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Abstract

In this paper we analyze a deploy and search strategy
for multi-agent systems. Mobile agents equipped with sen-
sors carry out search operation in the search space. The
lack of information about the search space is modeled as an
uncertainty density distribution over the space, and is as-
sumed to be known to the agents a priori. In each step, the
agents deploy themselves in an optimal way so as to maxi-
mize per step reduction in the uncertainty density. We ana-
lyze the proposed strategy for convergence and spatial dis-
tributedness. The control law moving the agents has been
analyzed for stability and convergence using LaSalle’s in-
variance principle, and for spatial distributedness under a
few realistic constraints on the control input such as con-
stant speed, limit on maximum speed, and also sensor range
limits. The simulation experiments show that the strategy
successfully reduces the average uncertainty density below
the required level.

1 introduction

The problem of searching for targets in unknown envi-
ronments has been addressed in the literature in the past
[1]-[4]. These fundamental works were mostly theoretical
in nature and were applicable to a single agent searching for
single or multiple, static or moving, targets. It is likely that
the same task can be accomplished more effectively by mul-
tiple searchers. But when multiple agents are involved, co-
ordination between them becomes an important issue. Most
biological systems such as ants, birds, fishes etc., have dis-
tributed local decision making capabilities which, in turn,
lead to a useful collective behavior such as swarms, schools,
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flocks, etc. With each agent taking decisions based on only
available local information and distributed control law, usu-
ally referred to as ’behavior’ in biological systems, can lead
to coordination among the agents and result in a meaningful
collective behavior. These ideas of distributed control have
been used widely in multi-agent systems. The distributed
multi-agent systems have been shown to achieve and main-
tain the geometric formations, move as flocks while avoid-
ing obstacles, thus mimicking their biological counterparts.

In multi-agent systems it is important to come up with
distributed control laws that guarantee the stability and con-
vergence to the desired collective behavior, under limited
information and evolving network configurations. We can
find in the literature, attempts to provide formal analytical
results for proposed distributed control laws by some au-
thors (see [6], [9]-[13] and the references therein).

Sujit and Ghose [7] propose the partitioning of the search
space into hexagonal cells and, associate each cell with an
uncertainty value representing the lack of information about
the cell. As the agents move through these cells, they ac-
quire information, reducing the corresponding uncertainty
value. Cortes et al. [9, 10] use the concept of centroidal
Voronoi configuration for optimal deployment of multiple
agents in a convex hull with known uncertainty density
function. Some of the concepts that were used by these
authors commonly appear in locational optimization, quan-
tization theory, and geometric optimization (see references
in [9, 10]).

In [14] we used the idea of partitioning the search space
from [7]. A variation of the centroidal Voronoi configura-
tion used in [9, 10] was used in [14] to present some pre-
liminary results on a multi agent search strategy. In this
paper, we call the strategy as deploy and search strategy
and present the complete analysis of the control law for sta-
bility, convergence, and spatial distributedness under some
realistic constraints such as constant speed, limit on maxi-
mum speed, and sensor range limits. The strategy itself is
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also analyzed for convergence and spatial distributedness.
We present a few simulation experiments with various pa-
rameters.

1.1 Organization of the paper

In Section 2 we provide the problem formulation. We
discuss the deploy and search strategy in Section 3. The
multi-center objective function for optimal deployment, se-
lection of the sensor detection function, the critical points
of the objective function, proportional control law for de-
ploying the agents optimally are discussed in detail in this
section and we also provide corresponding analytical results
related to spatial distributedness, stability and convergence.
Effect of a few realistic constraints such as agents moving
with constant speed, maximum speed limit of agents, and
sensor range limitation on the search strategy are discussed
in Section 4, along with analysis of convergence and spatial
distributedness of corresponding control laws. We discuss
a few implementation issues in the Section 5. The simula-
tion results and discussions are provided in Section 6, and
finally Section 7 concludes the paper.

2 Multi-agent search

In this section we present the problem addressed in this
paper. The problem is similar to that described in [14]. N
agents perform search operation in an unknown environ-
ment. The lack of information is modeled as an uncertainty
density distribution over the search space Q. The problem
addressed in this paper is of deploying the N agents in Q to
collect information, thereby reducing the uncertainty den-
sity distribution over Q. The problem formulation is stated
formally as

1. Q ⊂ R
n is a compact, convex polytope and is the

search space

2. φ : Q �→ [0, 1] defines the density function repre-
senting uncertainty (lack of information). For a point
q ∈ Q, φ(q) = 1(0) implies no (complete) information
is available about q ∈ Q. By information we mean,
knowledge about existence of the target that is being
searched for.

