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Abstract—This paper describes an efficient method to detect
safety specification violations in dynamic behavior model of
concurrent/reactive systems. The dynamic behavior of each con-
current object in a reactive system is assumed to be represented
using UML (Unified Modeling Language) statechart diagram.
The verification process involves building a global state space
graph from these independent statechart diagrams and traversal
of large number of states in global state space graph for detecting
a safety violation. In our approach, a safety property to be
verified is read first and a set of events, which could violate this
property, is computed from the model description. We call them
as “relevant events”. The global state space graph is constructed
considering only state transitions caused by the occurrence of
these relevant events. This method reduces the number of states
to be traversed for finding a property violation. Hence, this
technique scales well for complex reactive systems.

As a case study, the proposed technique is applied to verifica-
tion of Generalized Railroad Crossing (GRC) system and safety
property “When train is at railroad crossing, the gate always
remain closed” is checked. We could detect a flaw in the infant
UML model and eventually, correct model is built with the help
of counter example generated. The result of the study shows
that, this technique reduces search space by 59% for the GRC
example.

I. INTRODUCTION

The software systems are growing in size and complexity at

a rapid rate. As a result, the task of timely delivery of quality

software has become extremely difficult. Software verification

techniques based on model checking have been an option

for developers to build quality into software[1]. In the early

1990’s, several model checking tools such as SPIN (Simple

Promela INterpreter)[2], SMV (Symbolic Model Verifier)[3],

SLAM[4], BLAST (Berkeley Lazy Abstraction Software veri-

fication Tool)[5]and RULE BASE[6] are developed. However,

to use model checking tool, user must first develop a formal

model of the application in native language of the tool.

In larger applications, the effort to manually construct the

formal model is considerable investment of time and expertise.

Moreover, input language of most of the model checking tools

is text based and lacks advantages of visual representation.

In recent time, the UML (Unified Modeling Language) has

become de facto standard for modeling the software systems.

It has rich set of visual notations and diagrams for modeling.

The literature suggest methods for verifying properties using

off-the-shelf model checking tools, but issues like translation

of model to model checker’s input language and handling state

explosion are very hard to address ([7],[8],[9],[10]). We have

elaborated these issues in our previous papers [11],[12].

In this paper, we describe a method for verifying the reactive

systems modeled using UML statechart diagrams without

the aid of model checking tool. The statechart diagram for

modeling complex systems is first proposed by David Harel

in 1987[13]. Statecharts are extended state-transition diagrams

with the notions of hierarchy, concurrency and communication.

The reactive systems considered here are state oriented and

respond to the occurrence of internal or external events. The

response may result in change in state and also actions. For

example, in a client-server system, client’s request message

(event) will change the server’s sate from idle to busy and

server respond with an acknowledgement message (action).

Therefore, a reactive (event-driven) system’s behavior is spec-

ified by set of states, events and actions.

The work described in this paper is an extension of the idea

proposed in our earlier paper [14]. The technique presented in

section 2, aims at reducing the number of states to be checked

for detecting safety violation in the behavior of the reactive

systems. We further state that, with this approach, systems

with large state space can be verified and translation of UML

statechart diagrams to input language of the model checker is

avoided. To justify this, in section 3, we describe a case study

of verifying UML statechart model of Generalized Railroad

Crossing (GRC) system. The performance of the verification

technique, applied to GRC is discussed in the section 4. The

findings of this investigation are summarized in the section 5.

II. PROPOSED VERIFICATION TECHNIQUE

A. Assumptions

It is assumed that, the system under consideration has

multiple cooperative objects. These objects communicate via

events. The dynamic behavior of the each object is modeled

using UML statecharts. The objects change their state upon
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receiving an appropriate externally or internally generated

event & the corresponding guard condition becoming true.

The property to be verified is expressed in temporal logic and

represented by the symbol φ. The verification process involves

the translation of each UML statechart to the form of a tuple

{Si, Ei, Ti, Ii},

Where

i represents an object.

Si is a non empty finite set of states.

Ei represent set of events.

Ti ⊆ Si X Si is a set of transitions.

Ii ⊆ Si is a set of initial states.

