
Egress: An online path planning algorithm for

boundary exploration

K.R. Guruprasad and Prithviraj Dasgupta

Abstract—We consider the problem of navigating a mobile
robot that is located at any arbitrary point within a bounded
environment, to a point on the environment’s outer boundary and
then, using the robot to explore the perimeter of the boundary.
The environment can have obstacles in it and the location and
size of these obstacles are not provided a priori to the robot. We
present an online path planning algorithm to solve this problem
that requires very simple behaviors and computation on the
robot. We analytically prove that by using our algorithm, the
robot is guaranteed to reach and explore the outer boundary of
the environment within a finite time.

I. INTRODUCTION

Online path planning for mobile robots is an essential

technique for navigating the robots within their environment.

Previous research in this area approaches the online path

planning problem as finding an obstacle-free trajectory from

the current location of the robot to a goal point or target.

Several approaches such as bug algorithms [1], [2], potential

functions [3], [4], have been proposed to address this problem.

In all these approaches, the target is specified as a stationary

point and the robot’s goal is to find a path to reach the target.

In this paper, we address a complementary problem that we

call the egress problem - how can a robot that is placed within

an environment with obstacles, navigate to a set of connected

points such as the perimeter of its environment’s boundary.

The number and location of obstacles in the environment is not

known a priori to the robot and it is possible that some of these

obstacles might partially occupy or occlude the environment’s

boundary. In such situations, a pre-determined target point on

the boundary might be unreachable by the robot. Therefore, it

makes sense to study the egress problem so that the robot can

find an ‘escape route’ to reach the boundary of its environment.

The solution to the egress problem can be useful for several

robotic domains. For example, in robotic perimeter patrolling

applications [5], [6], a robot that is deployed at any arbitrary

point within the environment can use it to find a path to the

perimeter of its environment. In several, robotic area or terrain

coverage algorithms [7], [8], [9], [10], the region to be covered

This work has been supported as part of the COMRADES project supported
by the U.S. DoD Office of Naval Research, grant no. N0000140911174.

K.R Guruprasad is an Assistant Professor at the Department of Mechanical
Engineering, National Institute of Technology Karnataka, Surathkal, Manga-
lore, 57025, India, and Visiting Postdoctoral Researcher at the Department
of Computer Science, University of Nebraska, Omaha, NE 68182, USA.
krgprao@gmail.com

Prithviraj Dasgupta is an Associate Professor at the Department of
Computer Science, University of Nebraska, Omaha, NE 68182, USA.
pdasgupta@mail.unomaha.edu

The authors would like to thank Corey Spitzer for Webots implementation
of the algorithm’s code.

is partitioned so that each robot can cover its allocated sub-

region. However, a robot only knows the geometric boundary

of its sub-region and is not aware of the physical boundary of

the sub-region. The robot can use the solution to the egress

problem to explore this boundary before covering the inside

of the sub-region. To the best of our knowledge, any strategy

for the exploration of the boundary of a region is not available

in the literature.

We approach the egress problem in two parts. In the first part

called the ReachBoundaryBasic algorithm, the robot moves

towards the environment’s boundary along radial lines while

wall-following around obstacles it encounters. However, a

robot using this strategy might be unable to reach the boundary

for certain cases of complex exit routes. We then provide

an escape route algorithm called EscapeLoop that explores

only specific portions of the robot’s path traced while it

was performing ReachBoundaryBasic, to find a path to the

environment’s outer boundary. We prove the completeness

of the proposed algorithm, provide an upper bound on the

trajectory length and show that the algorithms are guaranteed

to terminate in finite time.

II. PROBLEM FORMULATION

Consider a convex and compact set Q ∈ R
2. The bound-

ary ∂Q of Q, referred to as the geometric boundary, is

a Jordan (that is, a closed simple) curve in R
2. Define

IN = {1, 2, . . . , N}. Let O = {O1, O2, . . . OK}, be a set

of a finite number of obstacles with each obstacle Oi ∈ R
2

being a connected, but not necessarily convex, closed set. Also,

Oi ∩ Q 6= ∅, ∀i ∈ IK , that is, no obstacle is completely

outside Q. Let Oin = {Oi|Oi ∩ ∂Q = ∅, i ∈ IK} ⊂ O be

the set of internal obstacles, and Obound = O \ Oin be the

set of non-internal obstacles, or, the obstacles which extend

beyond Q. The free space Qfree = (Q \O) is assumed to be

connected and the boundary ∂(Qfree) of Qfree is called the

outer boundary.

We consider a wheeled robot that is represented as a disc

of diameter Dr. Its task is to explore the outer boundary. Let

X(t) and φ(t) represent the position and orientation of robot

at time t with X(0) ∈ Qfree. The configuration of the robot

at time t is denoted by (X(t), φ(t)). The robot is equipped

with limited-range proximity sensors for detecting obstacles,

and is able to follow a wall on its left or right side using

these sensors. To avoid collisions with a wall or an obstacle,

the robot has to maintain a clearance of dcl. To maintain this

clearance the robot is represented as a virtual disc of diameter

D = Dr + 2dcl. The robot also has a localizing device such

2012 IEEE International Conference on Robotics and Automation
RiverCentre, Saint Paul, Minnesota, USA
May 14-18, 2012

978-1-4673-1405-3/12/$31.00 ©2012 IEEE 3991

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 19,2021 at 04:09:47 UTC from IEEE Xplore. Restrictions apply.

T(0)
−θ

T(1) X(0)

T(u)

θ = 0 radial line

Boundary (C-Space)

+

φ(0)

(a)

X(0)

T(t)

MT mode

WFL
Mode

C-space Obstacle

Switching
X(t)

(b)

Fig. 1. (a) ∂(CQ) is parameterized based on X(0) and φ(0). The point
T (u(θ)) corresponding to angle θ is the point of intersection of the radial
line and ∂(CQ), with u = −θ/(2π), θ ∈ [0,−2π]. As ∂(CQ) is a closed
curve, T (0) = T (1). (b) Illustration of switching from MT mode to WFL
mode. The robot path is shown in ‘-.-’ line.

as a GPS or an IR-based positioning system that allows it to

localize itself within a global frame of reference.

Egress Problem: Given a bounded environment Q with

initially unknown obstacles O within it, a robot with a start

location X(0) and heading φ(0) within Q, find a path for the

robot to reach the outer boundary of Q and explore it.

To simplify the analysis of the egress problem, we consider

the robot inside its configuration space (C-space) [11]. In a

path planning problem, only the position of a robot needs to

be specified and its orientation is implicitly assumed to be

tangential to the path. Therefore, the virtual disc of diameter

D corresponding to the robot in the workspace is represented

as a point in the C-space. To represent a space W ⊂ R
2

from the workspace in the C-space, we use the notation CW .

Obstacles expand in the C-space; consequently, Oi ⊂ COi,

and, as a result, C(Qfree) ⊂ (Qfree).

Assumption 1: For every point x ∈ ∂(C(Qfree)), there

exists a circle of diameter δ : δ > 0, which is tangential

to ∂(C(Qfree)) at x and not intersecting ∂(C(Qfree)).

This ensures that no two portions of ∂(C(Qfree)) are incident

on each other.

Parametrization: Consider a line from the robot’s initial

position X(0) along its heading direction φ(0), intersecting

∂(CQ) at point T (0). We call this line a radial line and let

θ = 0 for this radial line as shown in Figure 1(a). Now ∂(CQ)
can be parameterized by rotating this radial line anchored at

X(0) clockwise from θ = 0 to θ = −2π (or counterclockwise

with θ ∈ [0, 2π]). Consider T (u) ∈ ∂(CQ), u ∈ [0, 1] as the

parametrization of ∂(CQ) with u = −θ/(2π) as the parameter

and with X(0) and φ(0) as reference. The assumption that Q
is convex and bounded ensures that any radial line from any

point in Q intersects ∂Q, and hence, ∂(CQ), only once. This

makes T : [0, 1) → ∂(CQ) a bijection. As the robot moves, θ
changes with t, and hence u. With a slight abuse of notation

we use θ(t) and u(t), to refer to value of θ and u at time t.
Further, we use T (t) to refer to T (u(t)).

