
NoC Based Distributed Partitionable Memory
System for a Coarse Grain Reconfigurable

Architecture

Muhammad Adeel Tajammul,
Muhammad Ali Shami, Ahmed Hemani

Royal Institute of Technology,Sweden

Email: tajammul,shami,hemani@kth.se

Sridharan Moorthi
NIT,Trichy,India

Email: srimoorthi@nitt.edu

Abstract—This paper presents a Network-on-Chip based dis-
tributed partitionable memory system for a Dynamic Reconfig-
urable Resource Array (DRRA). The main purpose of this design
is to extend the Register File (RFile) interface with additional
data handling capability. The proposed interconnect which en-
ables the interaction between existing partition of computation
fabric and the distributed memory system is programmable and
partitionable. The system can modify its memory to computation
element ratio at runtime. The interconnect can provide multiple
interfaces that can support upto 8 GB/s per interface.

I. INTRODUCTION

DRRA is a Coarse Grain Reconfigurable Architecture

(CGRA) capable of hosting multiple, complete Radio and

Multimedia applications. It has resources for physical layer

(PHY layer), Protocol Processing layers (PP layer), application

and system control and runtime management. The DRRA

fabric for the PHY layer has been implemented in [1] [2]

and is shown in Figure 1 along with the proposed memory

system. The DRRA PHY layer fabric will be briefly described

in section III as the DRRA architecture. A single DRRA

cell is composed of a morphable DataPath Units (mDPU), a

Register Files (RFile), a sequencer and an interconnect scheme

gluing these elements together. At present, the storage of

DRRA fabric is restricted to RFiles which are 64 words of

16 bits. This paper presents an on-chip distributed memory

architecture for the PHY layer of DRRA with the following

salient features:

Distributed: DRRA being a fabric, the computation is

distributed across the chip. Multiple threads, algorithms and

applications are intended to run in parallel. To achieve true

parallelism it is essential to parallelize not only computation

but also the interconnect and access to memory. With dis-

tributed memory, the proposed design enables multiple private

and parallel execution environments (PREX).

Partitioning: The proposed Distributed Memory Architec-

ture (DiMArch) is partitionable. Moreover, the architecture is

designed to keep the cost of partitioning and re-partitioning

low both in terms of cycles and energy. Partitioning is also a

distributed exercise and it happens in parallel which not only

speeds up partitioning but also enables runtime re-partitioning.

Streaming: Individual partitions composed of memory

banks (mBanks) should be able to act as a unit and stream

data to the computational units. These streams have a generic

timing model in the form of an initial delay, an intermittent

delay between successive read/writes and an end delay. These

delay values can be adjusted according to intermediate results

to make the streams elastic.

Performance and Energy: The memory architecture should

have extremely high bandwidth and very low latency. The

distributed nature of memory architecture and the concept

of private execution environments enable a short distance

between storage and computation, which in turn contributes to

low latency. The proposed design deploys wide interconnects

to achieve bandwidth upto 8 GB/sec per RFile to mBank

interconnect. In addition, the distributed nature of DiMArch

and PREX offers effective power management by allowing the

unused mBanks to shutdown or put into low power mode.

Scalability: The DiMArch is scalable with the size of

memory partitions and clock frequency. The circuit-switched

segments of the data Network-on-Chip (dNoC) can be option-

ally pipelined.
II. RELATED WORK

Reconfigurable architectures of the past decade are inves-

tigated for memory organization in [3]. Lambrechts et al.

[4] investigates power and performance for multiple forms

of interconnect. The design proposed in this paper is very

similar to b-neg design in [4]. The programmable pipelined

and private partitioning differentiate the proposed design from

[4]. Further, the control traffic is routed over bus network as it

has lower traffic. Data traffic is routed over the crossbar with

programmable pipelined interconnects. Memory systems for

MP-SoCs can be either caches or scratch-pad based memory

systems. Marescaux [5] provides a case where scratch-pad

memory systems behave superior to cache based systems.

Morphosys [6] provides a set of frame buffers for parallel

load/store of data between reconfigurable cells. As the size of

frame buffer is fixed, the memory element to computational

element ratio remains fixed.

