Detection and Prevention of SQL Injection
Attacks Using Semantic Equivalence

Sandeep Nair Narayanan, Alwyn Roshan Pais, and Radhesh Mohandas

Department of Computer Science & Engineering,
National Institute of Technology Karnataka,
Surathkal, India
{sandeepnairnarayanan,alwyn.pais,radhesh}@gmail.com

Abstract. SQL injection vulnerability is a kind of injection vulnerabil-
ity in which the database server is forced to execute some illicit oper-
ations by crafting specific inputs to the web server. Even though this
vulnerability has had it’s presence for several years now, most of its pop-
ular mitigation techniques are based on safe coding practices, which are
neither applicable to the existing applications, nor are application inde-
pendent. Here we propose a new application logic independent solution
to prevent SQL injection attacks which can be applicable to any dynamic
web technology. The new solution detects SQL injection by considering
the semantic variance between the queries generated by the query func-
tion with safe inputs and injection inputs. We have implemented the
complete solution in ASP.NET with C# web applications using a cus-
tom written tool, STAP, which patches the SQL Injection vulnerabilities
in an existing web application by instrumenting the binaries.

Keywords: Injection Attacks, Injection Vulnerability, SIA, SQL Injec-
tion, Web Technology.

1 Introduction

SQL Injection attack is a type of code injection exploit in which the attacker
gets unauthorized access to data or bypasses authentication by injecting crafted
strings through web inputs. In web applications, some of the data from the web
forms are used for constructing Structured Query Language (SQL) statements
and are then executed on the database server. In a SQL Injection Attack(SIA),
the attacker injects data into the web application, in such a way that the resul-
tant SQL statement will produce malicious outcomes. In advanced SQL injection
techniques, the queries are crafted to produce syntax errors on execution. The
information disclosed in the error messages are used further for crafting more
specific SQL statements which eventually leads to the finger printing of the com-
plete database schema of the application. Injection vulnerability has been listed
as the top vulnerability by OWASP [1]. Due to the high impact of the attack and
the low cost and skill required to launch the attack, the net risk associated with

K.R. Venugopal and L.M. Patnaik (Eds.): ICIP 2011, CCIS 157, pp. 103 2011.
© Springer-Verlag Berlin Heidelberg 2011



104 S.N. Narayanan, A.R. Pais, and R. Mohandas

SQL injection vulnerabilities are very high. Even after the attack being well
known, there are many enterprise web sites in the Internet which are still vul-
nerable to such attacks.

The popular solutions for the prevention of SQL injection attacks include cod-
ing best practices, input filtering, escaping user input, usage of parameterized
queries, implementation of least privilege, white list input validation etc., These
solutions should be employed usually during the development of an application.
This is the major limitation of such solutions as they do not cover the millions
of Web applications already deployed with this vulnerability. Manual patching
of the vulnerability at each possible point is quite expensive with regard to the
incurred cost and time consumption. This signifies the need for an automated
tool to patch this vulnerability.

2 Related Work

We broadly classify the solutions for the prevention of SQL injection attacks
as Developer centric solutions and Maintenance centric solutions. In the de-
veloper centric solution, the developer tries to prevent the attacks. Following
safe coding practices [2], randomized query based methods and using Plug-
in’s which detect spots of possible vulnerabilities during the development phase
are examples of such kind of solutions. SQLrand [3] is a technique in which
the developer uses some randomized instructions instead of normal keywords.
SAFELI [4] is a framework which uses a symbolic execution engine, a library
of attack patterns and a constraint solver to detect the vulnerabilities in a
web application. The drawbacks with the Developer centric approach are the
need for individual attention for every project to be patched, the cost associ-
ated and the inability to handle the existing applications without modifying the
code.

In Maintenance centric solutions we patch the deployed application using a
third party tool or add new components to the existing system to prevent the
attacks. Solutions in this category include Data tainting based solutions [5], In-
trusion Detection System (IDS) based solutions, Black box testing solutions,
Machine learning based techniques etc., Waves [6] is a black box testing tool
which uses machine learning techniques to test for SQL injection vulnerabilities.
Some techniques like SQL Guard [7] and SQL Check [8] check the queries for
SQLI vulnerabilities based on some models. Another solution is using AMNESIA
[9] [10] which uses a hybrid approach having both static analysis for building the
model and dynamic analysis for preventing the injection. Yet another solution is
CANDID [I1] in which the intended query is created by running the application
on candidate inputs. Our solution is a Maintenance centric solution, which is
applicable to existing applications and can also be used during the development
of new applications.