Mode Description

Move toward target (MT) Move toward a target point T along a
straight line at a constant speed v > 0

Wall follow left (WFL) Follow a wall/boundary, on left or right
or Wall follow right (WFR) side, at a constant speed v > 0

TABLE I
BASIC BEHAVIORS OF THE ROBOT

III. THE PATH PLANNING ALGORITHM

We have divided the solution of our problem into two parts:

i) find a path to reach any point on the outer boundary, and

ii) use a simple wall/boundary following algorithm to explore

the outer boundary. In certain cases, obstacles might occupy

the entire ∂(CQ). In such a situation, the robot will not be

able to judge if it has reached a point on ∂C(Qfree).

The table I shows the basic behaviors of the robot used in

the path planning algorithm.

A. ReachBoundaryBasic (RBB) algorithm

We describe a path planning algorithm called ReachBound-

aryBasic (RBB) which attempts to make the robot reach

a point on ∂(CQ), if ∂(CQ) ∩ (CQfree) 6= ∅, without

guaranteeing it. The basic path planning algorithm has several

steps, and we discuss them below:

1) Initialization: Based on X(0) and φ(0), ∂(CQ) is pa-

rameterized and T (0) ∈ ∂(CQ) is computed, as illustrated in

Figure 1(a).

2) MT Mode: The robot moves from X(t) toward T (t),
along a radial line starting at X(0). Thus, there is no change

in θ(t) (refer to the Figure 1(a)), and hence u(t) and T (t)
are fixed in this mode. The path followed by the robot in MT

mode is called a radially outward path (ROP).

3) Switching from MT to WFL (MT2WFL): While the robot

is in MT mode, if it encounters an obstacle before reaching

T (t), it switches to WFL mode. Geometrically, this happens

when the radial line from X(0) to T (t) intersects an obstacle

boundary in C-space, as illustrated in Figure 1(b).

4) WFL mode: The robot moves while following the wall

of the obstacle on its left side. The path followed by the robot

in this mode is referred to as a tangential path (TP). While

moving in this mode, the robot computes θ(t) which is the

angle between the radial lines joining X(0) to T (0) and X(0)
to X(t). If at some time interval [t1, t2], θ̇(t) < 0, and in time

interval [t2, t3], θ(t) initially increases and then decreases, and

θ(t2) = θ(t3), then u remains fixed in the time interval [t2, t3].
This ensures that u̇(t) > 0, ∀t > 0, that is, the target point

T (u) only moves in clockwise direction along ∂(CQ). This

is illustrated in Figure 2(a). In discrete time, the parameter

update is done as follows:

u(t) =

{

−θ(t)/2π, if − θ(t)/2π > u(t− 1)

u(t− 1), otherwise
(1)

After updating u the target point T (u(t)) is updated.

3992

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 19,2021 at 04:09:47 UTC from IEEE Xplore. Restrictions apply.

0

-2p

0

1

u
(
t)

θ
(
t)

t

u

θ

t2 t3t1

X(0)

1

2 5

Obstacle (C-space)

3
4

6

Fig. 2. (a) The parameter u is updated as θ changes. However, in the time
interval (t2, t, 3], u(t) remains constant to ensure that u̇ ≥ 0. (b) Switching
from WFL mode to MT mode can occur at a point along the obstacle boundary
(in C-space), where a (radial) line from X(0) is tangential to it. At points
marked 1, 2, 3, 5 and 6, this condition is satisfied. However the condition
of heading direction being same as the direction of radially outward line
(T (t)−X(0)) is satisfied only at points marked 5 and 6. This is due to the
fact that u remains constant as robot moves (in WFL mode) from 1 to 4. At
point 6, which is point of inflection, robot switches from WFL mode to MT
mode, and immediately to WFL mode.

