
A Distributed Algorithm for Computation of Exact

Voronoi Cell in a Multi-Robotic System∗

K.R. Guruprasad

Department of Mechanical Engineering

National Institute of Technology Karnataka, Surathkal, India.

Email: krgprao@gmail.com

Prithviraj Dasgupta

Department of Computer Science

University of Nebraska, Omaha, NE, USA.

Email: pdasgupta@mail.unomaha.edu

Abstract—In this paper we propose an algorithm for dis-
tributed computation of Voronoi cell in a multi-robotic system.
Each of the robots is assumed to know its own position and
position of all other robots. The robots compute their Voronoi
cells based only on this positional information, without any
additional communication and cooperation with other robots.

I. INTRODUCTION

Voronoi partitioning has been used as a partitioning tech-

nique for multi-robot area coverage and sensor coverage in

several multi-robotic systems (MRS) [1] and sensor networks

[2], [3]. The Voronoi partition of a space is calculated using

the positions of robots within it and each robot operates within,

and, consequently, needs to be aware of only its Voronoi cell

and not the entire Voronoi partition. However, in most of the

applications involving Voronoi partitioning techniques men-

tioned above, each robot computes the entire Voronoi partition,

extracts its Voronoi cell and discards the information about

the remaining cells. The discarded information corresponds to

considerable amounts of useless computation done by each

robot, and incurs unnecessary expenditure of energy and time.

In this paper, we attempt to address this deficit by developing

a distributed Voronoi partitioning technique where each robot

computes only its own Voronoi cell. Unlike most existing

techniques for distributed Voronoi partitioning, we follow a

more structured approach based on relative robot positions in

polar coordinate system.

II. DISTRIBUTED VORONOI CELL COMPUTATION

Consider N robots in a multi-robot system (MRS). Let P =
{p1, p2, . . . , pN} be the configuration of the MRS, where pi ∈
R

2 is the position of the i-th robot. Let IN = {1, 2, . . . , N} be

an index set. By a slight abuse of notation, we use pi to refer to

both the i-th robot and its position in the space. All the robots

know the configurationP . This can be achieved by a broadcast

communication amongst the robots. Let V = {Vi|i ∈ IN} be

the Voronoi partition generated by P as a node set, with

Vi = {q|‖pi − q‖ ≤ ‖pj − q‖, ∀j ∈ IN}

∗This work has been supported as part of the COMRADES project sup-
ported by the U.S. DoD Office of Naval Research, grant no. N0000140911174.

q0
q1

q2

q4

q3

v1

v2

(a)

θ

q0

C1 q2 (q'3)

q1 (q'1)

q6 (q'2)

q5 (q'9)

q3 (q'7)

q4 (q'4)

q7 (q'6)

q8 (q'4)

q9 (q'8)

C2
C3

C4

(b)

Fig. 1. a) Motivation for using relative configuration in polar coordinate
system. b) he robot pi re-indexes all robots based on the relative position in
a polar coordinate system with pi = q0 as center.

Nodes i and j are considered Voronoi neighbors (or neighbors

in the Delaunay graph GD), if the corresponding Voronoi cells

Vi and Vj share a common edge.

Problem statement: For each i ∈ IN , given P , the i-th
robot should compute the corresponding Voronoi cell Vi, and

its Voronoi neighbors.

A. Preprocessing

The Voronoi cell Vi of the robot located at pi, and its

Voronoi neighbors, depend on the positions and orientations

of the remaining robots. While calculating the Voronoi cell of

each robot, selecting the set of its Voronoi neighbors based

on Euclidean distances with positions of robots represented

in Cartesian coordinates might lead to complicated analysis

and calculations. For example, in Figure 1(a), robots q1 and

q2 are the Voronoi neighbors for robot q0. Robots q3 and q4
are equidistant from q0 but it is easy to see that q3 is not

q0’s Voronoi neighbor, while q4 could be a Voronoi neighbor,

depending on the relative position and orientation of other

robots. In contrast, representing relative robot positions using

a polar coordinate system provides a more succinct way to

enable the computation of Voronoi cells.

The i-th robot, pi, constructs two ordered sets of robots

to represent the configuration of its neighboring robots in the

polar coordinate space with itself as the origin. The first set

2012 Third International Conference on Emerging Applications of Information Technology (EAIT)

978-1-4673-1827-3/12/$31.00 ©2012 IEEE 13

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 09,2021 at 09:12:32 UTC from IEEE Xplore. Restrictions apply.

iQ = {iq1,
i q2, . . . ,

i qN−1} contains the neighboring robots

of pi sorted in order of increasing distance (radius) from pi.
Ties in radii are broken by ordering the robots equidistant

from pi in increasing order of angles with the line joining

pi and iq1, the closest robot to pi. If more than one robot

are on C1, then one of these robots1 is randomly chosen as

q1. The second set iQ′ = {iq′1,
1 q′2, . . . ,

i q′N−1} contains the

neighboring robots of pi sorted in order of increasing angle

with the line joining pi and iq1, the closest robot to pi as

the base angle. Ties on angle are broken by ordering robots

in increasing distance (radius). For the sake of legibility, we

rename robot pi as q0. An example illustrating the construction

of the sets iQ,iQ′ is illustrated in Figure 1(b). With q0(= pi)
as center, let iC1,

i C2, . . .
i CK , K ≤ N − 1, denote virtual

circles of increasing radii passing through one or more robots

in iQ; circle iC1 passes through iq1 and so on. Let irk be

the radius of circle iCk. In the following, when the context

is unambiguous, we drop the superscript i to simplify the

notation and refer to iqj as qj , iCk as Ck, and irk as rk.

For brevity, we use qk (or q′k) to refer to both the robot itself

and its position.

After computing the relative configuration of its neighboring

robots, the i-th robot computes its Voronoi cell in two distinct

phases - the expansion phase and the contraction phase, which

are described in the following sections.

B. Expansion Phase

Assume that the i-th robot has access only to B̄(pi, Ri),
the closed disc of radius Ri centered at pi. If there are no

robots within a distance of Ri, then the constrained Voronoi

cell is B̄(pi, Ri) itself. We call Ri as pseudo sensor range,

as this limit on the range is only used for the purpose of

computation, and not the real limitation of the robot. The i-th
robot computes the Voronoi cell starting with Ri(1) = r1, and

expands the constrained Voronoi cell incrementally by setting

Ri(n) = rn at n-th step. The procedure is discussed formally

in the following.

Let Nk be the number of robots on Ck, k ∈ IK . Note that

in non-degenerate conditions, Nk ≤ 3, ∀k ∈ IK . Let Nk =
N1+N2+ · · ·+Nk, the number of robots on or inside Ck . Let

H(q0, p) be the half plane defined by perpendicular bisector

of q0 ↔ p containing q0, for any p ∈ P \ {pi}, and Dk =
B̄(pi, rk).

The robot starts with Ri(1) = r1 and finds the Voronoi cell

at the n-th step as,

V̂n = {Dn ∩ {
Nn
⋃

l=1

H(q0, ql)}, n ∈ IK (1)

If we denote Vi(Pn) as the Voronoi cell corresponding to

pi with Pn = {pj| ‖pi − pj‖ ≤ rn, j ∈ IN−1} ⊂ P , the

set of robots/nodes on or within the virtual circle Cn as node

set, then V̂n = Dn ∩ Vi(Pn) gives the portion of Voronoi

cell within Dn. Note the boundary of Vn is made up of line

segments corresponding to perpendicular bisectors and arcs on

1It is easy to show that all robots on C1 are Voronoi neighbors of pi.