Let Et be set of total events, i.e Et = {E1 ∪ E2 ..En},

Where n is number of objects in the system.

B. Event based verification approach

The state space of the system is built by combining

(cartesian product) the state transitions of all objects upon

occurrence of each event in Et. Then the error state (negative

behavior) represented as ⇁ φ is searched in the state space

graph. The error state is checked during the construction of

the state space (on-the-fly); if found further exploration of the

state space is terminated and the error trace (counter example)

is displayed.

The state transition of an object completely depends on

externally or internally generated events and any technique

which reduces the number of events to be considered for

constructing state space graph will ultimately reduce the search

space. The approach that is described in this section is based

on this idea. This algorithm finds set of “relevant events” from

the UML statechart of each object of the system. The union

of all these set of relevant events constitutes the set Ert. The

relevant events are computed based on the undesired behavior

(⇁ φ) looked for in the model and using the following rules:

R1: An event is relevant if

R 1.1: there is a transition associated with this event and

has current sate as part of error state (⇁ φ).

R 1.2: there is a transition associated with this event and

has next state as part of error state (⇁ φ).

R2: A set of events are relevant if

R 2.1: there is a sequence of transitions associated with

these events and takes the object from the initial

state to a state, which is part of error state (⇁ φ). In

other words, all events that participate in changing

state of an object from its initial state, subsequently

to a state which is part of the error state.

After set of relevant events is computed, UML statechart of

each object is translated to a from of tuple {Si, Eri, Ti, Ii},

Where Eri represent set of relevant events associated with

an object Oi and Ert set of total relevant events, i.e, Ert =

{Er1 ∪ Er2 ..Ern}. The state space is explored considering

only the events in the set of total relevant events (Ert).

The moment error state is reached or all states are visited,

further state space exploration is terminated. Thus, it saves

the memory and handles systems with large state space (The

exact amount of memory saved varies with the complexity of

the system and property being verified). The flowchart and the

algorithm of the above explained approach are shown in Fig.1

& Fig.2 respectively. This approach is very much suitable for

verification of safety properties of a complex systems having

considerable number of non-relevant events.

In the next section, we illustrate verification procedure by

applying the above described algorithm to a benchmark case

study, the “Generalized Railroad Crossing”(GRC) problem

introduced by Heitmeyser et al[15].

Compute 
 Si : Set of reachable states 
 Ei : Set of all events 
 Ti : Set of all transitions

Is all objects 
considered

Compute Ert : Set of total relevant events

Match found

No match found

No

Yes

Build the state space graph 
Let Initial state be a state, where all objects 

are in local initial states 

Compute successive states 
Consider all events in Ert

Compare ¬Ø 
with the state(s) 

Is all states 
Visited

Is all events 
considered

Bad state found, 
Display error trace 

UML statechart model is error 
freeYes

No

Yes

Compute set of relevant events 
Eri

Repository of rules

No

Read ¬Ø (Negative Property) 

Fig. 1: Flowchart

III. A CASE STUDY

A. Generalized Railroad Crossing(GRC) example

The Generalized Railroad Crossing system is expected to

operate a gate at a railroad crossing (RC). The gate for two

railroad tracks lies in an area of interest (A). The trains move

in both the directions (left to right, right to left) on two tracks

(T1, T2). The trains travel at different speeds and can pass

each other. It is assumed that no two trains are allowed to

move in opposite direction in A on same track at any point

of time. There are sensors (S1, S2, S3, S4 & S5) positioned

as shown in the Fig.3. The sensors indicate when the train
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1:  Read ¬Ø (negative behavior or bad state) from the user;  
2:  for each object i of the system (model)  
3:  {  
4:   Get Si set of reachable states;  
5:  Get Eri set of all relevant events;  
6:   Get Ti set of all transitions;  
7:   Get Ii set of initial states;  
8:  }  
9: for (i=1 to No. of objects) 
10:  Compute Ert= (Ert U Get_relevant_events ( Oi ) ); 

// Build the state space (synchronous product of all objects)//  
11:  Start with state s (all objects are in their initial states);  
12:  for (each relevant_event e� Ert enabled in s & s not empty)  
13:  {  
14:   s

