
Decoupling Security Concerns in Web Services Using Aspects

G. Kouadri Mostéfaoui
Fribourg University, Switzerland

ghita.kouadrimostefaoui@unifr.ch

Z. Maamar
Zayed University, U.A.E

zakaria.maamar@zu.ac.ae
N. C. Narendra

IBM India Research Lab, India
narendra@in.ibm.com

S. Sattanathan
National Institute of Technology Karnataka, India

ss_nitk@yahoo.co.in

Abstract
This paper discusses the Aspect-oriented Framework for
Web services (AoF4WS) that supports on-demand
context-sensitive security in Web services. Flexible
security schemes are needed in many Web services
applications where authentication, authorization, etc.,
can no longer be used in their current form. Security
mechanisms are to be customized to the continuously
changing requirements of Web services. Examples of this
customization concern cryptographic protocol for a
specific situation and timeout for user credentials. The
AoF4WS uses aspect-oriented programming and frames.
Aspects provide flexibility to the framework, and frames
adjust aspects to specific requirements.
Keywords. Security, Aspect-oriented programming,
Framed aspect, Web services.

1. Introduction

Web services are an attractive approach for
implementing business processes, which usually
spread over companies’ boundaries [1]. Over the
last few years several efforts have been put in the
development of standards related to Web services
definition, discovery, triggering, composition, etc.
Another element, which will without a doubt boost
the acceptance rate of Web services by the IT
community, is security. Like WS-Security and
WS-Trust initiatives [2,7], other initiatives for
Web services security are geared towards the low-
level requirements of achieving on the one hand
confidentiality, integrity, and non-repudiation of
messages, and on the other hand authentication of
users. This is by far not enough! Effective security
strategies for Web services, should not only
revolve around messages and users, but also focus
on the capacity of adapting to continuous changes
in the business environment [17]. The emergence
of new standards and identification of new threats
require a different way of engineering security.

Adaptability concerns any software system that
operates within a changing environment. Security
is an excellent trigger for reviewing and adapting
strategies. Usually Web services are set according
to a certain level of risk, which is bearable to
owners (i.e., zero-risk situation does not exist),
does not affect their integrity, and does not

diminish the trustworthiness level of potential
users towards them. However there are situations
where this level of risk is no longer acceptable
worrying providers and backing users off as well.
This requires reviewing the security strategy of
Web services, which is extensive, expensive, and
error-prone. Inter-related mechanisms such as
authentication and encryption need to be checked,
and the review of one mechanism affects others
due to code crosscutting. It is normal to face
situations where modularizing some concerns
(e.g., logging, error handling) using current
software engineering techniques is hardly to
achieve and sometimes impractical. As a result,
code gets scattered all over the system and
becomes difficult to localize and maintain.

To address the challenges of adapting the
security strategy of a Web service and to promote
a clear separation between “business” and
“management” sides of a Web service (Figure 1),
we adopt an Aspect-Oriented Programming (AOP)
approach to develop this security strategy [3,11].
This research is part of our Aspect-oriented
Framework for Web Services (AoF4WS) project.
It aims at looking into the role of aspects in
decoupling various concerns in Web services like
security. “Business” and “management” separation
emphasizes the non-invasive requirement that
needs to be considered during the whole
development cycle of a security strategy. The
mechanisms related for instance to security are
confined into one module and do not scatter over
the rest of modules of the Web service. Figure 1
illustrates the way concern separation occurs in a
fictive Web service referred to as HotelBooking.
The business side focuses on details directly
related to hotel booking like checking room
availability, rate verification, and confirming client
reservation. The management side of a Web
service gathers all modules like security,
maintenance, and performance that back the
operations of this Web service and permit boosting
its acceptance rate. Constituents of the
management side to be implemented as aspects
need to be factored out of the core logic of the
Web service. Ortiz et al. define aspects as units of

Proceedings of the Third International Conference on Information Technology: New Generations (ITNG'06)
0-7695-2497-4/06 $20.00 © 2006 IEEE
Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 22,2021 at 10:46:08 UTC from IEEE Xplore. Restrictions apply.

encapsulation that are built upon two elements
[14]: join points and advices. Join points determine
the places or pointcuts where the behavior
alteration of an application will happen. Advices
identify the new code to be injected in response to
this alteration.