Imagine [7] provides a three stage memory architecture,

where the third stage is an off-chip memory. Beside a Local

2011 24th Annual Conference on VLSI Design

1063-9667/11 $26.00 © 2011 IEEE

DOI 10.1109/VLSID.2011.45

232

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 26,2021 at 05:21:04 UTC from IEEE Xplore. Restrictions apply.

Register File (LRF), a scratch pad memory and a single Stream

Register File (SRF) is connected as a second stage memory.

A single SRF is shared by multiple clusters but the ratio of

computational element to the storage resources remains fixed.

SMART CELL [8] describes an innovative reconfigurable

architecture with distributed data and instruction memory

architecture. These memory units are directly connected to

processing elements. Each mBank is 1K and works as a scratch

pad memory. Unlike SMARTCELL, the proposed architecture

can have array of memories assigned to a single mDPU

without any cost on performance of other mDPUs.

MONTIUM Tile processor [9] has a local memory for

each tile processor. Each tile processor is then connected to a

Network-on-Chip (NoC) which can bring data from an on-chip

memory via AHB-bridge interface. The local memory per tile

remains fixed in each MONTIUM implementations [9] [10].

The proposed memory system can change its memory to

computational resource ratio by changing its partitioning, as

discussed in section V.This memory system is integrated with

DRRA Architecture [1] [2] which is discussed in section III.

Further-more, if the system is running with variable clock,

then it can alter its critical path accordingly as discussed in

section VI.

This paper is organized as follows: Section I and II present

introduction and the related work on memory models of

the current CGRAs. Section III presents the computational

fabric, the Dynamic Reconfigurable Resource Array (DRRA)

architecture. The proposed memory system is explained in

section IV. Section V deals with the private execution of

multiple processes. The programmable pipelining feature is

briefly discussed in section VI. The costs and overheads

of the different components of the system are formulated

in section VII. Section VIII presents few case studies on

the proposed system. Finally, section IX summarizes with

concluding remarks.

III. DRRA ARCHITECTURE

DRRA is a Coarse Grain Reconfigurable Architecture and

the proposed memory system is shown in Figure 1. The

computational portion [1] [2] is briefly described in this

section. DRRA PHY resources are:

1. morphable Data Path Unit (mDPU)

2. Register File (RFile)

3. Micro-coded hierarchical sequencing machine (Sequencer)

4. A Seamless, sliding-window, circuit-switched interconnect

fabric.

mDPUs are native 16-bit integer units with four 16-bit inputs

corresponding to two complex numbers and two 16-bit output

corresponding to one complex number. mDPU provides a)

MAC, with internal and external accumulation. This MAC

has an adder in front to optionally implement the symmetric

FIR MAC, where the coefficients of symmetric samples are

added before multiplication by the co-efficient, b) half of

radix-2 butterfly for real or imaginary number c) add, subtract

trees - 4 input adders/subtracters, two 2-input add/subtract

trees, sum-of-difference, difference-of-sum etc. mDPU also

has two comparators, one for each output and a counter.

The results of comparators, counter and overflow, underflow

are logged in a status word read by sequencer. mDPU can

do saturation, truncation/rounding, overflow, underflow check.

The end result bit-width can be configured to be anything from

8 to 16 bits. RFile - the DRRA Register File is 64 word 16

bit register file with dual read and write ports. RFile has a

DSP style AGU(Address Generation Unit) with vectorized,

circular buffer and bit reverse addressing that is useful in

implementing FFT. Each of these modes can be executed

once or in an endless loop. Each mode can have an arbitrary

initial delay, a loop delay between each read/write and an

end delay before the loop iterates. These delays can be used

for synchronization among DSP functions, I/O and DSP rate

change functions. Moreover, these delays can be dynamically

computed at runtime and is the basis for providing highly

sophisticated elastic streaming functionalities. Adjacent RFiles

can be daisy chained to implement a shift register for a highly

parallel FIR filter.

Sequencer is a micro-coded sequencing machine that con-

trols a single mDPU and a RFile and the switchbox. Sequencer

can be daisy chained to allow a single Sequencer to control

adjoining Sequencers within the sliding-window reach. This

concept is used to implement a hierarchy of controllers,

for instance to implement Rx/Tx FSMs of a MODEM or

encode/decode FSMs of a CODEC. With elastic streaming

capability of RFile together with the proposed memory ar-

chitecture(described in section IV) the sequencers provide the

capability to implement chained elastic streaming functionali-

ties that matches very well the nature of most PHY layers for

radio and multi-media applications.