3. N agents, equipped with sensors and communication
equipments, deploy themselves in Q, and gather infor-
mation, thus reducing the uncertainty.

4. P (t) = {p1(t), p2(t), . . . , pN (t)} ⊂ Q denotes the
configuration of the multi-agent system at time t, and
pi(t) denotes the position of i-th agent at time t. In
future, for convenience, we drop t and refer to the po-
sitions by just pi.

5. Sensor’s effectiveness reduces with Euclidean dis-
tance.

6. Ideally, we are looking for an optimal way of utilizing
the agents to acquire complete information about Q,
and thus have φ(q) = 0, ∀q ∈ Q.

The search task is eventually gathering information (like
looking for the targets) about the search space Q, leading to
reduction in uncertainty density. Formally, the search task
is defined by updating the uncertainty density as,

φn+1(q) = φn(q)min
i
{β(‖pi − q‖)} (1)

where, φn(q) is the density function at the n-th iteration,
β : R0 �→ [0, 1], a function of Euclidian distance of a given
point in space from the agent ( R0 is the set of non-negative
real numbers), acts as the factor of reduction in uncertainty
by the sensors, and pi is the position of the i-th sensor. At a
given q ∈ Q, only the agent with the smallest β(‖pi − q‖),
that is, agent which can reduce the uncertainty by the largest
amount is active. It is clear that β ∈ [0, 1].

3 Deploy and search strategy

In this section we discuss the strategy proposed in [14]
and formally name it as deploy and search strategy. The
agents are deployed in Q in an optimal way to perform
the search operation to acquire knowledge about the search
space. This optimal deployment of agents is discussed in
the following sections. The entire iteration of deploy and
search continues till the density distribution is below the ac-
ceptable limit ( such as maximum value of average density
or a limit on maxq∈Q{φ(q)}, as specified by the problem).

3.1 Objective function (One-Step)

We are looking for deployment of agents in Q, maximiz-
ing per iteration reduction in the uncertainty φ. Consider
the following objective function to be maximized.

Hn =
∫

Q
∆φn(q)dQ

=
∫

Q
maxi{(|φn(q) − β(‖pi − q‖)φn(q)|)}dQ

=
∫

Q
(φn(q) − mini{β(‖pi − q‖)}φn(q))dQ

=
∑

i

∫
Vi

φn(q)(1 − β(‖pi − q‖))dQ
(2)

where, Vi is the Voronoi partition corresponding to the i-th
agent, and pi ∈ Q is the position of the i-th agent.

The gradient is given by [9]
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∂Hn

∂pi
=

∫
Vi

φn(q)
∂

∂pi
[1 − β(r)]dQ (3)

where, r = ‖pi − q‖

Theorem 1 The gradient given by (3) is spatially dis-
tributed over the Delaunay graph GD.

Proof. The gradient (3) defined for pi ∈ P , the present con-
figuration depends only on corresponding Voronoi partition
Vi and values of φ and β within Vi. The Voronoi partition Vi

depends only on the neighbors NGD
(pi, P ) of pi. Thus, the

gradient (3) can be computed with only local information,
that is, the neighbors of pi in GD. �

3.2 Selection of β

Here, β : R �→ [0, 1] is a non-decreasing function cap-
turing effectiveness of the sensor. A continuously differen-
tiable function leads to a possible closed-form solution to
the optimization problem (2). Consider

β(r) = 1 − ke−αr2
, k ∈ (0, 1] and α > 0

Here, ke−αr2
represents the sensitivity of the sensor

which is maximum at r = 0 and tends to zero as r → ∞
and, β is minimum at r = 0 (effecting maximum reduction
in φ) and tends to unity as r → ∞ (change in φ reduces to
zero as r increases). The parameter k gives the maximum
sensitivity or effectiveness of the sensor and α specifies the
rate at which the sensor effectiveness decreases with range.
Higher the α, lower is the sensor effectiveness for a given
range, that is, the sensitivity decreases faster with the dis-
tance.

3.3 Optimal solution

The objective function (2) will now take the form

Hn =
∑

i

∫
Vi

φn(q)ke−αr2
dQ (4)

The gradient with respect to pi is,

∂Hn

∂pi
=

∑
i

∫
Vi

φn(q)ke−α(‖pi−q‖)2(−2α)(pi − q)dQ

= −2αM̃Vi
(pi − C̃Vi

)
(5)

where M̃Vi
and C̃Vi

are the mass and the centroid of Vi,
respectively, with respect to φ̃n(q) = φn(q)ke−αr2

, which
is the density as perceived by the sensor.

Thus the necessary condition for optimality is,

pi = C̃Vi
(6)

Note that C̃Vi
depends on pi, as the Voronoi partitions

themselves depend on the agent configuration P . Thus,
as the agents move, the Voronoi partitions are recomputed.
Hence, we are interested in a fixed point of C̃Vi

(pi). When
all the agents are located at the centroids of the correspond-
ing Voronoi partitions with φ̃ as the density, we call such an
agent configuration as the centroidal Voronoi configuration.

3.4 The control law

Let us consider the system dynamics as

ṗi = ui (7)

Consider the control law

ui = −kprop(pi − C̃Vi
) (8)

Control law (8) moves the agent towards C̃Vi
for positive

kprop, the proportional gain.

Theorem 2 The trajectories of the agents governed by the
control law (8), starting from any initial condition P (0) ∈
QN , will asymptotically converge to the critical points of
Hn.

Proof. Consider V (P ) = −Hn , where P =
(p1, p2, ..., pN ) represents the configuration of N agents.

V̇ (P ) = −dHn

dt

= −∑
i

∂Hn

∂pi
ṗi

= 2α
∑

i M̃VI
(pi − C̃Vi

)(−kprop(pi − C ′
Vi

))

= −2αkprop

∑
i M̃Vi

(pi − C̃Vi
)2

(9)
We observe that

1. V : Q �→ R is continuously differentiable in Q.

2. M = Q is a compact invariant set.

3. V̇ is negative definite in M .

4. E = V̇ −1(0) = {C̃Vi
}.

5. E itself is the largest invariant subset of E by the con-
trol law (8).
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Here we will use LaSalle’s invariance principle [15],
which is basically an extension of Lyapunov’s theorem
[16, 17] requiring V̇ to be negative semi definite rather than
negative definite as in Lyapunov’s theorem, and the candi-
date function V need not be positive definite.

Thus, by LaSalle’s invariance principle [16, 17] the tra-
jectories of the agents governed by control law (8), starting
from any initial configuration P (0) ∈ QN , will asymptot-
ically converge to set N , the critical points of Hn, that is,
the centroidal Voronoi partitions with respect to the density
function as perceived by the sensors. �

Theorem 3 The control law (8) is spatially distributed over
the Delaunay graph GD.

Proof. The control law uses C̃Vi
which, in turn, depends

only on the information available within Vi. As already dis-
cussed earlier in the proof of Theorem 1, Vi depends only
on the neighbors NG(pi, P ) of agent i. �

Theorem 4 The deploy and search strategy is spatially dis-
tributed over the Delaunay graph GD.

Proof. The control law moving agents towards the centroids
is spatially distributed by Theorem 3. The uncertainty den-
sity update function computation is done again within the
corresponding Voronoi partition, and hence is spatially dis-
tributed over GD. �

Theorem 5 The deploy and search strategy can reduce the
average uncertainty to any arbitrarily small value.

Proof. Look at the uncertainty density update law (1) for
any q ∈ Q,

φn(q) = (1 − ke−αri
2
)φn−1(q)

= γn−1φn−1(q)
(10)

where, ri is the distance of point q ∈ Q from the i-th agent,
such that q ∈ Vi, the Voronoi partition corresponding to it
and, γn−1 := (1 − ke−αri

2
)

Applying the above update rule recursively, we have,

φn(q) = γn−1γn−2 . . . γ1γ0φ0(q) (11)

Let D(Q) := maxp,q∈Q(‖ p − q ‖). It should be noted
that

(i) 0 ≤ k < 1

(ii) 0 ≤ ri ≤ D(Q). D(Q) is bounded as the set Q is
bounded.