HotelBooking Web service
Business side Management side

etc. Security Maintenance etc.Room
booking

Booking
cancellation

Module name Interactions

Figure 1 Concern separation in a Web service

The aspect-oriented approach we propose does
not devise new security countermeasures against
threats on Web services. It constitutes, however, a
structured way to provide a generic architecture
upon which security mechanisms are deployed in a
plug and play manner. Complying with this
approach, reconfiguring security mechanisms of a
Web service is triggered upon assessing the risk
level. The compliance with an aspect-oriented
approach promotes modularity, reusability, and
flexibility of a Web service. Modularity is the
capacity of a Web service to separate between
functional and non-functional modules of a Web
service. Reusability is the capacity of a Web
service to take advantage of the existing modules
without altering its core business or considering
code duplication. And, flexibility is the capacity of
a Web service to select the modules that
accommodate the progress of an ongoing situation.

Although the focus in this paper is on the
value-added of aspects to Web services from an
adaptive security perspective, extra perspectives
like monitoring and maintenance could benefit
from using aspects. For instance, monitoring the
participation of a Web service in multiple
compositions does not contribute to the core
business logic of this Web service. Thus it would
be appropriate to keep monitoring independent
from the business logic of the Web service. The
rest of this paper is organized as follows. Section 2
presents some initiatives on Web services security
and some works on AOP and Web services.
Section 3 discusses the architecture and operation
of the AoF4WS. The paper concludes in Section 4.

2. Background

2.1. Initiatives on Web services security

The open and dynamic nature of the
environment in which Web services operate poses
various challenges to their security. New Web

services appear while others disappear without
prior notice. Furthermore, messages among
component Web services of a composite service
have to be checked for integrity, confidentiality,
and authentication purposes. The need to secure
Web services is strengthened in [7], as the use of
Web services continues to increase. This increase
is dependent on how much Web services are a
serious development alternative to other rival
middleware like CORBA and RMI. For instance,
some still consider Web services as distributed
objects that react upon request only [8]. Enhancing
Web services with extra capabilities can happen
along three perspectives as reported in [9]. The
first perspective is about deploying Web services
that assess the environment before they take part in
a composition. The second perspective is about
reducing the semantic heterogeneity gap between
independent Web services that have all agreed to
participate in a composition. Finally, the third
perspective is about conciliating contextual
information of Web services using ontologies.

WS-Security is an emerging standard dedicated
to securing messages among interacting Web
services [2]. To this purpose, WS-Security defines
how security tokens are contained in SOAP
messages. WS-Security is extensible to other
security models like Secure Sockets Layer (SSL),
Kerberos, and Public Key Infrastructure (PKI).

Transport Layer Security (TLS) secures
interactions by using encryption and makes servers
and clients collaborate in order to decide on the
authentication process to adopt during data
transfer. Unfortunately, TLS does not scale well to
complex transactions like those involving Web
services [4]. Traditional security techniques such
as Virtual Private Network (VPN) and SSL cannot
secure the large number of transactions that Web
services expect receiving.

The W3C’s Web services architecture adopts
PKI to secure communications over public
networks [5]. But, PKI is complex, which
negatively affects its deployment cost, processing
time, etc. Moreover, PKI has the reputation of
being quite cumbersome. This could prove to
overkill the Web services security to be engaged in
intense interactions [6].

The eXtensible Access Control Markup
Language (XACML) is an OASIS standard [23],
which describes both a policy language and an
access control decision service interface. A policy
is extensible and describes general access control
requirements. The request/response style for
setting access controls allows forming a query to
ask whether or not a given action is allowed:
permit, deny, indeterminate, or not applicable.