The seamless sliding-window circuit-switched interconnect

fabric connects the fabric of mDPUs, RFiles and sequencers

organized in two rows as shown in Figure 1. In principle,

multiple such rows can be organized but the present ex-

periments are based on outputs of mDPUs and RFiles are

carried by horizontal buses, 3 columns on each side. A circuit-

switched interconnect, at the intersection of horizontal and ver-

tical buses, controlled by sequencer, selects the programmed

outputs from the horizontal buses and loads them onto the

vertical buses that feeds the inputs of mDPUs and RFiles as

shown in Figure 1. Each column can reach 3 columns to the

right and 3 columns to the left. Thus including the middle

column, 7 columns constitute the window that seamlessly

slides across each such 7 column window. With this scheme,

each mDPU and RFile input can receive data from the output

of 14 mDPUs and 14 RFiles, including itself. The fabric can

be as large as the die allows; several thousand DRRA cells can

be accommodated in a 45 nm 300 mm2 die. Figure 1 shows

only a fragment for clarity.

IV. DISTRIBUTED MEMORY ARCHITECTURE

The proposed Distributed Memory Architecture (DiMArch)

for DRRA extends [12] which is composed of (a) a set of

distributed memory banks (mBanks), (b) a circuit-switched

data Network-on-Chip (dNoC) (that transports data between

233

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 26,2021 at 05:21:04 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. DRRA Architecture

mBanks and RFiles (DRRA Register Files)), (c) a packet-

switched instruction Network-on-Chip (iNoC), a NoC and

bus hybrid used to create partitions, program mBanks to

stream data and transport instructions from sequencer to the

instruction Switch (iSwitch).

A. Memory Banks (mBank)

As stated earlier, the DRRA memory architecture is realized

as distributed memory banks that are SRAM macros, typically

2 to 4 KB, a design time decision that is strongly influenced

by the size of the DRRA cell (see Figure 1), as the goal

is to align mBanks with the columns of the DRRA fabric.

mBanks are controlled by mFSMs - state machines that also

acts as interface between mBanks and the data Switches

(dSwitch). mFSMs act as programmable address generation

unit with a general timing model. They implement single

read/write, vectorized read/writes with programmable address

offset, circular buffer and bit reversed addressing. Besides

the flexibility of typical DSP like address generation unit

capability, mFSMs also provide a general purpose timing

model using three delays, an initial delay before a loop, an

intermittent delay before every read or write within a loop and

an end delay at the end of the loop before repeating the next

iterations. These delays are used to synchronize the memory

to register file streams with the computation. Individual delays

can be changed depending on the intermediate results of the

computation to make the streaming behavior elastic. mFSMs

are programmed via iNoC with special instructions.

B. Data Network-on-Chip (dNoC)

dNoC is a half-duplex circuit-switched mesh Network-

on-Chip. The streaming nature of applications, the inherent

QoS guarantees and improved latency compared to packet-

switched network were the motivations for using circuit-

switched network. A memory partition is defined as a set

of contiguous memory banks. A computation partition is

defined as a set of contiguous set of RFiles, mDPUs and

its associated sequencers and switchbox (see Figure 1). A

memory partition together with a computation partition is

called private execution environment (PREX). The interface

between memory and computational partition is as wide as the

number of RFiles involved; the width here implies the number

of dNoC connections, each dNoC being 256 bit wide, which

is a design time decision can be changed as it is a GENERIC

VHDL parameter in a template. Since the data traffic at each

RFile/dNoC (RFMI) interface can only be read or written, half-

duplex interconnects are proposed. dNoC is realized as a mesh

network of dSwitches. As shown in Figure 2, each dSwitch

is made up of five dSwitch cells (dCell) serving the N, E,

W, S and the mBank directions. Each dCell has four inputs

coming from the other four directions; one of these four inputs

is multiplexed out in the output mode; in the input mode,

data from the associated direction enters the dCell. The bi-

directional I/O is optionally buffered to cope with long wires

and provide flexibility to implement the planned Dynamic

Voltage Frequency Scaling.