* 
= set of all successor states of s after ei;  

15:   While (s
* 

not empty)  
16:   {  
17:    If (state sj � s

*
, is not in state space)  

18:    {  
19:     add sj to state space;  
20:     push sj on to stack;  
21:     If (state sj is same as ¬Ø)  
22:     {  
23:      Set found flag to true;  
24:      Break;  
25:     }  
26:    Mark the state sj as visited;  
27:    }  
28:   sj = nextstate (sj);  
29:   }  
30:  If (found) Break;  
31:  s= pop ();  
32:  }  
33:  If (found)  
34:   Display “No negative behavior seen in the model”;  
35:  Else  
36:  {  
37:   Display “Negative behavior found”;  
38:   Display Error Trace / Counterexample;  
39:  }  

 

(a) Main routine

 
1:  SET Get_relevant_events ( O

i 
)  

2:  {  
3:   Let Er

i 
= EMPTY;  

4:   while ( T
i  � EMPTY)  

5:   {  
6:    If t

j  
� T

i 
has current state which is part of ¬Ø  

7:     add corresponding e to Er
i
;  

8:    If t
j 
has next state which is part of ¬Ø  

9:     add corresponding e
 
to Er

i
;  

10:    t
j 
= next_transition in T

i
;  

11:   }  
12:   while (I

i 
� NULL)  

13:   {  
14:    s

 
= one of the initial states I

i
;  

15:    while (T
i 
� EMPTY)  

16    {  
17:     Find all t

i 
� T

i, 
taking initial 

 state s to state, which is part of ¬Ø;  
 

18:     add corresponding set of events E
 
to Er

i ; 
19:    }  
20:    s

 
= next_element in I

i 
;  

21:   }  
22:   return (Er

i
);  

23:  }  
 

(b) Routine to compute relevant events

Fig. 2: Algorithm

arrives to region A, leaves the region A, enter RC & exit RC.

The sensor S5 indicate whether gate is closed or open. The

“occupancy interval” is defined as a time interval during which

one or more trains in RC. The system is expected to satisfy

the following properties

1. The gate is closed during all occupancy intervals (Safety)

2. The gate is open, if there is no train in the occupancy

interval (Utility)

3. The gate is open for as much as time possible (Live ness)

S5

Track1 S1 S2 S3 S4

Track2 

Area of Interest (A) 

GATE 

RC

Fig. 3: Railroad crossing

B. UML statechart model of GRC
The dynamic behavior of objects Gate and Track of GRC

system are specified using UML statechart diagrams as shown

Fig.4. The UML statechart for Gate in Fig.4(a) shows an initial

state and four simple states viz., Open, Closing, Closed and

Opening. The gate reacts to external signals by opening &

closing of gate. The UML statechart for Track in Fig.4(b)

shows concurrent composite state consisting of two orthogonal

regions for each track (Track1 & Track2), which are again

having sequential states (OR states). Each orthogonal region

has an initial sate and five simple states viz., No train,

Approaching, Crossing, Stopped and Leaving. The transition

from source states to target states can be possible, when an

appropriate signal/event (given as label on the arrows in Fig.4)

is triggered. All the events considered are listed in the table

I.

TABLE I: Events associated with GRC model

Event Code Description

tkevarrive 1 Event by the track object, when train arrives at
A.

tkeventer 2 Event by the track object, when train enters RC.

tkevexit 3 Event by the track object, when train exits RC.

tkevleave 4 Event by the track object, when train leaves A.

gtevclose 5 Event by the gate object, when gate is closed.

gtevopen 6 Event by the gate object, when gate is opened.
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OPENING

OPEN

CLOSING

CLOSED

tkevEnter()/

tkevExit()

gtevClose()

gtevOpen()

tkevEnter()/

tkevEnter()/

tkevEnter()/

(a) Statechart for the object GATE

TRACK 1 

TRACK2

NO TRAIN 
APPROACHING

tkevArrive()

CROSSING 

C

tkevEnter()

IsgateClosed()
TRUE

STOPPED 

gtevClose()

FALSE

tkevLeave() 

LEAVING

tkevExit()

NO TRAIN 
APPROACHING 

tkevArrive()