Proceedings of the Third International Conference on Information Technology: New Generations (ITNG'06)
0-7695-2497-4/06 $20.00 © 2006 IEEE
Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 22,2021 at 10:46:08 UTC from IEEE Xplore. Restrictions apply.

2.2. AOP for Web services

Cibrán and Verheecke promoted modularizing
Web services management with AOP [10]. That
was motivated due to the hard-wiring technique
that is used for integrating Web services into
applications. This hard-wiring way has several
deficiencies when it comes to working out how to
adapt to changes, what if a service fails, and how
to deal with issues related to peers like checking
for availability, switching to other services, etc.

In [12], Charfi and Mezini apply AOP to
Business Process Execution Language for Web
Services (BPEL4WS) in order to achieve modular
and dynamic adaptability of Web services
composition. This is done using AO4BPEL that
extends BPEL with features that permit for
instance viewing business rules as aspects.

In [13], Ortiz et al. adopted an aspect-oriented
approach to develop solutions for Web services
composition (of type orchestration) and interaction
patterns. They also raised multiple questions
related for instance to the possibility of reusing
interaction patterns previously implemented, and
the efforts to put in for modularizing these patterns
rather than scattering the code. During the
experiments that were conducted, Ortiz et al. noted
that modularity, reusability, and maintenance that
should feature applications are not properly
handled. Therefore they looked into ways of
achieving these features using AOP.

In another work [14], Ortiz et al. decouple non-
functional properties in Web services by adopting
aspects. It was noted that adding such properties to
Web services results in changes in the various
modules of an application. Logging, timing,
security, and authentication are examples of non-
functional properties. Ortiz et al. used the timing
non-functional property as an example to show
how the code implementing this property is
repeated and scattered over multiple modules and
how much this code is difficult to maintain.

3. Presentation of the AoF4WS

3.1. Architecture

Figure 2 presents the way aspects are part of
the AoF4WS. Three levels of abstraction are
shown in this figure: composite, component, and
resource. The constituents of each level are
associated with a particular type of context
denoted by C-context, W-context, and R-context.
The rationale and role of each context type are

given in [16]. The connection between composite,
component, and resource levels is implemented
with “participate in”, “oversee”, and “operate
upon” relationships, respectively. Some features of
the AoF4WS are as follows: multi-level concern
separation using aspects, and contextual tracking
of the security requirements of Web services.

The composite level is about specifications of
context-aware composite services. A specification
is split into two parts: business logic and aspects.
The business-logic part reflects the overall
objective that the composite Web service has to
reach (e.g., hotel booking) using a set of
component Web services. The aspect part reflects
the cross-cutting concerns that are included in the
operation of the composite Web service, and
which are orthogonal to this overall objective. The
business logic specifies the process by which user
functional requirements are met, whereas aspects
model user non-functional requirements like
security, reliability, and performance with
emphasis on security in this paper.

The component level is about context-aware
Web services. Similar considerations apply to Web
services, which are split into two parts: business
logic and aspects. The business-logic part shows
the actions a component Web service individually
or collectively carries out in order to enable
reaching the composite Web service’s overall
objective. The aspect part shows the different non-
functional requirements that manifest themselves
as cross-cutting concerns affecting the actions and
interactions of the Web service.

The resource level is about context-aware
resources. Resources represent the computing
means on which Web services operate. The
scheduling of execution requests of Web services
is prioritized when enough resources are not
available to satisfy them all at once. Moreover,
resource allocation to Web services is subject to
the context in which the Web services evolve. For
instance, the computing requirements of a Web
service need to be checked against the computing
capabilities of the resources prior to performing
resource allocation.