5) Switching from WFL to MT (WFL2MT): While in WFL

mode, if the robot’s heading direction is aligned with the

vector (T (t) − X(0)), the robot switches to MT mode and

moves toward T (t). This switching can happen only when u
is increasing (or u(t) > u(t − 1)). The process is illustrated

in Figure 2(b). In addition (not shown in figure), if a part

of boundary (in C-space) is tangential to the radial line

(T (t)−X(0)) (or equivalently (X(t)−X(0))), then the robot

switches from WFL mode to MT mode. In this particular case,

the paths with WFL and MT modes correspond to each other.

6) Termination: The RBB algorithm terminates and makes

the robot stop when

i) The robot reaches a point on ∂(CQ). This corresponds

to successful situation.

ii) X(t2) = X(t1) for some t2 > t1 > 0, that is, the robot

encounters its own previous path, making it a cyclic path

or a loop. This corresponds to failure to reach a point

on the outer boundary.

Figure 3(a) shows an illustrative path with the RBB algo-

rithm. The points marked ‘+’ along the robot’s path are the

points where the robot switched from WFL to MT mode, and

points marked ‘O’ are points where the robot switched from

MT to WFL mode. A portion of the path is shown darker (a-

b), where the value of θ initially decreases and then increases

such that its value is same at the end points of this part of

the path. Thus, there is no change in u(t) when the robot is

moving in this path. This ensures that the robot continues in

the WFL mode and does not does not switch to MT mode. The

robot successfully reached a point on the outer boundary in

this case. Figure 3(b) shows another scenario where the robot

gets into a loop.

B. Analysis of RBB algorithm

The RBB algorithm will be analyzed here.

X(0)T(0)

X(tf) T(tf)

MT
WFL

MT

WFL MT

WFL

+

+

O

O

O

Geometric Boundary
(work space)

a

b

(a)

X(0)T(0)
1

2
3

4'

5 6

7

8

9

10

11 12

4a

13

Geometric
Boundary (C-Space)

(b)

Fig. 3. The path is shown by dashed line. The transition points from MT to
WFL are shown by ‘O’s and those from WFL to MT are shown by ‘+’s along
the path. The path of T (t) is shown in ’-.-’. (a) Robot successfully reaches
the outer boundary (shown in work space). Target does not move while the
robot is moving along a part of the path shown in thick dashed line (a-b), as
u(t) is not updated as it should be a non-decreasing function. (b) The robot
gets into a loop with the RBB algorithm (shown in C-space).

Definition 1: A right (left) extreme point 2i (1i), relative to

X(0), on ∂(COi), Oi ∈ Oin is the first point at which a radial

line from X(0) touches ∂(COi), Oi ∈ Oin, and any other

radial line from X(0) which touches (intersects) ∂(COi), Oi ∈
Oin makes a positive (negative) acute angle with line joining

X(0) and 2i (1i).
Figure 4 shows the extreme points. Note that: There is

exactly one right extreme point and exactly one left extreme

point for each Oi ∈ Oin; The radial line corresponding to an

extreme point is tangential to ∂(COi) if ∂(COi) is at least

C1 continuous curve (that is, first derivative is continuous)

at the corresponding extreme point. If at an extreme point

∂(COi) has discontinuity in its first derivative, then there are

two derivatives one from left and one from right. If the radial

line corresponding to an extreme point touches more than

one point (or line segments) on ∂(COi), then the first point

(starting from X(0)) is the extreme point.

Lemma 1: The robot following obstacle Oi ∈ Oin always

switches from WFL mode to MT mode and leaves Oi at the

right extreme point on ∂(COi).
Proof is fairly straightforward and is not provided here. 1

Lemma 2: The robot path generated by the RBB algorithm

is a simple curve (that is, it does not intersect itself).

Proof. If the path intersects itself, one of the following should

happen: i) Two radially outward paths (ROP) intersect each

other; ii) Two tangential paths (TP) intersect each other; iii)

A ROP and a TP intersect each other.

It is intuitive that no two ROPs can intersect each other, as

each of them is a segment of radial line starting from X(0).
The TPs are parts of path around obstacles (in C-space)

or two segments of same TP. By Assumption 1, it is clear

that no two TPs will intersect or be tangentially incident upon

each other. Only if the robot started in the WFL mode, it can

1In a discrete time implementation of RBB algorithm, it is possible that the
robot crosses the right extreme point before checking for switching condition,
and hence misses switching from WFL mode to MT mode. Special care must
be taken to avoid such a situation.

3993

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 19,2021 at 04:09:47 UTC from IEEE Xplore. Restrictions apply.

reach X(0) at some time t1 > 0, say, while moving in same

the direction. Once X(t1) = X(0), it is easy to see that for

t > t1, the robot path will retrace the cyclic path it traced

during time interval [0, t1], forming a simple closed curve.

Geometrically, a ROP and a TP can intersect each other.

Let X(t1) = X(t2) for some t2 > t1 ≥ 0. That is, at t2, the

robot encounters its path at a point which it had reached at

t1. At X(t1) the robot could have been either in the WFL or

the MT mode, or might have switched between the modes. As

X(t2) = X(t1) it is obvious that the RBB algorithm makes

the robot take the same decision at times t2 and t1. That is,

after t > t1, the robot retraces the cyclic path it traced during

time interval [t1, t2]. Thus, the path can not intersect itself,

and hence it is a simple curve. �

The implication of Lemma 2 is that, if the robot path

generated by the RBB algorithm touches itself, and it is not

stopped, then it will move in a cyclic path or a loop forever.

However, at this instance RBB terminates by stopping the

robot. It can be observed that the path gets into a loop if all the

outward radial lines from X(0), which are tangential to their

corresponding TPs where the robot should switch from WFL

to MT mode, intersect obstacles. The robot can escape from

obstacles only in MT mode, and each of the ROPs intersects

an obstacle, thus, it gets into a loop. This condition is purely

geometric and depends on X(0) and obstacle configuration.

Remark 1: The robot can touch its path only when it is in

WFL mode, and if it did not start in WFL mode, it can touch

only a ROP. Thus, the robot need not keep track of its entire

path to identify a loop. It needs to only remember the points

along the path where switching between modes had occurred

and X(0).

Lemma 3: A robot starting in Qfree will not go out of

Qfree.

Proof. Let us assume X(0) ∈ CQfree and at some time to >
0, X(to) 6∈ CQfree. As the path is continuous (C0), ∃t1 ∈
(0, to), s.t.X(t1) ∈ ∂(CQfree). However, RBB terminates at

t1 stopping robot at X(t1) ∈ ∂(CQfree). Hence, X(t) =
X(t1), ∀t ≥ t1, contradicting our assumption that X(to) 6∈
CQfree. �

Lemma 4: The algorithm RBB does not lead to a path that

encircles an obstacle or a set of obstacles.

Proof. Let ∂(COi)(a, b) represent the part of ∂(COi) starting

at a ending at b. The extreme points divide ∂(COi) into

two parts. With ∂(COi)(1i, 2i) being the closer part of the

boundary and ∂(COi)(2i, 1i) being the farther part of the

boundary to X(0).

The robot can only encounter an obstacle in MT mode from

a point which is in between line joining X(0) and any point

in ∂(COi)(1i, 2i), reaching a point on the closer boundary

where it switches to WFL mode. If the robot is located on

or beyond the farther boundary, then robot will move away

from the obstacle, and will never encounter it. Thus, no TP

can start from the farther part of boundary. Without loss of

generality, we may assume that the robot encounters obstacle

Oi and switches to WFL mode at 1′ ∈ ∂COi(1i, 2i).

X(0)

R1

R2

+

+

+

+

O

O

O

O
O

Oi

C-space boundary

1i

2i

Fig. 4. Illustration of bound on path length. Points marked 1i and 2i are
the left and right extreme points of Oi respectively.

