
TCP Variants for Data Center Networks: A
Comparative Study

Rohit P. Tahiliani
Dept. of Computer Science and Engineering

NMAM Institute of Technology, Nitte
Karnataka, India 574110

rohit.tahil@gmail.com

Mohit P. Tahiliani and K. Chandra Sekaran
Dept. of Computer Science and Engineering
National Institue of Technology Karnataka,

Surathkal, Karnataka, India 575025
tahiliani.nitk@gmail.com, kchnitk@gmail.com

Abstract—Transmission Control Protocol (TCP) has been the
workhorse of the Internet ever since its inception. The success
of the Internet, infact, can be partly attributed to the congestion
control mechanisms implemented in TCP. Though the scale of the
Internet and its usage increased exponentially in recent past, TCP
has evolved to keep up with the changing network conditions and
has proven to be scalable and robust. However, the performance
of TCP in Data Center Networks has been a major concern
recently because it leads to impairments such as TCP Incast,
TCP Outcast, Queue build-up and Buffer pressure. With cloud
computing becoming an important part of the foreseeable future,
it has become extremely important to enhance the performance of
TCP in Data Center Networks and overcome these impairments.
In this paper, we describe the above mentioned impairments in
brief and then compare the TCP variants proposed so far to
ovecome these impairments in Data Center Networks. The ad-
vantages and shortcomings of every TCP variant are highlighted
with respect to its efficacy and the deployment complexity. A
few open issues related to TCP’s performance in Data Center
Networks are also discussed.

Index Terms—Data Center Networks, TCP Incast, TCP Out-
cast, Queue build-up, Buffer pressure.

I. INTRODUCTION

Internet over the past few years has transformed from an
experimental system into a gigantic and decentralized source
of information. Data centers form the backbone of the Internet
and host diverse applications ranging from social networking
to web search and web hosting to advertisements. Transmis-
sion Control Protocol (TCP) is one of the most dominant
transport protocols and is widely used by a large variety of
Internet applications and hence, constitutes majority of the
traffic in Data Center Networks [1]. Data center environment,
however, is largely different than that of the Internet e.g., the
Round Trip Time (RTT) in Data Center Networks can be as
less as 250𝜇s in the absence of queuing [2]. The reason is
that Data Center Networks are well designed and layered to
achieve high-bandwidth and low-latency.

The traffic in Data Center Networks can be classified into
three types [1]: (i) Mice traffic - the queries form the mice
traffic (e.g. google search, facebook updates, etc). Majority
of the traffic in a data center network is query traffic and its
data transmission volume is usually less. (ii) Cat traffic - the
control state and co-ordination messages form the cat traffic
(e.g. small and medium sized file downloads, etc) and (iii)

TABLE I
DATA CENTER TRAFFIC: APPLICATIONS AND PERFORMANCE

REQUIREMENTS

Traffic Type Examples Requirements
Mice traffic (<
100KB)

Google Search, Facebook Short response times

Cat traffic
(100KB-5MB)

Picasa, YouTube, Facebook
photos

Low latency

Elephant traffic
(> 5MB)

Software updates, Video On-
demand

High throughput

Elephant traffic - the large updates form the elephant traffic
(e.g. anti-virus updates, movie downloads, etc). The different
traffic types in Data Center Networks, their applications and
performance requirements are summarized in Table I.

Thus, bursty query traffic, delay sensitive cat traffic and
throughput sensitive elephant traffic co-exist in Data Center
Networks. Therefore, the three basic requirements of the data
center transport are high burst tolerance, low latency and high
throughput [1]. The state-of-the-art TCP fails to satisfy these
requirements together within the time boundaries because of
impairments such as TCP Incast [2], TCP Outcast [3], Queue
build-up [1] and Buffer pressure [1].

Recently, a few TCP variants have been proposed for Data
Center Networks. The major goal of these TCP Variants is
to overcome the above mentioned impairments and improve
the performance of TCP in Data Center Networks. This paper
describes each of the above mentioned problems in brief,
followed by a comparative study of TCP variants that aim
to overcome these problems. Although a few other transport
protocols have been proposed for Data Center Networks, we
restrict the scope of this paper to TCP variants because TCP
is the most widely deployed transport protocol in modern
operating systems.

The rest of the paper is organized as follows: Section II
describes the challenges for TCP in Data Center Networks.
Section III presents a comparative study of TCP variants de-
signed for Data Center Networks along with their advantages
and shortcomings. Section IV summarizes the comparative
study. Section V discusses a few open issues related to the
performance of TCP in Data Center Networks and Section VI
concludes the paper.

2012 International Symposium on Cloud and Services Computing

978-0-7695-4931-6/12 $26.00 © 2012 IEEE

DOI 10.1109/ISCOS.2012.38

57

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 09,2021 at 05:59:55 UTC from IEEE Xplore. Restrictions apply.

II. CHALLENGES FOR TCP IN DATA CENTER NETWORKS

The four problems described below are the major challenges
faced by TCP in Data Center Networks. We start with the most
popular one, TCP Incast.

A. TCP Incast

TCP Incast has been defined as the pathological behaviour
of TCP that results in gross under-utilization of the link ca-
pacity in various many-to-one communication patterns [4], e.g.
partition/aggregate application pattern as shown in Fig. 1. Such
many-to-one communication pattern is the foundation of nu-
merous large scale applications like web search, MapReduce,
social network content composition, advertisement selection,
etc [1], [5].