In Figure 2, the three-level representation of
AoF4WS results in categorizing aspects into
coarse grained and fine grained. A coarse-grained
aspect is any non-functional property that concerns
a Web service like security. A fine-grained aspect
is any concern like Kerberos-based authorization
that implements the security non-functional
property of this Web service. In the rest of this
section, we present our mechanisms for weaving
security aspects into Web services. This is
summarized using the following steps:

Proceedings of the Third International Conference on Information Technology: New Generations (ITNG'06)
0-7695-2497-4/06 $20.00 © 2006 IEEE
Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 22,2021 at 10:46:08 UTC from IEEE Xplore. Restrictions apply.

1. Deriving a security context of the component
Web services using W/C/R-contexts.

2. Defining security policies based on security

context and storing these policies in a
repository.

Business logic

Aspects
W-context

Business logic

Aspects
W-context

Co
m

po
sit

e
lev

el
Co

m
po

ne
nt

 le
ve

l

WS 1 WS 2

Interactions

Business logic

Aspects

CS 1 C-context

O
versee

Particiapte in

O
versee

Paticipate in

Re
so

ur
ce

 le
ve

l

Resource i Resource k

O
perate upon

O
perate upon

R-context R-context

Legend

W/C/R-context Web service/Composite service/Resource context W/CS: Web/Composite service

Figure 2 Architecture of the AoF4WS

3. Generating the aspects from the security
policies and selecting the appropriate ones
using security context.

4. Weaving the selected aspects into the
component Web services.

3.2. Configuration of security aspects

The development of the AoF4WS happened
along two dimensions. The first dimension is the
need for an adaptive approach that triggers upon
request security services to be implemented as
aspects. For instance, in a specific situation, only
authentication aspect needs to be activated, while
an extra-logging aspect is activated in another
situation. We refer to this dimension in the
AoF4WS as composite configuration since it only
targets composite Web services. The second
dimension highlights the need for a fine tuning of
each security aspect associated with composite
configuration. For instance, the authentication
aspect can be set to accept a timeout of 10 seconds
when requesting clients’ credentials. We refer to
this dimension in the AoF4WS as component
configuration since it only targets Web services.

The identification of a configuration that
includes both composite and component levels
calls for an additional technology to support
aspect-oriented programming in modularizing
crosscutting concerns at each level. This

technology corresponds to frames. These latter are
defined as wrappers around code snippets (e.g.,
source code, HTML code) [20]. A frame contains
variation points that permit adding, deleting, or
adapting a functionality in a specific application.
This happens using various commands like
overriding, extension, substitution, and iteration.

Composite configuration of security aspects. In
Figure 3, the operation of the AoF4WS in a
composite configuration is illustrated. This
operation consists of selecting the security aspects
that protect the whole Web services environment
(these aspects are referred to as active in Figure 3).
The selection process combines contextual
information and policies. Contextual information
offer details on the environment that surrounds
each element (Web service, composite Web
service, resource), and policies suggest the
appropriate security aspects based on these details.

In addition to W/C/R-contexts of Web services,
composite Web services, and resources in the
AoF4WS, a new type of context that is just
dedicated to security is required (Figure 3). S-
context is fed with various details from W/C/R-
contexts and gets involved in triggering policies
for weaving active security aspects. For Kouadri
Mostéfaoui, a security context is a state of the
working environment that requires taking one or
more security actions. A security context is formed

Proceedings of the Third International Conference on Information Technology: New Generations (ITNG'06)
0-7695-2497-4/06 $20.00 © 2006 IEEE
Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 22,2021 at 10:46:08 UTC from IEEE Xplore. Restrictions apply.

by a set of information collected from the user's
environment and the application environment and
that is relevant to the security infrastructure of
both the user and the application [20]. In Figure 3
the feeding process is an event-trigger system that
gathers contextual information from appropriate
sources like contexts of Web services and contexts
of resources. Additional sources could be used for
feeding the security context like physical sensors

in the environment or user inputs [21]. Based on
the content validity of a context, policies are
triggered. In the following and relying on a
previous work in [22], we overview some
arguments that populate each type of context and
illustrate the specification of a policy in Ponder.
For more details on Ponder and why Ponder is
selected, readers are referred to [15].