Now, by Lemma 1, the robot will switch from WFL mode

to MT mode and leave the obstacle at the right extreme point

2i. Thus, there cannot be any path along the farther part of

boundary. Hence, robot cannot encircle an obstacle or a set of

obstacles. �

Theorem 1: The RBB algorithm generates a path of

bounded length.

Proof. As discussed in Lemma 4, the maximum length of

TP following the boundary of an obstacle Oi is the length

of ∂(COi)(1i, 2i). Let L(·) denote the length of a curve, and

L(TPi) be the length of the path when the robot encounters

obstacle Oi. This path includes path while robot is in WFL

mode moving along ∂(COi) and ROPs starting and ending on

∂(COi) (see Figure 4). Therefore,

L(TPi) < L(∂(COi)(1i, 2i)) < L(∂(COi)) (2)

Thus, the total path length, L(TPT) of all TPs (before the

robot reaches boundary or the path gets into a loop) is

L(TPT) <
K
∑

i=1

L(∂Oi) (3)

The result is true for any starting location X(0). It is obvious

that for any ROP (ROP) ≤ Dia(Q). Now, we look at the

number of ROPs. As illustrated in Figure 4, it is easy to

see that the robot can enter (or encounter) ∂(COi) through

a ROP only once after it leaves ∂(COi). Further, once the

robot enters ∂(COi), it can leave only once. A leaving ROP

is either an entering ROP for another obstacle or the last ROP

leading to a point on ∂(CQ). Thus, there can be a maximum

of two entering ROPs per obstacle. Hence, maximum number

3994

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 19,2021 at 04:09:47 UTC from IEEE Xplore. Restrictions apply.

of ROPs is 2K+1 (One ROP leading to ∂(CQ)), and the total

length L(ROPT) of all ROPs is

L(ROPT) ≤ (2K + 1)Dia(Q) (4)

Now as the combined length of both ROPs and TPs is

bounded, the total path length is bounded. �

Corollary 1: The RBB algorithm makes the robot stop in

finite time.

Proof. The path length by the RBB algorithm is bounded by

Theorem 1 and the robot speed is constant. Thus, time taken

by the robot to travel a finite path length is finite. �

Lemma 5: The robot path using the RBB algorithm is cyclic

if and only if it does not reach a point on ∂(CQ).
Proof. Let us assume that the robot path using the RBB

algorithm is cyclic. This happens when the robot encounters

its own path, that is, X(t2) = X(t1) for some t2 > t1 > 0.

This is possible only if the robot has not reached any point

on ∂(CQ) at any time t′ ∈ [0, t2]. Otherwise, the robot would

have stopped at t′. The robot cannot reach any point on ∂(CQ)
at any time t > t2 as the RBB algorithm makes the robot stop

at t = t2. Even if the robot continues using the RBB algorithm,

it traces the cyclic path it traced in the time interval [t1, t2).
Now consider the case when the robot does not reach a point

on ∂(CQ). Let us assume that the robot does not encounter

its own path, and hence does not get into a cyclic path. The

robot stops only when it has either reached a target point on

∂(CQ), or has encountered its own path thus, making the path

a closed curve. This implies that the robot never stops, which

contradicts Corollary 1. Thus, if the robot does not reach a

point on ∂(CQ), then it will re-encounter its own path leading

to a cyclic path and then stop. �

The implication of Lemmas 4 and 5 is that if the robot gets

into a loop, and at least one point on ∂(CQ) is reachable, then

there is some path by which the robot can come out of the

loop. In the following section, we describe an algorithm for

the robot to identify an ‘escape route’ out of such a loop.

C. EscapeLoop (EL) Algorithm

Here we provide an algorithm called EscapeLoop which

attempts to move the robot out of the cyclic path generated by

the RBB algorithm, when it failed to reach the outer boundary.

Once the robot gets into a cyclic path, it moves along the

same path until it finds the first point, where a switching

from MT to WFL mode had occurred. At this point, robot

switches to the WFR mode (in contrast to switching to WFL in

RBB) and looks for an escape from the loop, radially outward.

While moving in WFR mode, u(t), and hence T (t), is updated

only when θ(t) increases. While in WFR mode, if the robot’s

heading direction is along the vector T (t)−X(0), it switches

to MT mode. If the robot fails to escape the loop, it will

continue along the path generated by the RBB algorithm along

the ROP it started from. The robot continues moving along

this path until it reaches the next point, where a switching

from MT to WFL modes had occurred. This process continues

until either the robot escapes from the loop by switching from

WFR mode to MT mode, or it exhausts all points where a

switching from MT to WFL modes using the RBB algorithm

had occurred.

Lemma 6: The algorithm EL is unsuccessful if and only

if ∂(CQ) ∩C (Qfree) = ∅, that is, no point on the geometric

boundary belongs to the free space, and the current cyclic path

determined by the RBB algorithm has TPs coinciding with a

portion of ∂C(Qfree).
Proof. Let ∂(CQ) ∩C (Qfree) = ∅, and the current cyclic

path determined by the RBB algorithm has portions of TPs

coinciding with a portion of ∂C(Qfree). By Lemma 3 the

robot can not come out of Qfree.

Now consider a situation when robot failed to escape from

the loop using the algorithm EL. There are two possibilities:

first, the cyclic path is made up of only TPs, and second, there

is at least one ROP in the cyclic path. In the first situation it

is obvious that the cyclic path itself is the outer boundary. In

the second case, if the robot can escape from the loop, it is

only at points where it has switched from WFL mode to MT

mode. If at all these switching points, the robot reaches back

to the loop by following WFR, then it is clear that the TPs of

the loop coincide with the outer boundary. �

D. ReachBoundary Algorithm

The ReachBoundary algorithm combines the RBB algo-

rithm and the EL algorithm to make the robot reach a point on

the outer boundary. The robot starts with the RBB algorithm.

If it reaches a point on the outer boundary, the RBB algorithm

terminates successfully. If the robot gets into a loop with the

RBB algorithm, it tries to escape from the loop using the EL

algorithm. If the robot is successful in escaping the loop,

it continues with the RBB algorithm. The robot continues

to switch between RBB and EL algorithms until either it

reaches a point on the outer boundary, or, it is unsuccessful

to escape the loop with the EL algorithm. If the EL algorithm

is unsuccessful, then any point on a TP of the loop is a point

on the outer boundary. Thus, the robot successfully reaches a

point on the outer boundary. This completeness result is stated

below:

Theorem 2: The ReachBoundary algorithm ensures that the

robot reaches a point on ∂(CQfree) in finite time.

Proof. The proof follows from Lemmas 5 and 6.

E. ExploreOuterBoundary Algorithm

With the ReachBoundary algorithm, the robot reaches a

point in ∂(CQfree). Now the robot can follow the outer

boundary in WFL (or equivalently WFR) mode, without

switching to MT mode to complete the exploration. A

flowchart for the ExploreOuterBoundary algorithm is given

in Figure 5.

Theorem 3: A robot using the ExploreOuterBoundary al-

gorithm successfully explores the outer boundary of the free

space in finite time.

Proof. Theorem 2 guarantees, that with the ReachBoundary

algorithm, the robot successfully reaches a point on ∂(CQfree)
in finite time. Now by moving either in WFL or in WFR mode,

the robot successfully explores the outer boundary in finite

time. �

3995

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 19,2021 at 04:09:47 UTC from IEEE Xplore. Restrictions apply.

Reach Boundary Basic
(RBB)

Successful ?

NO

YES

Escape loop

Successful ?

NO

YES

END

START

WFL(WFR)

Fig. 5. Explore Outer Boundary algorithm

IV. ILLUSTRATIVE SIMULATION RESULT

We implemented the ExploreOuterBoundary algorithm on

the Webots robot simulator using the model of an e-puck robot.

For localizing the robot, we used a GPS node available within

Webots2. Figure 6 shows a snapshot of a scenario where the

robot starts at S. The robot path with the RBB algorithm is

S → H1 → L1 → H2 → L2 → H3 → H1. The robot

escapes this loop successfully using the EL algorithm at H4

(which is the same as H2) by moving in WFR mode and

leaves the obstacle at L4 to finally reach a point T on the

outer boundary. Once the robot reaches T , it moves in the

WFL mode to explore the outer boundary.