CROSSING 

C

tkevEnter()

IsgateClosed()
TRUE

STOPPED 

gtevClose()

FALSE

tkevLeave() 

LEAVING

tkevExit(

tkevEnter()

tkevEnter()

(b) Statechart for the object TRACK

Fig. 4: UML state chart model for GRC

C. State space construction

The state space is constructed from the description of the

system in UML statechart diagrams. The dynamic behavior of

all objects are combined to generate state space graph which

represents the behavior of the entire system. The notion of

”Universe” (U) is useful in describing the construction of state

space. It is the set of all possible combinations of local states

of the objects of a system. The UML statechart model of the

GRC system (see Fig. 4) has two objects Gate and Track, the

Track object has two orthogonal states Track1 and Track2. The

Gate object has 4 local states, Track1 has 5 local states and

Track2 has 5 local states. The U for GRC system will contain

(4 X 5 X 5) 100 states. It is common that the model restricts

the number of reachable states. Thus set of possible states of

state space is always a subset of U. As per UML model, the

state space of the GRC system contains 46 states. The table

II shows all possible states.

TABLE II: All possible states

Sl.No. Gate status Track1 status Track2 status
S1. Open Notrain Notrain
S2. Open Notrain Approaching
S3. Open Notrain Crossing
S4. Open Notrain Leaving
S5. Open Approaching Notrain
S6. Open Approaching Approaching
S7. Open Approaching Crossing
S8. Open Approaching Leaving
S9. Open Crossing Notrain
S10. Open Crossing Approaching
S11. Open Crossing Leaving
S12. Open Leaving Notrain
S13. Open Leaving Approaching
S14. Open Leaving Crossing
S15. Open Leaving Leaving
S16. Closing Notrain Stopped
S17. Closing Stopped Notrain
S18. Closing Stopped Stopped
S19. Closing Stopped Approaching
S20. Closing Stopped Crossing
S21. Closing Stopped Leaving
S22. Closing Approaching Stopped
S23. Closing Crossing Stopped
S24. Closing Leaving Stopped
S25. Closed Notrain Crossing
S26. Closed Approaching Crossing
S27. Closed Crossing Notrain
S28. Closed Crossing Approaching
S29. Closed Crossing Crossing
S30. Closed Crossing Leaving
S31. Closed Leaving Crossing
S32. Opening Notrain Notrain
S33. Opening Notrain Approaching
S34. Opening Notrain Crossing
S35. Opening Notrain Leaving
S36. Opening Approaching Notrain
S37. Opening Approaching Approaching
S38. Opening Approaching Crossing
S39. Opening Approaching Leaving
S40. Opening Crossing Notrain
S41. Opening Crossing Approaching
S42. Opening Crossing Leaving
S43. Opening Leaving Notrain
S44. Opening Leaving Approaching
S45. Opening Leaving Crossing
S46. Opening Leaving Leaving

D. Event based algorithm applied to GRC

The safety property to be checked in the GRC model “When

the train is at RC on Track1 or Track2, the Gate remain closed”

is expressed in temporal logic as follows:

(T1.Crossing ∨ T2.Crossing)=⇒ G.Closed

In our approach, the above mentioned assertion is changed

into negative and treated as an invalid behavior (safety viola-

tion). This invalid behavior is then proved wrong or correct by
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pruning the state space. If the claim is found correct then the

model has a flaw and counter example/error trace is generated

(path from the initial state to error state). The above stated

assertion can be written in the negative form as follows:

(T1.Crossing ∨ T2.Crossing) =⇒ ⇁ (G.Closed)

This means that the train is crossing, when the gate is in open

or opening or closing state.
Once the property to be verified is read, the set of relevant

events from the UML statechart model by applying the rules

stated in the section II-B is computed. The relevant event sets

obtained for GRC case are ErGate = {gtevopen, gtevclose},

ErTrack = {tkevarrive, tkeventer, tkevexit} for objects Gate

and Track respectively. The total set of relevant events is then

computed by taking the union of ErGate and ErTrack, thus

Ert = {gtevopen, gtevclose, tkevarrive, tkeventer, tkevexit}.