V1
^

(a)

V2

^

(b)

V3

^

(c)

Fig. 2. Computation of approximate Voronoi cell in the expansion phase.
The candidate Voronoi cell at each step is shown by the region enclosed by
bold lines.

the virtual circle Cn. If pi is in the interior of the convex hull

of P , the expansion phase continues until either the Voronoi

cell V̂n is a bounded polygon within Dn, or until the largest

virtual circle CK centered at pi is reached (n = K) without

finding a bounded polygon. A special case occurs if pi lies on

the boundary of the convex hull of P , and pi can never have

a polygonal Voronoi cell as the Voronoi cell is unbounded. In

this case, the expansion phase terminates when there are no

arcs in the portion of the boundary of V̂n within the convex

hull of P . Figure 2 illustrates the expansion phase for a robot

pi with the same configuration of neighboring robots shown in

Figure 1(b). The expansion phase terminates at the 3rd circle as

soon as a bounded polygon is found. In the following section,

we describe a distributed algorithm that can be used by each

robot for constructing its candidate Voronoi cell using this

expansion technique.

The construction of the candidate Voronoi cell during the ex-

pansion phase proceeds into two steps as shown in Algorithm

1. In the first step, we construct a chord Lk
j

2 corresponding

to each neighboring robot q′j within Ck. For this, we first look

at the intersection of b0j , the perpendicular bisector of line

joining q0 and q′j (j-th node on Q′, the relative configuration

sorted based on θ), with the circle Ck. Let the points of

intersection of b0j with Ck be (rk, θ
s
j) and (rk, θ

e
j). We already

know rk , and θsj and θej can be calculated as:

θsj = mod 2π(θj + δθj)
θej = mod 2π(θj − δθj)

(2)

where, δθj = cos−1

(

rj
2rk

)

. Note that it is easy to see that

2π/3 ≤ δθj < π/2. We store the set of chords corresponding

to each q′j within Ck in an ordered set called L.

In the second step, we find the intersection points of the

chords constructed in L from the first step and check to see

if they form a bounded polygon within circle Ck. If such a

bounded polygon is found, we terminate with the candidate

Voronoi cell, otherwise we continue to the next larger circle

Ck+1.

The checking of chords to find intersections requires some

insight. To enable our calculations, we construct an ordered

set of polar angles of the chords, represented with their

start and end points in polar coordinates, in the set Θ, in

2For brevity, we drop the superscript k when the context is clear.

14

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 09,2021 at 09:12:32 UTC from IEEE Xplore. Restrictions apply.

expansion(K,Q′)

Input: K,Q′; //K: no. of virtual circles in neighbor

configuration of robot pi; Q
′: angle ordered set of

neighboring robots of pi in polar coords

Output: V̂ ,L; //V̂ : ordered vertex set representing

candidate Voronoi cell of robot pi if successful,

null set if unsuccessful; L :angle-sorted list of

chords in circle Ck

V̂ ← ∅;
q0 ← origin of polar coord system corresponding to

location of pi;
for k = 2 to K do
L ← ∅; Θ← ∅;
for j = 1 to k do

Lj ← Perp. bisector of line (q0, q
′
j) : q

′
j ∈ Q′;

(θsj , θ
e
j)← Angles of extremities of chord Lj

with q0 within circle Ck of radius rk;

L ← L ∪ Lj;

Θ← Θ ∪ {θsj , θ
e
j}

end

// L is already in ascending order of index j;

Sort Θ in ascending order;

// remove redundant chords from L using

checkChords method

boundedPoly, convexBounds←
checkChords(Θ,L, Q′);
if boundedPoly = true then

V̂ ← constructPoly(L, convexBounds);

break;
end

end

return V̂ ,L;
Algorithm 1: Algorithm used by robot pi during the expan-

sion phase of the distributed Voronoi cell computation

the method expansion given in Algorithm 1. Then, in the

checkChords method given in Algorithm 2, for each chord Lj ,

we extract the set of chords that have either their start or end

point, or both, between Lj’s ending and starting points (in that

order), in an ordered set Θdiff,j , starting with the end point

of the first chord L1 in L. The chords which have only one

start or end point between Lj’s end and start points intersect

Lj , while those that have both end points do not intersect Lj .