(iii) 0 ≤ γj ≤ 1 − ke−α{D(Q)2} = l (say), j ∈ N; and
l < 1

Now consider the sequence Γ = {Γ0, Γ!, Γ2, . . .}, with

Γn := γnγn−1 . . . γ1γ0 ≤ ln+1

Taking limits as n → ∞,

lim
n→∞Γn ≤ lim

n→∞ ln+1 = 0

Thus,

lim
n→∞φn(q) = lim

n→∞Γn−1φ0(q) = 0

As the uncertainty density φ vanishes at each point
q ∈ Q in the limit, the average uncertainty density over Q
is bound to vanish in the limit as n → ∞. �

Remark: Note that the above proof does not depend on
the control law. The theorem depends only on the outcome
of the choice of the updating function (1) and the fact that
there is no sensor range limitation and that the search space
Q is bounded. In addition, the theorem does not address the
issue of optimality of the strategy which, in fact, depends
on the control law which is responsible for the movement
of the agents.

4 Realistic constraints

In this section we analyze the proposed strategy in the
presence of a few realistic constraints.

4.1 Maximum speed constraint

Consider a control law that takes into account the con-
straint on maximum speed of the agents denoted by Umaxi,
for i = 1, . . . , n, consider the control law

ui =



−kprop(pi − C̃Vi

) If ui ≤ Umaxi

−Umaxi
(pi−C̃Vi

)

‖(pi−C̃Vi
)‖ Otherwise

(12)

The control law (12) makes the agents move towards
their respective centroids with saturation on speed.

Theorem 6 The trajectories of the agents governed by the
control law (12), starting from any initial condition P (0) ∈
QN , will asymptotically converge to the critical points of
Hn.

Proof. Consider V (P ) = −Hn, where P =
(p1, p2, ..., pN ) represents the configuration of N agents.
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V̇ (P ) =



−2αkprop

∑
i M̃Vi

(pi − C̃Vi
)2 , If ui ≤ Umaxi

−2αUmaxi

∑
i M̃Vi

(pi−C̃Vi
)2

‖(pi−C̃Vi
)‖ , otherwise

(13)
We observe that the conditions similar to Theorem 2 are

valid here, with E itself being the largest invariant subset of
E by the control law (12).

Thus, as before, by LaSalle’s invariance principle [16,
17], the trajectories of the agents governed by control law
(12), starting from any initial configuration P (0) ∈ QN ,
will asymptotically converge to the set N , the critical points
of Hn, that is, the centroidal Voronoi partitions with respect
to the density function as perceived by the sensors. �

4.2 Constant speed control

If the agents move with a constant speed Ui, for i =
1, . . . , n, then we have the control law

ui =


−Ui

(pi−C̃Vi
)

‖(pi−C̃Vi
)‖ , if pi 	= CVi

0, otherwise
(14)

The control law (14) moves the agents towards their re-
spective centroids with a constant speed of Ui > 0.

Theorem 7 The trajectories of the agents governed by the
control law (14), starting from any initial condition P (0) ∈
QN , will asymptotically converge to the critical points of
Hn.

Proof. Consider V (P ) = −Hn, where P =
(p1, p2, ..., pN ) represents the configuration of N agents.

V̇ (P ) =


−2αUi

∑
i M̃Vi

(pi−C̃Vi
)2

‖(pi−C̃Vi
)‖ , if pi 	= CVi

0, otherwise
(15)

We observe that the conditions similar to Theorem 2 are
valid here, with E itself being the largest invariant subset of
E by the control law (14).

Thus, again by LaSalle’s invariance principle [16, 17],
the trajectories of the agents governed by control law (14),
starting from any initial configuration P (0) ∈ QN , will
asymptotically converge to the set N , the critical points of
Hn, that is, the centroidal Voronoi partitions with respect to
the density function as perceived by the sensors. �

4.3 Effect of sensor range limitation

In reality it is unlikely that the sensors will have infinete
range. The sensors, in addition to having a monotonically

decreasing sensitivity with Euclidean distance, might be to-
tally insensitive to signals at distances larger than R, based
on the sensor range. It can also be thought of as, when
the sensitivity falls below say 5% of that of the maximum
value, for all practical purposes, it can be assumed to be in-
effective. There are two ways of modeling this phenomenon
mathematically. A realistic one is ∀r ≥ R, f(r) = 0, that
is, ∀r ≥ R , β(r) = 1. The agents can not reduce the
density at points which are farther than R from them. An
approximate one, which is much easier to handle, in mathe-
matical analysis is ∀r ≥ R, f(r) = f(R), or β(r) = β(R),
which means that the sensor effectiveness gets saturated at
f(R). This is acceptable as long as f(R)/f(0) � 0.