Fig. 2. dSwitch

cFSMs control the temporal behavior of dSwitch. They are

essential to make multiple mBanks behave as a contiguous

memory. Figure 3 shows an example of a memory partition

made up of three mBanks A, B and C that bring data to a single

Register File (RFile) for processing and also take the data back

to the mBanks once processed. cFSMs associated with each

dSwitch are programmed to time multiplex the path to and

from register file in a co-ordinated way so that it appears as if

RFile is reading from/writing to one large contiguous memory.

Compiler ensures that the computation is synchronized with

the behavior of cFSMs controlling the memory transactions.

This works fine for the targeted signal processing application

234

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 26,2021 at 05:21:04 UTC from IEEE Xplore. Restrictions apply.

with deterministic cyclo-stationary behavior. The ability to

partially reprogram these streams, allows these streams to be

elastic as well. The DRRA sequencers, the sequencers (see

Figure 1) have the hooks to chain these elastic streams but the

present DiMArch does not support chained elastic streams.

The architecture can deal with the degenerate case of non-

deterministic random individual memory transactions as well

like a normal processor; this case will obviously not benefit

from the efficiency of autonomic (elastic) streaming capability

of cFSMs in DiMArch. cFSMs are programmed by special

instructions via iNoC.

Fig. 3. Single Memory Partition

C. Instruction Network-on-Chip (iNoC)

iNoC is a packet-switched network used in DiMArch to

program the cFSMs and mFSMs. The decision to use packet-

switched network was taken because it is primarily used for

short programming messages and life of a certain path is very

short. Additionally, the generality of packetized network to

reach any node of the DiMArch from any sequencer. Even

if iNoC is used to transport short programming messages,

agility of programming or reconfiguring DiMArchs partitions

and behaviors is a key goal of the DRRA architecture to

make it dynamically reconfigurable. To achieve this agility,

while retaining the generality of packet-switched network, two

architectural measures have been taken. The first is that the

horizontal and vertical segments of the iNoC are a hybrid

of bus and NoC behaviors. Any message asserted on an

iSwitch is broadcast along its entire length of vertical segment,

behaving like a bus as the broadcast happens in a single cycle.

Every iSwitch on the vertical segment analyzes the message

in parallel to check if the message address is on its associated

horizontal segment and if it is, a second broadcast happens on

the horizontal segment. Again, every iSwitch on the horizontal

segment listens to the broadcast and analyzes if the message is

addressed to it and if it is, it forwards it to zFSM that analyzes

it and appropriately acts on it. By having a bus like behavior,

the message is broadcast in a single cycle, i.e., each iSwitch

can be reached in two cycles. The second measure to improve

the agility of programming and re-programming is that these

bus segments can be split to enable parallel programming of

the split segments. Each horizontal and vertical segment can

be potentially split with a simple message that toggles the split

status; initially all segments are split. So, the first action by the

sequencers is to combine the multiple segments horizontally

or vertically by closing the splitters at appropriate places.

This is explained with a simple example in section V. DRRA

targets hosting multiple applications(MODEMs and CODECs)

simultaneously. So at first level, the iNoC split segments are

combined to enable each application to program in parallel

and allocate appropriate memory space. At second level, each

such application is very likely going to be implemented as

a pipelined datapath of functions like FFTs, FIRs, Viterbis

etc. Each such function will have its own thread and set

of sequencers and they can program their memory partitions

according to their need in parallel.

V. PRIVATE PARTITIONING OF MULTIPLE PROCESSES

The concept of private partition is illustrated in Figure

4. Consider three Sequencers which need access to multiple

memory banks (mBanks). mBanks in the first row have

dedicated access from Sequencer in the same column. All

splitters are open at the start. Sequencers 1 and 2 issue an

instruction for respective instruction Switch (iSwitch) to close

vertical splitter for top-to-down access. Horizontal splitters

are set to remain open. Instruction Switch takes one cycle to

process this instruction. After a wait of one cycle, Sequencers

1 and 2 can now access iSwitches in second row (row 1). This

one cycle wait can be used to configure mFSM or cFSM for

required traffic patterns. Sequencer 1 issues another instruction

for iSwitch (1, 1) to get access to iSwitch (1, 2). Sequencer 1

issues instruction to close the vertical splitter top-down. Then

Sequencer 1 instructs iSwitch (1,2) to close horizontal splitter

right-left between iSwitch (0,2) and iSwitch (1,2). At this point

all sequencers have access to their desired private partitions.