We store the intersects of Lj with other chords in a set called

intersect that is indexed by Lj , while we remove chords

that do not intersect Lj from the set of chords L. As an

example, consider the set Θ from our running example shown

in Figure 1(b) and re-illustrated in Figure 3(b), and Θ =
(θe1 θe2 θs6 θe3 θs2 θs1 θe4 θs3 θe5 θe6 θs5 θs4).
Here Θdiff,1 = {θe2 θs6 θe3 θs2}. Since both the start

and end points of L2, θ
e
2 and θe1 appear in Θdiff,1, we

remove L2 from L, and the entries corresponding to L2,

viz., θe2 and θs2, from Θ. Looking at Figure 3(b), this makes

sense because chords L2 and L1 do not intersect with

each other. The remaining entries in Θdiff,1 are θs6 and θe3,

checkChords(Θ,L, Q′)

Input: Θ,L, Q′; // Θ: sorted list of endpoints of chords

in circle Ck , L: angle-sorted list of chords in

circle Ck, Q′: angle ordered set of neighboring

robots of pi(= q0) in polar coords

Output: boundedPoly, convexBounds; //boundedPoly:

boolean values indicating if chords in L form a

close polygon, convexBounds: ordered pair of

chords in L if pi is on a convex hull with its

neighboring robots

foreach Lj ∈ L do
intersect[Lj]← ∅;

end

foreach (θsj , θ
e
j) ∈ Θ do

Θdiff,j ← ordered set of endpoints of chords lying

between (θej , θ
s
j) in Θ;

if ∃m s.t. θsm ∧ θem ∈ Θdiff,j then
Remove Lm from L;

end

else if ∃m s.t. either θsm or θem ∈ Θdiff,j then
intersect[Lj]← intersect[Lj] ∪ Lm;

end

end

//check to see if remaining chords in L form a closed

polygon boundedPoly ← false;

convexBounds← ∅;
foreach Lj ∈ L do

Lm ← Lj .next();
// next() gives the next chord in L with wrap around

if Lm ∈ intersect[Lj] then
boundedPoly ← true;

end

else
//check if polygon will be unbounded because pi
is on convexHull of neighboring robots

{θmin, θmax} ← checkConvexHull(Q′);
// get the angle of radial lines bisecting chords Lj

and Lk resp.

θj ← (θsj + θej)/2; θm ← (θsm + θem)/2;

if {θj , θm} = {θmin, θmax} then
convexBounds← Lj, Lm;

boundedPoly ← true;
end

end

else
boundedPoly← false;

break;
end

end

return boundedPoly, convexBounds;
Algorithm 2: Method used within expansion phase to remove

non-intersecting lines in L

corresponding to chords L6 and L3 respectively, that has

either one start point or one end point in Θdiff,1. And so,

intersect[L1] = {L3, L6}. Proceeding in this manner, we

15

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 09,2021 at 09:12:32 UTC from IEEE Xplore. Restrictions apply.

L1

θ
e
1

L2

L3

L4

Ck

θ
e
2

θ
s
4

θ
e
3θ

e
4

θ
s
2

θ
s
1θ

s
3

(a)

Radius = rk/2

L1

θ
e
1

L2

L3

L4L5

L6

Ck

θ
e
2

θ
s
6

θ
e
3

θ
e
4

θ
e
5

θ
e
6

θ
s
2

θ
s
1θ

s
3

θ
s
4

θ
s
5

(b)

Fig. 3. Expansion phase is (a) not terminated, and (b) terminated, when the
i-th robot is in the interior of Co(P).

q'1

θmin

θmax

q'2

q'3

q'4

q'5

q'6

q'7

(a)

L1

θ
e
1

L2

L4

Ck

θ
e
2

θ
s
4

θ
e
4

θ
s
2

θ
s
1

(b)