We shall look at the objective function with a saturation
on β. Let

β̂(r) =

{
β(r), if r < R

β(R), otherwise
(16)

Consider an objective function Ĥ defined by

Ĥ =
∑

i

∫
(Vi∩B̄(pi,R))

φn(q)(1 − β̂(‖pi − q‖))dQ (17)

It is easy to show (see Remark 2.3 in [10]) that the gradi-
ent of the objective function with the new updating function
β̂ is

∂(Ĥ)
∂pi

(P ) = 2M̃(Vi∩B̄(pi,R))(C̃(Vi∩B̄(pi,R)) − pi) (18)

where, the mass M̃ and the centroid C̃ are now computed
within the region (Vi ∩ B̄(pi, R)), that is, the region of
Voronoi partition Vi, which is accessible to the i-th agent.
The critical points are nothing but pi = C̃(Vi∩B̄(pi,R).

The control law moving agents towards the new critical
point is

ui = −kprop(pi − C̃(Vi∩B̄(pi,R))) (19)

Theorem 8 The control law (19) is spatially distributed un-
der the r-limited Delaunay graph GLD, for any agent con-
figuration P .

Proof. The control input ui can be computed by the i-
th agent with only the information available in the set
(Vi ∩ B̄(pi, R)), which defines the neighborhood relation-
ship. Thus, each agent can compute the corresponding con-
trol input with only local information. �

Theorem 9 The trajectories of the agents governed by the
control law (19), starting from any initial condition P (0) ∈
QN , will asymptotically converge to the critical points of
Ĥ.
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Proof. Consider V (P ) = −Ĥ(P ), where P =
(p1, p2, ..., pN ) represents the configuration of N agents.

V̇ (P ) = C̃(Vi∩B̄(pi,R)))×

(−kprop)(pi − C ′
(Vi∩B̄(pi,R))

)
(20)

We observe that the conditions similar to Theorem 2 are
valid here, with E itself being the largest invariant subset of
E by the control law (14).

Thus, as before, by LaSalle’s invariance principle [16,
17], the trajectories of the agents governed by control law
(19), starting from any initial configuration P (0) ∈ QN ,
will asymptotically converge to the set N , the critical points
of Ĥ, that is, the centroidal Voronoi partitions with respect
to the density function as perceived by the sensors. �

5 Implementation Issues

Here we discuss some of the implementation issues in-
volved in the proposed deploy and search strategy.

A single step of deploy and search strategy involves
deploying the agents optimally, and then performing the
search task within the respective Voronoi partitions. The
deployment step can be implemented in continuous time (as
given by control law (8)) or in discrete time (as in simula-
tions carried out in this work). When the implementation is
in discrete time, in each time step, the agents move towards
the corresponding centroids and at the end of the deploy-
ment step, that is, when the agents are sufficiently close (as
decided by the prescribed tolerance) to the centroids, the
search task operation is carried out.

5.1 Discrete implementation

We convert the differential equation corresponding to the
system dynamics (7) to a difference equation.

∆pi

∆t
= ui (21)

where ∆t is the discrete time step.
Without loss of generality, we let ∆t = 1 time unit, then

(21) will be simplified as,

∆pik = uik (22)

and the control law (8) takes the form,

uik = −kprop(pik − CVik) (23)

where k ∈ N is the iteration count.
The control input uik is the desired speed of the i-th

agent at the k-th time step, and the agent moves with this

speed for ∆t time units. With ∆t = 1, uik acts as an
increment on pi per step. In other words uik = ∆pi =
pik+1 − pik. It can also be seen that, if ∆t = T time units,
then the search task takes place after mT time units, where
m is a non-zero integer, the number of time steps taken to
achieve the optimal deployment. The process is illustrated
in Figure 1. The consecutive search task is performed at a
time interval of at most T time units. We define the latency,
ts, of the agents as the maximum time taken to acquire the
information, process it, and successfully update the uncer-
tainty density. T should be chosen to be greater than or
equal to ts.
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 Without saturation on speeds
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performed

Figure 1. Illustration of the discrete time im-
plementation of the deploy and search strategy.
Deployment takes place according to control
law (23) at every time step, and the search
task takes place at the end of each deploy-
ment step indicated by ’*’. With saturation
of 1 unit on control input, that is, the speed
of agents, the slope is restricted to a max-
imum of 1, and the deployment task might
take longer time, delaying the search.