Fig. 1. Partition/Aggregate Application Structure

In such many-to-one communication patterns, an aggregator
issues data requests to multiple worker nodes. The worker
nodes upon receiving the request, concurrently transmit a large
amout of data to the aggregator (see Fig. 2). The data from
all the worker nodes traverse a bottleneck link in many-to-
one fashion. The probability that all the worker nodes send
the reply at the same time is high because of the tight time
bounds. Therefore, the packets from these nodes happen to
overflow the buffers of Top of the Rack (ToR) switches and
thus, lead to packet losses. This phenomenon is also known as
“synchronized mice collide” [1]. Moreover, as the number of
concurrent worker nodes increases, the perceived application
level throughput at the aggregator decreases due to a large
number of packet losses. The lost packets are retransmitted
only after the Retransmit TimeOut (RTO), which is generally
in the order of few milliseconds. It must be noted that
“Fast Retransmit” mechanism may not be possible for these
applications since the data transmission volume of such traffic
is quite less and hence, there are very few packets in the entire
flow. As a result, the sender may not get sufficient duplicate
acknowledgements (dupacks) to trigger a Fast Retransmit.

A lot of solutions, ranging from application layer solutions
to transport layer solutions and link layer solutions have
been proposed recently to overcome the TCP Incast problem.
Ren et al [6] provides a detailed analysis and summary of
all such solutions. This paper, instead, focuses mainly on
analyzing TCP based solutions to overcome TCP Incast and
other performance problems in Data Center Networks.

Fig. 2. TCP Incast

B. TCP Outcast

When a large set of flows and a small set of flows arrive at
two different input ports and compete for the same bottleneck
output port, the small set of flows lose out on their throughput
share significantly. This phenomenon has been termed as TCP
Outcast [3] and mainly occurs in data center switches that
employ drop-tail queues. Drop-tail queues leads to consecutive
packet drops from one port and hence, cause frequent TCP
timeouts. This property of drop-tail queues is termed as “Port
Blackout” [3] and it significantly affects the performance of
small flows because frequent timeouts lead to high latencies
and thus, poor quality results. Fig. 3 shows an example
scenario of port blackout where A and B are input ports
whereas C is the common output port. The figures shows that
packets arriving at Port B are successfully queued whereas
those arriving at Port A are dropped consecutively.

Fig. 3. Example scenario of Port Blackout [3]

It is well known that the throughput of a TCP flow is
inversely proportional to the RTT of that flow. This behavior of
TCP leads to RTT-bias i.e., flows with low RTT achieve larger
share of bandwidth than the flows with high RTT. However, it
has been observed that due to TCP Outcast problem in Data
Center Networks, TCP exhibits Inverse RTT-bias [3] i.e., flows
with low RTT are outcasted by flows with high RTT.

The two main factors that cause TCP Outcast are: (i) the
usage of drop-tail queues in switches and (ii) many-to-one
communication pattern which leads to a large set of flows and
a small set of flows arriving at two different input ports and
competing for the same bottleneck output port. Both these

58

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 09,2021 at 05:59:55 UTC from IEEE Xplore. Restrictions apply.

factors are quite common in Data Center Networks since
majority of the switches employ drop-tail queues and many-
to-one communication pattern is the foundation of many cloud
applications.

A straightforward approach to mitigate TCP Outcast is to
use queuing mechanisms other than drop-tail e.g., Random
Early Detection (RED) [7], Stochastic Fair Queue (SFQ) [3],
etc. Another possible approach is to minimize the buffer occu-
pancy at the switches by designing efficient TCP congestion
control laws at the end hosts.

C. Queue Buildup

Due to the diverse nature of cloud applications, mice traffic,
cat traffic and elephant traffic co-exist in a Data Center
Network. The long lasting and greedy nature of elephant
traffic drives the network to the point of extreme congestion
and overflows the bottleneck buffers. Thus, when both mice
traffic and elephant traffic traverse through the same route, the
performance of mice traffic is significantly affected due to the
presence of the elephant traffic [1].

Following are two ways in which the performance of mice
traffic is degraded due to the presence of elephant traffic [1]:
(i) since most of the buffer is occupied by elephant traffic,
there is a high probability that the packets of mice traffic get
dropped. The implications of this situation are similar to that of
TCP Incast because the performance of mice traffic is largely
affected by frequent packet losses and hence, the timeouts.
(ii) the packets of mice traffic, even when none are lost, suffer
from increased queuing delay as they are in queue behind the
packets of elephant traffic. This problem has been termed as
Queue build-up.

Queue build-up problem can be solved only by minimizing
the queue occupancy in the Data Center Network switches.
Most of the existing TCP variants employ reactive approach
towards congestion control and hence, fail to minimize the
queue occupancy. A proactive approach, instead, is desired to
minimize the queue occupancy and overcome the problem of
queue build-up.

D. Buffer pressure

Buffer pressure is yet another impairment caused by the
long lasting and greedy nature of elephant traffic. When both
mice trafffic and elephant traffic co-exist on the same route,
most of the buffer space is occupied by packets from the
elephant traffic. This leaves a very little room to accommodate
the burst of mice traffic packets arising out of many-to-one
communication pattern. The result is that large number of
packets from mice traffic are lost, leading to poor performance.
Moreover, majority of the traffic in Data Center Networks
is bursty [1] and hence, packets of mice traffic get dropped
frequently because the elephant traffic lasts for a longer time
and keeps most of the buffer space occupied.

Like Queue build-up, Buffer pressure problem too can be
solved by minimizing the buffer occupancy in the switches.

III. TCP VARIANTS FOR DATA CENTER NETWORKS

A. Fine grained TCP RTO [2]

The default value of minimum RTO in TCP is generally
200ms. This value of RTO is suitable for Internet like scenarios
where the average RTT is in order of hundreds of milliseconds.
However, it is significantly larger than the average RTT in a
data center which is in the order of a few micro-seconds.
Large number of packet losses due to TCP Incast, TCP
Outcast, