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Abstract. In this paper, we propose a new method for denoising of images 
based on the distribution of the wavelet transform. We model the discrete wave-
let coefficients as mixture of Laplace distributions. Redundant, shift invariant 
wavelet transform is made use of in order to avoid aliasing error that occurs 
with critically sampled filter bank. A simple Expectation Maximization algo-
rithm is used for estimating parameters of the mixture model of the noisy image 
data. The noise is considered as zero-mean additive white Gaussian. Using the 
mixture probability model, the noise-free wavelet coefficients are estimated us-
ing a maximum a posteriori estimator. The denoising method is applied for gen-
eral category of images and results are compared with that of wavelet-domain 
hidden Markov tree method. The experimental results show that the proposed 
method gives enhanced image estimation results in the PSNR sense and better 
visual quality over a wide range of noise variance. 

1   Introduction 

Wavelets have emerged as a new mathematical tool for statistical image processing. 
Many image processing tasks are efficiently carried out in the wavelet-domain. Wave-
lets provide a compact and decorrelated image representation. The wavelet transform 
uses a set of basis functions, which are shifted and dilated versions of a band pass 
wavelet function and shifted versions of low pass scaling function. The basis func-
tions of wavelets are localized both in time and frequency. The wavelet coefficients 
are computed using filter banks, where the analysis and synthesis filters form a quad-
rature mirror filters. For images, separable transform is constructed by applying filter 
bank to each column and then to each row of the result. The multiresolution nature of 
wavelets gives both local and global view of an image. For an image the wavelet 
coefficients are naturally arranged in the form of quad trees. The children coefficients 
in the quad trees analyze the image at one scale finer than the parent does. 

The wavelet transform can be redundant. The redundancy allows enriching the set 
of basis functions so that the representation is more efficient in capturing information 
contained in an image. Many applications such as edge detection and denoising can 
greatly benefit from redundant representations. In noise filtering, the study the signal 
is required in the domain where statistics of the clean signal and the noise are mod-
eled effectively via appropriate transforms such as the wavelet transform. 
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The simplest method for wavelet-based image denoising is a thresholding rule. 
More advanced image denoising approaches begin with a probability model for the 
wavelet coefficients and then obtain an estimator via Bayesian estimation techniques, 
such as the MAP or MMSE estimator [1]. In this direction, wavelet-domain Hidden 
Markov Tree (HMT) models have demonstrated superior performance in image de-
noising [2]. Wavelet-domain thresholding is used to get an optimal performance in 
[3]. Authors in [4] have proposed bivariate shrinkage function for denoising of images 
by modeling non-Gaussian nature of the wavelet statistics. They have used a bivariate 
probability distribution function for modeling the discrete wavelet coefficients. 

The key point in signal denoising is to choose appropriate probability distribution 
functions (pdf) that represent the wavelet coefficients and estimation of parameters of 
that distribution from noisy data. In this paper, we propose a nonlinear image denois-
ing algorithm based on mixtures of Laplacian distributions for modeling the discrete 
wavelet coefficients. 

2   Background 

Multiscale image expansions implemented with filter banks offers possibility of decom-
position that is shift-invariant. In image denoising applications via thresholding in the 
wavelet-domain, the lack of shift-invariance causes pseudo-Gibbs phenomena around 
singularities. To solve this problem, it is recommended to use decomposition with less 
shift sensitivity than the standard maximally decimated wavelet decomposition [5]. 
Generally, cycle spinning algorithm is employed to improve the denoising performance 
of a non-shift-invariant design. It is equivalent to a shift-invariant denoising if all the 
possible shifts of the input image are used and it is computationally more expensive. 

The wavelet coefficients of natural images are generally having heavy tailed distri-
butions and approximately uncorrelated. There exists a strong dependence on adjacent 
coefficients in scale and space. This suggests that multivariate Gaussian model is not 
accurate for wavelet-domain modeling of natural images, even though it is easy to 
work with such models. In wavelet-based image denoising, non-Gaussian probability 
models may provide superior performance in achieving high quality results. 

3   Formulation of Problem 

In this section, mathematical formulation of image denoising problem is explained. An 
image corrupted with zero-mean additive white Gaussian noise is considered. In the 
orthogonal wavelet domain, the problem can be formulated as y w n= + , where y  is 

the noisy wavelet coefficient, w  is the noise free wavelet coefficient and n  is the noise. 
For wavelet-based denoising using distributions, it is useful to know the distribution of 
the clean and noisy wavelet coefficients. Let ( )wp w  be the probability distribution 

function (pdf) of w  and ( )np n  be the pdf of n . In [6] pdf of wavelet coefficients is 

modeled as a generalized Gaussian with  ( ) ( , ) exp
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are the parameters of the model and ( , )K s p  is the normalization factor. 