C-context W-context R-context

S-context

Feeding

Repository
of policies

Triggering

Contextual
Selection

Legend

C-context Composite
service context

R-context Resource context

W-context Web service
context

S-context Security context

 Weaving

Available
security aspects

Active
security aspects

Feeding Feeding

Figure 3 Operation of the AoF4WS

Some arguments of W-context are: signature
(establishes the identity of the Web service so
messages to peers are known), security mechanism
(sets the encryption/decryption mechanism needed
for authenticating messages received from peers),
security status (indicates the status of
authenticating the received message in terms of
success or failure), and violation (indicates the
type of security violation that a message was
subject to). Arguments of C-context are similar to
arguments of W-context but are interpreted at the
composition level. Some arguments of R-context
are: signature (establishes the identity of the Web
service that operates on top of the resource), and
violation (indicates the type of security violation
that the Web service is involved in). Finally some
arguments of S-context are: signature per Web
service/Composite Web service/Resource, security
mechanism per Web service/Composite Web
service/Resource, security status per Web
service/Composite Web service/Resource, and
security violation per Web service/Composite Web
service/Resource. The main role of S-context is to
report on which authentication mechanisms
(username/password pairs, binary certificate, etc.),

certificate algorithms, etc. are supported by all
components whether Web service, composite Web
service, or resource, and when they are active.
Policies are information which can be used to
modify the behavior of a system [15]. The use of
policies in AoF4WS permits managing Web
services at a higher level where guidelines for
conducting composition of Web services are
separated from guidelines for securing Web
services. The following is a policy in Ponder that
authorizes activating a certain security aspect
following the invocation request that Taxi Web
service receives from Travel Web service. This
security aspect depends on the types of
authentication and encryption mechanisms
featuring Travel Web service. In this policy,
details about these mechanisms are available in the
S-context of Travel Web service.
inst oblig AuthorizeTaxiWebService{

on ServiceRequest(s,t);
when S-context.authentication_algorithm(s,"Kerberos",1) and
S-context.encryption_algorithm(s,"DES",1)
subject s = /travel-web-service;
target t= /taxi-service;
action t.activate(aspecti);

Proceedings of the Third International Conference on Information Technology: New Generations (ITNG'06)
0-7695-2497-4/06 $20.00 © 2006 IEEE
Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 22,2021 at 10:46:08 UTC from IEEE Xplore. Restrictions apply.

Component configuration of security aspects. In
Figure 4, the operation of the AoF4WS in a
component configuration is illustrated. This
configuration supports the customization of each
active-security aspect that was identified in
composite configuration and according to the
requirements that a user sets. This is achieved
using frames. Some examples of user requirements
are authentication to happen within 10 seconds and
AES-128 is the encryption algorithm. In Figure 4,
we also present the way a customized aspect is
defined (adapted from [20]):

Specification

Customized aspects
declaration

Framed aspects

Composition
rules

Figure 4 Framed security aspects generation

• Specification is about the developer’s security
specification to be customized. This consists
of setting the values of the meta-variables and
selecting the different options available in the
framed aspect. For example, a specification
sets the concrete value of a timeout variable
that is contained in a framed authentication
aspect code.

• Composition rules control the way aspects are
bound together. For example, an aspect’s
parameter (e.g., timeout) already defined in
the specification can be constrained to a
specific interval. The weaving process will
then occur upon these constraints.

• Framed aspect is a parameterized version of
the original security aspect that was
established in the configuration of type
composite. In addition to the generalized
aspect code that a famed aspect contains, more
elements are added like conditional
compilation and parameterization.

The reader may wonder the relationship
between policies defined earlier and composition
rules. Policies are responsible for selecting the
security aspects to be activated according to the
current context of the whole Web services
environment. A composition rule defines how the
selected security aspects will be woven in order to
secure specific Web services. This rule is seen as a
policy at the micro level of the aspect. The
composition rules apply to the set of aspects once
these aspects are selected and customized
following their respective specifications.