L1

θ
e
1

L2

L3

L4

Ck

θ
e
2

θ
s
4

θ
e
3θ

e
4

θ
s
2

θ
s
1θ

s
3

(c)

Fig. 4. a) Illustration of a node on convex hull. Nodes q′
2

and q′
4

are neighbors
of q0 in GD . Expansion phase is b) not terminated, andc) terminated, when the
i-th robot is on the boundary of Co(P), where ConvexBounds = (L3, L4).

get, intersect[L3] = {L1, L4}, intersect[L4] = {L4, L6}
(chord L5 gets removed while inspecting Θdiff,4), and

intersect[L6] = {L4, L1}.

checkConvexHull(Q′)

Input: Q′ // set of neighboring robots of pi order in

increasing polar angles w.r.t. pi
if ∃ qj ∈ Q′, j ∈ IN−2s.t.(θ(qj+1)− θ(qj)) > π then

(θmin, θmax)← (θ(qj), θ(qj+1));
return true;

end

else if θ(qN−1) ≤ π then
(θmin, θmax)← (θ(qN−1), 0);
return true;

end

else
return false;

end
Algorithm 3: Algorithm for checking if pi is on a convex

hull w.r.t its neighboring robots

Checking if the final set of chords forms a bounded polygon

is fairly intuitive - we check if every chord intersects with its

successive chord in the ordered set. If this condition is not

satisfied for one successive pair of chords, we cannot find a

bounded polygon within the current circle. For example, in

Figure 3(b) chords L3 and L4 do not intersect and the set of

chords form an unbounded polygon. We then continue to the

calculations of chords for the next larger circle. Continuing the

1

2

3
4

5

6

7

q0

q'1

q'2

q'3
q'4

L2

L1

L4

L2

(a)

vj

α(4,j,1)

α(4,j,2)
θ(vj)

(b)

Fig. 5. a) The constrained Voronoi cell V̂K is 1 → 2 → 6 → 7, is not a

polygon. After termination of expansion phase, V̂K is extended into a polygon
1 → 4 → 7, while actual Voronoi cell Vi is 1 → 3 → 5 → 7. b) Illustration
of contraction phase.

example from Figure 3(a), we see that in Figure 3(a) the final

set of chords L1, L3, L4 and L6 intersect with each other and

form a bounded polygon. Finally, if we reach the largest circle

for the robot and are still unable to find a bounded polygon

within DK , the expansion phase is terminated and a polygon is

constructed based on existing lines in the chord set L. Figure

5(a) gives an illustration of such a scenario.

A special case of an unbounded polygon occurs when the

robot pi calculating the Voronoi cell lies on the convex hull

of the set of robots P . This condition is illustrated in Figure

4(a) and checked in the latter part of the checkChords method

in Algorithm 2 using the checkConvexHull method shown

in Algorithm 3. For each pair of chords in the final set of

chords L, we check if their respective perpendicular bisectors

correspond to a pair of successive edges on the convex hull

of the set of robots P . Formally, the conditions that test if

pi ∈ ∂(Co(P)) are given in the following lemmas.

Lemma 1: A point pi ∈ P is on ∂(Co(P), if and only if,

there exists j ∈ IN−2, such that, θ(q′j+1) − θ(q′j) > π, or,

θ(p′N−1) < π.

The proof is fairly straight forward and is skipped here.

Lemma 2: For a robot pi ∈ ∂(Co(P)), closest nodes on

radial lines along θmax and θmin directions are neighbors in

GD.

The result is fairly intuitive and we skip the formal proof.

The expansion phase is terminated even when V̂n is not a

polygon as illustrated in Figure 4(c). Here, the chords L3 and

L4 correspond to nodes on radial lines corresponding to θmin

and θmax, respectively. Whereas, as illustrated in Figure 4(b),

when L3 6∈ L, the expansion phase is not terminated.