5.2 Effect of saturation

The control inputs given by control law (8) or (23) are
nothing but the speeds of the agents. In practical implemen-
tation, it is likely that there will be constraint on the maxi-
mum speed of agents. Such a limit will appear as a satura-
tion on the control input. In case of the deploy and search
strategy, the effect of saturation on control input might lead
to slower convergence of the deployment step. During the
initial steps, it is likely that the control input provided by (8)
can cross the saturation limit, whereas later, as the agents
approach the centroids, the control input naturally reduces
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(as it is proportional to the distance between the agents and
the respective centroids). Thus, effect of saturation is at
most a possible increase in the time gap between consecu-
tive search steps as illustrated in Figure 1.

5.3 Spatial distributedness

Here we discuss the implication of spatial distributed-
ness of the proposed search strategy from a practical point
of view. It has been shown that both the search strategies
are spatially distributed over the Delaunay graph (Theo-
rem 4). These results imply that all the agents need to do
computations based on only local information, that is, by
the knowledge about neighboring agents. The critical as-
sumption here is the uncertainty density distribution within
respective Voronoi partitions is available to all the agents.
From a practical point of view this is true in the first search
step, before the uncertainty density is updated, as the initial
uncertainty density distribution is assumed to be known a
priori to all the search agents. Once the uncertainty den-
sity is updated during the search task, the updated density
information must be still available to all the agents, within
the respective Voronoi partitions. It should be noted that the
Voronoi partitions get updated as the agents move. If we let
the agents communicate information about their positions in
a spatially distributed manner (in the Delaunay graph), all
the agents can compute the updated uncertainty density dis-
tribution as Delaunay graph is completely connected. Thus
the proposed search strategy is truly spatially distributed.

In practical conditions, the agents can communicate with
other agents only when they are within the limits of the sen-
sor range. The Delaunay graph does not allow sensor range
limitations to be incorporated. We need to use r-limited De-
launay graph or r-Delaunay graph to incorporate the sen-
sor range limitations. It needs to be studied if the proposed
search strategy is still spatially distributed in these graphs.
In any case, the whole scenario changes with incorporation
of sensor range limitations into the search strategy. The up-
dating of uncertainty density will also be within the sensor
range limits (in fact, it is within the intersection of sensor
range limit disc and the corresponding Voronoi partitions).
The centroid that can be computed will also be within the
new restricted area. For an optimal deployment problem,
from the perspective of sensor coverage, [10] shows that
the corresponding control law is still spatially distributed
(in r-limited Delaunay graph) and globally asymptotically
stable. It needs to be examined if a similar situation occurs
in control law (8) for the proposed search strategy.

6 Results and discussions

In this section we present results of some of the simula-
tion experiments carried out to validate the search strategy
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Figure 2. Trajectories of the agents and the
final Voronoi diagram during initial deploy-
ment step with saturation of 1 unit.

proposed in this paper. A single step of deployment and
search operation is referred to as one step or iteration. The
simulation experiments were carried out using MATLAB
(Ver 7.0). Multi-parametric tool box [5] was used for func-
tions related to Voronoi partitions.

We have carried out a few sets of simulation experiments
to validate the proposed search strategy. The parameters for
these simulations were as follows

(i) Q is a square area in R
2 with axes range of 0-10 units

(ii) Initial uncertainty density was a constant distribution
of 0.75 over Q

(iii) A saturation on the speed of agents was fixed at 1 unit

(iv) kprop = 0.5

(v) Sensor parameters were chosen as k = 0.8 and α =
0.1

(vi) The iterations were terminated when the maximum
density over Q reached below 0.05