3.3. Putting it all together

In previous contributions [18,19], weaving of
aspects - for generic applications - is based on a
simple schema, i.e., on the adaptation of the
aspects at the composite level (Section 3.2 for
more details on composite configuration of
security aspects). The AoF4WS - more specific to
Web services - adds an extra step that consists of
running an adaptation at the component level by
integrating a set of relevant contextual
information. Compared to Figure 4, Figure 5
illustrates the operation of the AoF4WS after
combining composite and component
configuration. The new elements in the AoF4WS
are as follows:
• Web services environment includes the

different component Web services of a
composite service.

• Security monitor provides the right set of
configured security aspects to the Web
services environment.

• Nanning runtime is based on the Nanning
runtime tool (nanning.codehaus.org/) for
runtime weaving of security aspects.
AspectWerkz, JAC, JAsCo, AOPAlliance, and
Prose are examples of other weaving tools.

Figure 5 shows the overall picture of the
AoF4WS in operation. A transaction in the Web
services environment (e.g., a request to use a Web
service’s functionality) requires from the security
monitor to set the needed security aspects (i.e., a
request is automatically forwarded to the security
monitor before being fulfilled). Component and
composite configurations of the AoF4WS engage
in collaboration to fulfill this transaction. In the
first step - composite configuration - a list of
security aspects (e.g., authentication, logging) that
need to be included in the security framework is
produced. The selected security aspects are then
framed in the second step - component
configuration -. This step is how each single aspect
will be customized in order to properly respond to
the context of use (e.g., type of protocol used by
the privacy service). The final set of framed
aspects is then concretely woven using Nanning
runtime and applied in order to secure the
transactions in the Web services environment.

3.4. Illustrative Scenario

In this section we present an example that
illustrates our ideas. Let us assume a Travel-Agent
Composite Service (TA-CS1) that puts together an

Proceedings of the Third International Conference on Information Technology: New Generations (ITNG'06)
0-7695-2497-4/06 $20.00 © 2006 IEEE
Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 22,2021 at 10:46:08 UTC from IEEE Xplore. Restrictions apply.

itinerary for a tourist. Two of the most significant
component Web services of TA-CS1 are Taxi
Booking (TB-WS1) and Hotel Booking (HB-WS2).
In the C-context of TA-CS1, Blowfish algorithm is
set as part of the security mechanism. In the W-
contexts of TB-WS1 and HB-WS2, DES and AES

algorithms are set, respectively. A resource that
HB-WS2 uses is an online database through which
information on the famous places to stay in are
provided. In the R-context of the database,
authentication information is presented so HB-
WS2 gets to access this database.

 Prior to
 Weaving

Active
security aspects

Framing

Active framed
security aspects

Weaving Nanning runtime

Web services
environment

Se
cu

rit
y

m
on

ito
r

Composite configuration

Co
m

po
ne

nt
 c

on
fig

ur
at

io
n

S-context

Repository
of policies

Triggering

Contextual
Selection

Available
security aspects

Figure 5 Composite and component configuration of security aspects

Based on the above W/C/R-contexts, the S-
context arguments of TA-CS1 are instantiated.
Some of them are: DES algorithm for HB-WS1,
Blowfish algorithm for TA-CS1, security status for
TB-WS2 accessing the database resource (“access
granted”), and security violation (if any has
occurred – in our case, so far, no). The S-context
information is then used to populate the policy
repository with the appropriate policies (Figure 5).
A sample of policy is to authorize the invocation
of TB-WS1 upon request of TA-CS1, assuming that
the security conditions are met.
inst oblig AuthorizeTaxiWebService{

on ServiceRequest(s,t);
when S-context.authentication_algorithm(s,"Blowfish",1) and
S-context.encryption_algorithm(t,"DES",1)
subject s = /TA_CS1;
target t= /TB_WS1;
action s.invoke(t);