The constructPoly method returns a set of points corre-

sponding to the intersections of the chords returned by check-

Chords method if a bounded polygon can be found. Otherwise,

if the convex hull case occurs, it returns the appropriate edges

from the convexHull along with the intersection points of the

intersecting chords.

C. Contraction Phase

In the second phase called contraction phase, the Voronoi

cell is contracted by identifying candidate nodes or neighbors.

16

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 09,2021 at 09:12:32 UTC from IEEE Xplore. Restrictions apply.

Contraction(V̂ ,L)

Input: L, convexBounds; //L: minimal list of chords

(angle-sorted) returned by constructPoly method,

V : ordered vertex set representing candidate

Voronoi cell of robot pi returned by constructPoly

method

Output: V ;// ordered set of vertices representing the

Voronoi cell, N̂ ′ set of indexes of robots in Q′

which are Voronoi neighbors of robot pi.
N̂ ′ ← {j|Lj ∈ L};
j ← 1;

dj ← ‖qo − vj‖
// vj is the current vertex of V being checked for

possible contraction of V .

while j ≤| V | do
m = maxk{k|rk ≤ 2dj}
l← 1;
//Start with first circle.

while (l ≤ m) do
Q′

l ← {q
′
k|r(q

′
k) = rl};

// all robots on circle Cl.

α1 ← θ(vj)− cos−1(rl/2dj);
α1 ← θ(vj)− cos−1(rl/2dj);
//θ(vj) is the angle between lines joining q0 to vj
and that joining q0 and q1.

if ∃q′k ∈ Q′
l s.t. (α1 ≤ θ(q′k) ≤ α2) ∧ (k 6∈ N̂ ′)

then
v1 ← findIntersection(Lj1, Lk);
v2 ← findIntersection(Lk, Lj2);
// the vertex vj is formed by lines

Lj1, Lj2 ∈ L with Lj2 = Lj1.next.

V ← V \ {vj};
V ← V ∪ {v1, v2};
// new vertexes v1 and v2 are inserted in

order, after vj−1.

N̂ ′ ← N̂ ′ ∪ {k};
l = m+ 1; // Do not check any more robots

for vj .

j ← j − 1;
end

end

j ← j + 1;
end

return V, N̂ ′

Algorithm 4: Algorithm used to contract the candidate

Voronoi cell during the contraction phase

This is achieved by checking for candidate nodes which

contract the Voronoi cell, for each vertex of the candidate

polygon, using following condition [4], [5].

Lemma 3: Consider a bounded Voronoi cell V̂k correspond-

ing to a node p. A node q reduces V̂k iff there exists a vertex

v of V̂k such that ‖q − v‖ < ‖p− c‖.

Instead of checking all nodes, only selected nodes will

be checked using the relative configuration information, thus

reducing the number of checks. (In other words, instead of

searching whole of P \ {pi}, only a subset of it is searched.)

Let α(l, j, 1) and α(l, j, 2) be angles corresponding to inter-

sections of Cl and a circle C(vj , dj), centered at vj , the j-th

vertex of current Voronoi polygon, and radius dj = ‖vj− q0‖.
See Figure 5(b) for illustration.

α(l, j, 1(2)) = θ(vj)− (+) cos−1(rk/2dj) (3)

where θ(vj) is the argument of point the vj . For any vertex

vj , if there exists a node inside the disc B̄(vj , dj), then

this node is a Voronoi neighbor of q0 and will reduce the

Voronoi cell. The corresponding perpendicular bisector is

found and the Voronoi cell is updated. Now, if the expansion

phase had terminated at Cn, then, for a vertex vj , we need

to check if there are nodes (robots) on circles Cl, within

the angle range (α(l, j, 1), α(l, j, 2)), m ≥ l > n, where

m = argmaxj∈{n+1,...,K}{rj |rj ≤ dj}, if n < K . If the

expansion phase ended in last circle, then check if there exist

any robots within (α(K, j, 1), α(K, j, 2)), on CK . Note that

number of vertexes of V̂n is at most equal to number of

neighbors of pi in GD.