At run-time Sequencer 2 can gain access to iSwitch (2,2) to

allocate more memory for additional memory requirements.

However, since the proposed architecture does not provide

memory locks, all access conflicts are resolved at compile

time.

When two PREX needs a shared memory space, then a

shared iSwitch is specified. e.g. Sequencer 0 and Sequencer

1 can specify iSwitch (0,1) as a shared space. In that case,

iSwitch(0,1) will receive instructions from both PREX. Fur-

thermore, the traffic for both cases should be deterministic and

conflicts are resolved at compile time.

Fig. 4. Private Partitioning

VI. PROGRAMMABLE PIPELINING

Consider an example where three RFiles connected to nine

MTiles in 3x3 configuration. For a single block transfer from

mBank to RFile, mBank data is first sent to dSwitch. dSwitch

works either in pipelined or unpipelined mode. The pipelined

mode is used when PMUX is programmed to use the register

235

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 26,2021 at 05:21:04 UTC from IEEE Xplore. Restrictions apply.

in its path (see Figure 2). The pipelined path is omitted

for Single Cycle Multi-Hop Transfer (SCMHT) mode. The

concerned dSwitch routes the data to neighboring dSwitch. At

destination, data is directly loaded into RFile from neighboring

dSwitch. The number of cycles of each transfer is not always

equal to the number of hops. The cycles may be reduced if

any dSwitch is in SCMHT mode.

The critical path for single cycle transfer for any given

wireload model is variable; increase in number of hops will

increase the critical path exponentially. So, increasing the

maximum number of hops in SCMHT mode will reduce the

clock speed of the system by the same rate. Hence, the number

of hops should only be increased for such cases when the gain

of SCMHT mode is more than degradation due to lower clock

frequency.

VII. SYSTEM COSTS AND OVERHEADS

The system has three types of costs and overheads in-

terms of cycles: 1. Computational Cost (CComputation), the

time spent (cycles) in processing data by the DPU. 2. Re-

configuration Overhead, the time which is required to re-

configure the interconnect partitioning. This time is directly

proportional to the number of splitters to be programmed.

Programming a single splitter takes three cycles (Instruction

identification, Decoding and Partition set/reset). 3. Intercon-

nect Overhead, deals with the amount of time (cycles) it takes

for the data to move between mBank and RFile.

All the costs and overheads are dependent on the method of

its use. The computational cost is dependent on the mode of

mDPU and data sample width since the mDPU is pipelined.

For example, cost of computation of an FFT butterfly using

two mDPUs is given by equation (1).

CComputation = (N.Sample/2) +OComputation (1)

where

{
NSample = Number of Samples

OComputation = Overhead of Computation
Overhead of computation is directly dependent on the mode

of mDPU. The cost of pipeline (CPipeline) changes with each

mDPU mode as number of stages of pipeline change.

OComputation = CPipeline + CLoad Store (2)

where CLoad Store = RFile load store Cost Computation

Interconnect Reconfiguration cost (C.CIR) is the cost of

reconfiguration for the computational fabric which directly

depend on the number of interconnects to reconfigure and the

cost of reconfiguration. This cost can have the maximum value

of six cycles.

CCIR = NInterconnect ∗ CComp. Reconf (3)

mBank Interconnect Reconfiguration cost (CMIR) directly

proportional to the number of instructions used to reconfigure

the memory partitions (CPR).

CMIR = NInstruction ∗ CPR (4)

Reconfiguration is performed when 1. new mBank is to

be allocated, 2. the instruction partitioning interconnects are

reconfigured to change direction of instruction flow (or) 3.

computational fabric interconnects are reconfigured. The in-

terconnect cost (CInterconnect) depends on data transfers and

is represented as:

CInterconnect = NTransfers ∗ CNum.ofhops (5)

where

{
NTransfers = Number of Transfers

CNum.ofhops = Cost in cycles/data transfer

VIII. CASE STUDIES

A. Mapping one dimensional point FFT

An implementation of radix-2 FFT butterfly was carried out

in mDPU [1]. Four mDPUs are used to perform two butterfly

operations (one real and one imaginary). The operations are

pipelined and are performed in six cycles. Depending on data

access patterns, the butterfly can be reused to implement vari-

ous stages of FFT. Hence, an algorithm can be defined for FFT

mapping by defining the traffic pattern between RFile, mBank

and mDPU. In this case, FFT traffics are manually mapped. A

maximum of sixteen butterflies are used in parallel. A single

butterfly is fed with data samples and twiddle factors from

RFiles that can perform 32 operations in 40 pipelined cycles.

Between each FFT stage, reordering and reconfiguration is

performed. Reordering using the data Network is performed

by common three stage data transfer. If the number of butterfly

operations per stage are more than the number of available

butterflies, then additional butterflies are processed serially.

If re-ordering is required between neighbouring RFiles, then

interconnect reconfiguration is performed instead [2].During

reordering the mBank truly behaves as a scratch-pad memory,

where intermediate data is stored.

64 128 256 512 1024 2048 4096
0

2000

4000

6000

8000

FFT Point

C
yc

le
s

SmartCELL
Morphosys
NoC
FPGA
DRRA

Fig. 5. FFT throughput

Fig. 6. FFT Overhead

First step in this mapping is loading the correct data in

the correct RFile. Data is loaded from the memory to all the

RFiles. By keeping a correct order at instruction level, data

is picked up by the correct RFile. Twiddle factors are also

loaded to RFile which act as a Look Up Table (LUT). Figure

5 extends the results of [11] for DRRA architecture. To keep

the comparison fair, equal number of computational elements

236

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 26,2021 at 05:21:04 UTC from IEEE Xplore. Restrictions apply.

are used. The last two results for SMARTCell and FPGA are

interpolated based on [11]. The proposed system outperforms

others by an order of magnitude more than the expected error

in interpolation. For FFT larger than 512, the SmartCell is

1.24 to 1.36 times slower than DRRA.

The implementations of FFT smaller than 512 on such

parallel system do not exploit locality. Figure 6 illustrates that

the data for small-sized FFTs (less than 512) spends more

time in motion rather than in computation. The memory-data

interconnects overhead takes more or comparable times than

the time spent in computation. This can be further elaborated

by the fact that it takes marginally less cycles to compute the

64 point FFT using a single butterfly (real and imaginary) set.

Such case uses 16 times less resources compared to the case

presented (16 butterflies).

B. 2D Mapping vs McNoC [13]

The two dimensional FFT is performed in two steps.

First, row-wise FFTs are calculated. This step is followed by

column-wise FFT calculation. Hence two dimensional FFTs

are broken down into multiple one-dimensional FFTs. It is

mapped using the same principles as in section VIII-A. In

this experiment, the size of FFT remains constant and number

of resources are increased. Further more, an extra step is

added where horizontal to vertical translation is performed.

The results for such mapping are given in Figure 7.

4 8 16 32 640

1

2

3

4

x 105

Cells

C
yc

le
s

MCNoC/100
DRRA

Fig. 7. Cycle count for 2D-FFT

C. Mapping Matrix Multiplication

Consider a matrix multiplication of two matrix [64, 1]with

[1, 64] which results in [64, 64] matrix. Only such compu-

tation require initial load and final store operations. All the

multiplications are unique and can be performed completely

parallel. The performance comparison between mapping on

proposed design and McNoC [13] is shown in Figure 8. The

variation in cost can be better understood by looking at the

overhead breakdown of such mapping given in Figure 9. When

the decrease in computation cost is less than the increase in

interconnect cost, then it is feasible to parallelize such system.