In other words, when Travel Web service
authenticates itself to Taxi service, this latter is
supposed to accept the invocation request from
Travel-Agent service. A similar hotel room
booking request can also happen, as shown below.
inst oblig AuthorizeHotelBookingWebService{

on ServiceRequest(s,t);
when S-context.authentication_algorithm(s,"Blowfish",1)
and S-context.encryption_algorithm(t,"AES",1)
subject s = /TA_CS1;
target t= /HB_WS2;
action s.invoke(t);
Based on the policies defined above, the list of

appropriate security aspects is generated (i.e., DES
aspect, Blowfish aspect, and AES aspect). Since
the above policies are needed for our tourist, the
appropriate authentication code is weaved into the
respective Web services (TB-WS1 and HB-WS1),
in order to ensure that the necessary security
checks are carried out during the composition of
these Web services. The actual weaving is itself
carried out via frame technology, as follows. Prior
to the weaving process, each framed security
aspect -identified by the list generated earlier- is
customized according to the values set in the
specification as illustrated in Figure 4 (component
configuration of security aspects). Afterwards the
framed versions of these framed security aspects
are woven using the Nanning runtime.

4. Conclusion

In this paper, we discussed the need for
adaptive security in Web services environments.
To this end, we proposed the Aspect-oriented
Framework for Web Services for adaptive security
using framed aspects, which combine frames and
aspect-oriented programming. Frames enhance
aspect-oriented programming by separating the
specification of a security aspect from the aspect
code itself. This approach allows a fine-grained
variation of security aspects according to the
context of use. The Aspect-oriented Framework

Proceedings of the Third International Conference on Information Technology: New Generations (ITNG'06)
0-7695-2497-4/06 $20.00 © 2006 IEEE
Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 22,2021 at 10:46:08 UTC from IEEE Xplore. Restrictions apply.

for Web Services relies on context-based policies
expressed using Ponder. Our future work consists
of the following: investigate ways to determine the
execution order of security aspects; extend our
framework for decoupling other concerns such as
performance, reliability, etc.; and extend our
framework for decoupling business regulations
[24] into different aspects, so that changes to one
set of regulations do not affect the others.

Acknowledgements
The authors thank Chris Giblin for his feedback.
The fourth author thanks his Ph.D. advisor Prof. K.
C. Shet, for supporting his work. Other company
(i.e., non-IBM), product and service names may be
trademarks or service marks of others.

References
[1] Kevin J. Ma. "Web Services: What's Real and What's
Not?" IT Professional, 7(2), March/April 2005.
[2] Web Services Security. Version 1.0, April 2002.
http://www.verisign.com/wss/wss.pdf. (Visited August
2005).
[3] Y. EL-Manzalawy. “Aspect Oriented Programming”
http://www.developer.com/design/article.php/3308941
(Visited August 2005).
[4] Y. Nakamur, S. Hada, and R. Neyma. Towards the
Integration of Web Services Security on Enterprise
Environments. In Proceedings of The Workshop on Web
Services Engineering (WebSE’2002) held in conjunction
with The IEEE/IPSJ Symposium on Applications and the
Internet (SAINT'2002), Nara, Japan, 2002.
[5] W3C Working Group, http://www.w3.org/ (Visited
August 2005)
[6] R. Sandhu. Good-Enough Security: Toward a
Pragmatic Business-Driven Discipline. IEEE Internet
Computing, 7(1), January/February 2003.
[7] K. R. Moorthy and A. Gandhirajan. The Foundations
of Web Services Security.
http://www.developer.com/services/article.php/3496326,
(Visited August 2005).
[8] K. P. Birman. Like It or Not, Web Services Are
Distributed Objects. Communications of the ACM,
47(12), December 2004.
[9] Z. Maamar, D. Benslimane, and N. C. Narendra.
What Can Context do for Web Services?
Communications of the ACM, 2006 (forthcoming).
[10] M. A. Cibrán and B. Verheecke. Modularizing Web
Services Management with AOP. In Proceedings of The
1st European Workshop on Object Orientation and Web
Services (ECOOP’2003) held in conjunction with The
17th European Conference on Object-Oriented
Programming (ECOOP’2003), Darmstadt, Germany,
2003.
[11] T. Cottenier and T. Elrad. Validation of Aspect-
Oriented Adaptations to Components. In Proceedings of
The 9th International Workshop on Component-Oriented
Programming (WCOP’2004) held in conjunction with
The 18th European Conference on Object-Oriented
Programming (ECOOP’2004), Oslo, Norway, 2004.