The contraction phase terminates when for every vertex vj
of the polygon V̂ , the approximate Voronoi cell, corresponding

B̄(vj , dj) does not contain any node (robot).

III. ANALYSIS OF THE ALGORITHM

In this section, we provide correctness results for the pro-

posed distributed algorithm for computation of Voronoi cell.

Lemma 4: The expansion phase terminates in finite time.

This result is trivial as in worst case, the expansion phase

terminates in K-th step and K ≤ N − 1. �

We state a property of Voronoi partition here which will be

used in the following to prove the correctness of the expansion

phase.

Property 1. For any sets of nodes P1,P2 with P1 ⊆ P2,

∀i : pi ∈ P1, Vi(P2) ⊆ Vi(P1).
The Voronoi partition induces an undirected graph known as

Delaunay graph, GD, where two nodes i, j ∈ IN are neighbors

if the intersection of corresponding Voronoi cells Vi and Vj is

a line segment. Set of neighbors of i is denoted as NGD
(i).

Lemma 5: If expansion phase terminates at n-th circle, n <
K , then Vi ⊆ V̂n.

Proof. Let Qn = {q ∈ Q | r(q) ≤ rn} ⊂ Q. Let N (V̂n)
be such that if qj ∈ Nn(V̂n), then V̂n has an edge which is a

line segment in b0j . In other words, if V̂n is the Voronoi cell

of q0, then N (V̂n) is the set of its Voronoi neighbors. Clearly,

Nn(V̂n) ⊂ (Q\{q0}) ⊂ P . Thus, by property 1, Vi(P) ⊆ V̂n.

� computed.

Lemma 6: The contraction phase terminates.

Proof. At any stage in the contraction phase the candidate

Voronoi cell has only a finite number of vertexes and for

each vertex Vi, only a finite number of nodes can lie within

C(vi, di). �

Theorem 1: The polygon or region at the end of contraction

phase represents the Voronoi cell.

17

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 09,2021 at 09:12:32 UTC from IEEE Xplore. Restrictions apply.

−5 0 5 10 15 20 25
−5

0

5

10

15

20

25

q
0

q
1

q
2

q
3

q
4

L
1

L
2

L
3

L
4

Fig. 6. Sample result obtained by implementation of proposed distributed
Voronoi cell computation algorithm. The robot locations are marked with ’*’.

Proof. Let v(i) be the set of vertexes of V̂n, V ′ be the region

obtained at the end of the contraction phase. By Lemma 5,

Vi ⊆ V̂n. Further by Lemma 3, only nodes which can reduce

V̂n are the nodes within B(vj , dj) for all vj ∈ v(i), which is

checked in contraction phase. Thus by Lemma 3, V ′ = Vi. �

IV. ILLUSTRATIVE EXPERIMENTAL RESULT

The algorithm is implemented using C++. In order to

illustrate the result, we considered a simple scenario with 5

robots as shown in Figure 6. The robot computing Voronoi cell

is labeled q0. The expansion phase terminated in 3rd circle and

out of four chords (L1, L2, L3, L4), the chord L2 is discarded

and it can be seen that remaining chords form a closed convex

polygon shown with dark lines. In this situation, the polygon

obtained after expansion phase itself is the final Voronoi cell.

Thus, contraction phase does not modify the polygon created.

