efficiency = Speedupfactor/NumberOfCores (3)

Figure 6. Graph showing running time comparison between Serial and
Parallel version of frame registration module.

Figure 7. Graph showing speed up factor of parallel registration module.
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Table I
RUNTIME COMPARISON OF SERIAL AND PARALLEL MODULE

# Frames Serial Time(s) Parallel Time (s) Speedup Factor Efficiency(%)
2 16 18 0.89 11.11
3 53 29 1.83 22.84
4 73 31 2.35 29.44
5 112 38 2.95 36.84
6 127 35 3.63 45.36
7 150 41 3.66 45.73
8 198 54 3.67 45.83
9 209 60 3.48 43.54
10 216 64 3.38 42.19
16 387 109 3.55 44.38
24 595 165 3.61 45.08
32 802 214 3.75 46.85
40 1009 272 3.71 46.37

Figure 8. Graph showing Efficiency of parallel registration module.

Graphs 6, 7, 8 are showing that as we are increasing the
numbers of frame we are getting better results. But due to
interdependencies between modules we can’t achieve still
more higher speed up factor. Here we achieve speed up
factor up to 3.7. The efficiency of parallel algorithm is up
to 47 percent.

VII. CONCLUSIONS

Use of surface SIFT points as key point for alignment
gives better results as comparative to normal key points.
Inliers found using FPFH descriptors are more accurate than
inliers found using just SIFT points. Initial transformation
guess found using RANSAC is improving accuracy but small
wrong guess may leads to bad results. Results are showing
that, due to use of OpenMP for parallelism on 8 cores
gives speedup upto 3.75 and around 47% parallel algorithm
efficiency.
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