[12] A. Charfi and M. Mezini. Hybrid Web Service
Composition: Business Processes meets Business Rules.
In Proceedings of The 2nd International Conference on
Service Oriented Computing (ICSOC’2004), New-York,
USA, 2004.
[13] G. Ortiz, J. Hernández, and P. J. Clemente. Web
Services Orchestration and Interaction Patterns: An
Aspect-Oriented Approach. In Proceedings of The 2nd

International Conference on Service Oriented
Computing (ICSOC’2004), New-York, USA, 2004.
[14] G. Ortiz, J. Hernández, and P. J. Clemente.
Decoupling Non-Functional Properties in Web Services:
An Aspect-Oriented Approach. In Proceedings of The
2nd European Workshop on Web Services and Object
Orientation (EOOWS’2004) held in conjunction with the
18th European Conference on Object-Oriented
Programming (ECOOP’2004), Norway, June 2004.
[15] N. Damianou, N. Dulay, E. Lupu, and M Sloman.
The Ponder Specification Language. In Proceedings of
the Workshop on Policies for Distributed Systems and
Networks (Policy’2001), Bristol, UK, 2001.
[16] Z. Maamar, S. Kouadri Mostéfaoui, and Q. H.
Mahmoud. On Personalizing Web Services Using
Context. International Journal of E-Business Research,
Special Issue on E-Services, The Idea Group Inc., 1(3),
July-September 2005.
[17] J. Hillman and I. Warren. An Open Framework for
Dynamic Adaptation. In Proceedings of The
International Conference on Software Engineering
(ICSE’2004), Edinburgh, Scotland, 2004.
[18] N. Loughran and A. Rashid. Supporting Evolution
in Software using Frame Technology and Aspect
Orientation. In Proceedings of The Workshop on
Software Variability Management, Groningen, The
Netherlands, 2003.
[19] P. Greenwood and L. Blair. Dynamic Framed
Aspects for Policy-Driven Auto-Adaptive Systems.
http://www.comp.lancs.ac.uk/computing/aose/papers/dy
nFr_daw04.pdf
[20] G. Kouadri Mostéfaoui. Towards a Conceptual and
Software Framework for Integrating Context-Based
Security in Pervasive Environments. Ph.D. Thesis No.
1463, University of Fribourg and Paris 6 University,
2004.
[21] A. Schmidt, M. Beigl, and H. W. Gellersen. There
is More to Context than Location. Computers &
Graphics Journal, 23(6), December 1999.
[22] S. Sattanathan, N. C. Narendra and Z. Maamar.
Towards Context-based Tracking of Web Services
Security. In Proceedings of The 7th International
Conference on Information Integration and Web Based
Applications & Services (iiWAS’2005), Kuala Lumpur,
Malaysia, 2005.
[23] OASIS, Extensible Access Control Markup
Language (XACML), http://www.oasis-open.org
(Visited June 2005).
[24] C. Giblin, A. Y. Liu, S. Mueller, B. Pfitzmann, and
X. Zhou. Regulations Expressed as Logical Models
(REALM). IBM Research Report RZ 3616, IBM
Research Division, Zurich, July 2005.

Proceedings of the Third International Conference on Information Technology: New Generations (ITNG'06)
0-7695-2497-4/06 $20.00 © 2006 IEEE
Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 22,2021 at 10:46:08 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