1 2 4 8 160

2000

4000

Cells

C
yc

le
s

MCNoC/100
DRRA

Fig. 8. MM Cycles

1 2 4 8 160

500

1000

1500

2000

Cells

C
yc

le
s

Computation Cost
Interconnect Cost

Fig. 9. MM Overhead

IX. CONCLUSION

This paper proposes a programmable interconnect inter-

face as a method of communication between mBanks and

RFiles. The programmable interconnect supports pipelined

or bufferless modes. The instruction interconnect also has

private partitioning capability where multiple sequencers can

communicate with different mBanks using different segments

of the network. The controllers within the system help in

providing patterns of data which can be routed based on the

instructions. The FFT and 2D experiments show the overhead

of the interconnect, compared to the computational cost. The

results show that for the given programmable interconnect the

best throughput is obtained when reasonable computational

resources are utilized with good locality to the data. Moreover,

gate-level synthesis results show that the system can run up-to

400 MHz on 90nm technology.

As a part of future work, another sequencer will be added

which will act as a dedicated main controller for memory.

The instruction memory topology will be investigated for Von

Neumann or Harvard architecture. More elaborate memory

mapping for video application can be explored. A compiler to

automate the process of mapping is also under development.

ACKNOWLEDGMENT

The authors would like to thank the Higher Education

Commission of Pakistan for funding this research.

REFERENCES

[1] M. A. Shami and A. Hemani, “Morphable dpu: Smart and efficient data
path for signal processing applications,” vol. SiPS, 2009, pp. 167–172.

[2] ——, “Partially reconfigurable interconnection network for dynamically
reprogrammable resource array,” in IEEE 8th International Conference
on ASIC (ASICON’09), 2009, pp. 122–125.

[3] M. Herz, R. Hartenstein, M. Miranda, and E. Brockmeyer, “Memory
addressing organization for streaming-based reconfigurable comput-
ing,”Conference on Electronics Circuits and Systems, vol. 2, 2002,pp.
813–817.

[4] A. Lambrechts, P. Raghavan, M. Jayapala, B. Mei, F. Catthoor, and
D. Verkest, “Interconnect exploration for energy versus performance
tradeoffs for coarse grained reconfigurable architectures,”IEEE TRAN.
VLSI Systems, vol. 17, no. 1, JANUARY 2009, pp. 151–155.

[5] T. Marescaus, E. Brockmeyer, and H. Corporaal, “The impact of higher
communication layers on noc supported mp-socs,” in Proceeding of the
First International Symposium on Network-on-Chip (NOCS’07), 2007,
pp. 107–116.

[6] H. Singh, L. Ming-Hau, L. Guangming, F. Kurdahi, N. Bagherzadeh,
and E. C. Filho, “Morphosys: an integrated reconfigurable system
for data-parallel and computation-intensive applications,”IEEE TRAN.
Computers, vol. 49, 2000, pp. 465–481.

[7] S. Rixner, W. J. Dally, B. Khailany, P. Mattson, U. J. Kapasi, and
J. D. Owens, “Register organization for media processing,” in Sixth
International Symposium on High-Performance Computer Architecture,
Jan. 2000, pp. 375–386.

[8] C. Liang and X. Huang, “Smartcell: A power efficient reconfigurable
architecture for data streaming application,” in IEEE Workshop on Signal
Processing Systems (SiPS’08), 2008, pp. 257–262.

[9] G. Rauwerda, P. Heysters, and G. Smit, “Towards software defined
radios using coarse-grained reconfigurable hardware,”,IEEE TRAN. on
VLSI, vol. 16, no. 1, 2008, pp. 3–13.

[10] L. Smit, A. Molclerink, P. Wolkotte, and G. Smit, “Implementation of 2-
d 8x8 idct on reconfigurable montium core,” in International Conference
on Field Programmable Logic and Applications, 2007, pp. 562–566.

[11] C. Liang and X. Huang, “Mapping parallel fft algorithm onto smart-
cell coarse-grained reconfigurable architecture,” in Proc. IEEE Design
Automation Conference, 2001 , 2001, pp. 231–234.

[12] M.A. Tajammul, el. Al. “ A NoC Based Distributed Memory Archi-
tecture with programmable and partitionable Capabilities,”NORCHIP
2010,Tampere Finland.

[13] X. Chen, Z. Lu, A. Jantsch, and S. Chen, “Supporting distributed
shared memory on multi-core network-on-chip using a dual microcoded
controller,”DATE 2010, pp. 39–44.

237

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 26,2021 at 05:21:04 UTC from IEEE Xplore. Restrictions apply.