V. RELATED WORK

Computation of the complete Voronoi partition is a standard

problem addressed in computational geometry [6]. Calculation

of the Voronoi partition requires the underlying communica-

tion graph of the nodes to be connected. There are only a

few existing techniques that employ a distributed computation

of the Voronoi cell. In [7], an approximate Voronoi cell is

constructed for each node using its four closest nodes, one

from each quadrant. A filter-and-refine algorithm is presented

in [8], where in the first phase, the sensor node computes

an approximate Voronoi cell based on the nodes within its

radio range, which is refined by communicating with other

nodes within an impact range. In [5], the authors consider a

bounded region and an initial node set as a subset of the entire

node set that yields a bounded Voronoi cell. Then a geographic

routing protocol called GPSR is used to probe for nodes that

reduce the initial Voronoi cell and refine it. A similar approach

is used in [9], where the sensors cooperate to refine the

Voronoi cell and achieve a faster convergence. The first phase

of these algorithms constructs approximate candidate Voronoi

cells based on a small number of nodes while using a ‘brute

force’ approach [8]. In contrast to these brute force methods,

we use a more systematic approach in a structured, expansion

phase to construct the initial, approximate Voronoi cells. Also,

the existing algorithms rely on communication protocols to

exchange positional information on demand. In contrast our

work requires robots to exchange positional information with

each other only at the beginning of the algorithm. Finally,

most of the existing techniques were proposed for sensor

networks and rely on specific communication protocols (e.g.,

GPSR[5]). On the other hand, our work is also suitable for

multi-agent/robot settings and does not rely on any specific

communication protocol.

VI. CONCLUSIONS AND FUTURE WORK

We presented a distributed algorithm for computation of ex-

act Voronoi cell in the context of multi-robotic systems. Each

robot computing the corresponding Voronoi cell computes

the configuration of remaining robots in the polar coordinate

system using its position as the reference. The Voronoi cell is

computed in two distinct phases, namely expansion phase and

contraction phase. It was shown that the proposed algorithm

successfully computes the exact Voronoi cell. A detailed analy-

sis of the computational complexity of the proposed algorithm,

comparison of its performance with existing centralized and

distributed algorithms, and optimization of the algorithm to

improve its performance, are some of the ongoing works. We

are also working on a distributed algorithm for computation

of Voronoi cells constrained by the sensor range of robots, as

an extension of the proposed algorithm.

REFERENCES

[1] J. Cortes, S. Martinez, T. Karata, and F. Bullo, “Coverage control for mo-
bile sensing networks,” IEEE Transactions on Robotics and Automation,
vol. 20, no. 2, pp. 243–255, 2004.

[2] A.A. Khalek, L. Al-kanj, Z. Dawy, and G. Turkiyyah, “Site placement and
site selection algorithms for umts radio planning with quality constraints,”
in Proc of IEEE 17th conf on telecommunication, 2010, pp. 375–381.

[3] H.-J. Lee, Y.-H. Kim, Y.-H. Han, and C.Y. Park, “Centroid-based move-
ment assisted sensor deployment schemes in wireless sensor networks,”
in proc of IEEE Vehicular Technology Conference, 2009, pp. 1–5.

[4] I. Stanoi, M. Riedwald, D. Agrawal, and A.E. Abbadi, “Discovery
of influence sets in frequently updtaed databases,” in Proc of 27th

International Conference on Very Large Data Bases, 2001, pp. 99–108.
[5] B.A. Bash and P.J. Desnoyers, “Exact distributed voronoi cell computa-

tion in sensor networks,” in Proc of the Sixth IEEE/ACM Conference On

Information Processing in Sensor Networks, 2007, pp. 236–243.
[6] F. Aurenhammer, “Voronoi diagrams - a survey of a fundamental geomet-

ric data structure,” ACM Computing Surveys, vol. 23, no. 3, pp. 345–405,
1991.

[7] M. Sharifzadeh and C. Shahabi, “Supporting spatial aggregation in sensor
network databases,” in Proc of 12th International Symposium of ACM

GIS, 2004.
[8] B. Harrington and Y. Huang, “In-network surface simplification for sensor

fields,” in Proc of the 13th Annual ACM International Workshop on GIS,
2005.

[9] Y. N. Rodrı́guez, H. Xiao, K. Islam, and W. Alsailih, “A distributed
algorithm for computing voronoi diagram in the unit disk graph model,”
in Proc of 20th Canadian Conference in Computational Geometry, 2008.

18

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 09,2021 at 09:12:32 UTC from IEEE Xplore. Restrictions apply.