V. CONCLUSIONS

We described a novel problem of exploration of the outer

boundary of a geometrically known space occupied by obsta-

cles that are not known a priori by a robot. A path planning

algorithm called RBB was presented which either makes the

robot reach a point on the outer boundary successfully, or gets

it into a cyclic path if unsuccessful. An algorithm called EL

was used to make the robot escape from the cyclic path. By

using RBB and EL algorithms, a ReachBoundary algorithm

was presented which guarantees that the robot reaches a

point on the outer boundary of the free space. Finally an

ExploreOuterBoundary algorithm was presented exploring the

outer boundary. It was proved analytically that by using the

proposed algorithm, the robot is guaranteed to reach and

explore the outer boundary of the environment within a finite

time. The proposed algorithm was implemented on the Webots

robot simulator using the model of an e-puck robot. As part

of future work, we plan to address issues related to robustness

2For implementation with physical e-puck robots, either an overhead camera
or odometry data can be used.

Fig. 6. A snapshot from Webots illustrating the ExploreOuterBoundary
algorithm. using the EL algorithm. The hit points are shown with circles
and leaving points by squares.

to localization errors, and implement the algorithm on real

e-puck robots.

REFERENCES

[1] V.J. Lumelsky and A.A. Stepanov, Path-planning strategies for a point
mobile automaton moving amidst unknown obstacles of arbitrary shape,
Algorithmica, vol. 2, 1987, 403-430.

[2] I. Kamon, E. Rimon, and E. Rivlin, TangetBug: a range-sensor-based
navigation algorithm, International Journal of Robotics Research, vol.
19, no. 9, 1998, pp. 934–953.

[3] T. Zhang, Y. Zhu, and F. Song, Real-time motion planning for mobile
robots by means of artificial potential field methods in unknown envi-
ronment, Industrial robot: An International Journal, vol. 37, no. 4, 2010
pp. 384-400.

[4] S.S. Ge and Y.J. Cui, New potential functions for mobile robot path
planning, IEEE Trans. on Robotics and Automation, vol. 16, no. 5, 2000,
pp. 615–620.

[5] N. Agmon, S. Kraus, and G.A. Kaminka, Multi-robot perimeter patrol in
adversarial settings, Proc of IEEE International Conference on Robotics

and Automation, Pasadena, CA, May 2008, 2339-2345.
[6] N. Basilico, N. Gatti, and F. Amigon, Leader-follower strategies for

robotic patrolling in environments with arbitrary topologies, Proc of

The 8th International Conference on Autonomous Agents and Multiagent

Systems - Volume 1, 2009, 57-64.
[7] H. Choset, Coverage for robotics - A survey of recent results, Annals

of Mathematics and Artificial Intelligence, vol. 31, 2001, pp. 113–126.
[8] M. Schneider-Fontan and M. Mataric, Territorial multi-robot task divi-

sion, IEEE Trans on Robotics and Automation, vol. 15, no. 5, 1998,
pp. 815–822.

[9] K.R. Guruprasad, Z. Wilson, and P. Dasgupta, Complete coverage of
an initially unknown environment by multiple robots using Voronoi
partition, Proc of 2nd International Conference on Advances in Control

and Optimization in Dynamical Systems, Bengaluru, India, February 16-
18, 2012.

[10] I. Rekleitis, A.P. New, E.S. Rankin, and H. Choset, Efficient bous-
trophedon multi-robot coverage: an algorithmic approach, Annals of

Mathematics and Artificial Intelligence, vol. 52, 2008, pp. 109–142.
[11] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki,

and S. Thrun, Principles of Robot Motion-Theory, Algorithms, and

Implementation, The MIT Press, Cambridge, Massachusetts, 2005.

3996

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 19,2021 at 04:09:47 UTC from IEEE Xplore. Restrictions apply.