The “tkevleave”(see table I) is considered as the non relevant

event and ignored during the construction of the state space.

The Fig.5 shows the exploration of the state space by consid-

ering only the events in the set Ert.

S1

S2

S5

S6

S16

S25

S22

S26

S29

S29

S39

S21

S8

S21

S30

S46

S15

S30

S42

S45

1

1

1

2

5

1

2

5

2

3

2

6

5

2

5 3

6

3

3

INITIAL STATE

ERROR STATE 

Fig. 5: State space exploration

The exploration starts from the initial state S1 (see table II)

and continued till a state is reached, which does not respond to

any of the relevant events. Then we back track to a state which

responds to one of the events in the set Ert. The algorithm

terminates when an error state is reached or no state is left for

further exploration.

In the Fig.5, state exploration starts with initial state S1.

The set of successive states {S2, S5, S6}(See table II) upon

event “tkevarrive” are computed. The state S2 is then picked

randomly for further exploration, this is continued till the state

S15 is reached, which does not respond to any of the relevant

events. We then back track till the state S29 is reached, which

leads to state S42 (darkened state in Fig.5) on event “tkevexit”

(see table I). The state S42 is a bad state as it violates the safety

property(i.e, when one of the train is at the crossing, the gate

starts to open). Once the state exploration is terminated, the

counter example or the error trace is generated as shown in

Fig.6.

Open, No train, No train 

tkevarrive

Open, No train, Approaching 

tkeventer

Closing, No train, Stopped 

tkevarrive

Closing, Approaching, Stopped 

gtevclose 

Closed, Approaching, Crossing 

tkeventer

Closed, Crossing, Crossing 

tkevexit

Opening, Crossing, Leaving 

Fig. 6: Error trace or Counter example

IV. RESULTS AND DISCUSSION

A. Refinement of GRC model

The error trace shown in Fig.6 depicts that, the Gate is

allowed to open, as and when one of the trains crosses the

RC and this leads to the bad state. This flaw in the model can

be avoided by making sure that no train is in the occupancy

interval, before allowing the Gate to open. The corrected UML

statechart of the Gate object is shown in Fig.7. We have

added a global variable “train Count” to the model, which

is incremented every time a train enters the crossing and

decremented every time a train leaves the crossing. There by

we ensure that no train is at crossing, when the Gate begins

to open. This results in a correct GRC model.
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OPENING

OPEN

CLOSING

CLOSED

gtevOpen

Is trainCount==0?

TRUE

C

FALSE

tkevEnter/ 
trainCount++

tkevExit/ 
trainCount--

tkevEnter/ 
trainCount++

gtevClosetkevEnter/ 
trainCount++

trainCount = 0 

tkevEnter/ 
trainCount++

Fig. 7: Corrected UML statechart for the object GATE

B. Performance of the algorithm

The algorithm is evaluated based on the ability to reduce the

state space during the state exploration. The result obtained by

applying the algorithm to GRC system is shown in table III. It

is found that, for detecting the safety property violation in the

UML statechart model of the GRC system with state space

of 46, the event based algorithm explores only 41% of the

complete state space and generates counter example of length

6. Where 6 indicates number of hops to error state from the

initial state.

TABLE III: Performance of the algorithm

State space States explored Error path length
46 19 06

V. CONCLUSIONS

A majority of the existing approaches translate UML state-

chart model into text based modeling language which is then

verified using off-the-shelf model checker. The proposed ver-

ification technique does not translate UML statechart models

to the text based language of the model checker, as it takes

visual model as the input.

In this paper, we have described an event based algorithm

for the verification of safety property violations in UML

statechart model of reactive systems. The correctness of the

verification technique has been illustrated taking “Generalized

Railroad Crossing (GRC)” as a case study.

This approach considers only relevant events for the con-

struction of the state space. This reduces state space signifi-

cantly (59 % for GRC example) and produces error trace of

shorter length (6 for GRC).

We have verified the UML statechart model of the GRC

system for compliance of the safety property “The gate is
closed during all occupancy intervals” and found a flaw in

the initial model. We later corrected it by attaching a global

variable “train count” to the model. The “train count” = 0

ensures no train is at crossing,when gate is open.
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