Figure 2 shows the deployment step of deploy and search
strategy for 5 agents. A saturation of 1 unit was imposed on
the control law (8) to make the simulation more realistic. It
is observed that the control law (8) does move the agents
to the corresponding centroids successfully. In this specific
case, the actual control input never crossed the saturation
limit of 1 unit and hence trajectories with and without the
saturation are identical.
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Figure 3. Trajectories of agents with N=5 and
without sensor range limits ( ’o’s indicate the
end of each deployment step and the points
in the space where the search task was being
performed, the points marked ’⊗’ indicate the
starting locations of agents.)
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Figure 4. The reduction in uncertainty density
distribution averaged over the search space
as the iterations progress with N=5 and with-
out sensor range limits
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Figure 5. Initial and final uncertainty distribu-
tion for Deploy and search

strategy with N = 5 and without sensor range limits

Figure 3 shows the trajectories of 5 agents without any
sensor range limitations. Figure 4 shows how the average
uncertainty density changes with time steps. Figure 5 shows
the initial and final uncertainty distributions over the search
space Q. The final density distribution and the history of av-
erage density for all the simulation experiments are similar
and hence not provided here.

Figures 6, 7, and 8 show the trajectories for N=5 and
N=20, and with and without sensor range limitations.

Comparing Figure 3 with Figure 6, and Figure 7 with
Figure 8, it can be observed that the sensor range limitation
results in longer agent trajectories. This is due to reduced
coverage by sensors due to the range limits.

If we compare the simulation results with N = 5 (Fig-
ures 3, 6) with those with N = 20 (Figure 7 and 8), it
can be observed, that increase in number of agents lead to
a smoother and somewhat shorter agent trajectories, though
total trajectory length for all the agents, looks to be higher
for the latter case.

Comparing Figures 3 and 7, it can be observed that,
N = 5 leads to intersecting agent trajectories, whereas
when N = 20, the strategy produces very less intersection
among trajectories. In a search task, it is not desirable that
an agent intersects its own trajectory, or intersects those of
other agents, as it leads to duplication of effort. When the
sensor range limits are imposed, (see Figures 6 and 8) the
instances of intersection of trajectories increase.

In all cases (Figures 3, 6, 7, and 8) it can be observed that
the agents move away from each other and cover the search
space.

We have formulated the problem and shown that the de-
ploy and search strategy reduces the uncertainty distribu-
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Figure 6. Trajectories of agents with N=5 and
with sensor range limit of 2 units (’o’s indi-
cate the end of each deployment step and
the points in the space where the search task
was being performed, the points marked ’⊗’
indicate the starting locations of agents.)
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Figure 7. Trajectories of agents with N=20
(’o’s indicate the end of each deployment
step and the points in the space where the
search task was being performed, the points
marked ’⊗’ indicate the starting locations of
agents.)
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Figure 8. Trajectories of agents with N=20
and with sensor range limit of 2 units (’o’s in-
dicate the end of each deployment step and
the points in the space where the search task
was being performed, the points marked ’⊗’
indicate the starting locations of agents.)

tion. The density given by (1) is a non-increasing function
of time. The simulation results indicate that the proposed
strategy leads to reduction of the density below the desired
level. The simulations also indicate that the proposed strat-
egy performs fairly well even with nominal sensor range
limitations.

7 Conclusion

The problem of multi-agent search in an unknown envi-
ronment with a known uncertainty probability distribution
function is addressed as an extension and application of re-
lated concepts available in literature. We have analyzed the
deploy and search strategy, where the agents first deploy
themselves in the search space in an optimal way so as to
maximize the one-step reduction in uncertainty. After de-
ployment, the agents gather information in their respective
Voronoi partitions and hence reduce the uncertainty. These
iterations are continued till the uncertainty in the entire re-
gion is reduced to a required level. We have shown that the
centroidal Voronoi configuration with respect to the density
as perceived by the sensors are the critical points of the ob-
jective function. A control law was proposed, which moves
the agents towards the respective centroids and shown to be
globally asymptotically stable. It has been shown that the
search strategy is spatially distributed over the Delaunay
graph. We have proved that the deploy and search strategy
proposed in this paper is able to reduce the average uncer-
tainty density to arbitrarily low level. In addition, the pro-
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posed strategy has been analyzed for convergence and spa-
tial distributedness under realistic constraints such as con-
straint on maximum speed of the agents, constant speed and
limitation on sensor range. It has been shown that the con-
trol law moving agents towards the centroids of respective
Voronoi partitions, with respect to the density as perceived
by the sensors, are globally asymptotically stable and are
also spatially distributed under these constraints.

Simulation experiments were carried out for different
conditions and results of these experiments were discussed.
The simulation results indicated that the proposed search
strategy performs quite well even when the conditions de-
viated from the assumed ones such as sensor range limita-
tions.
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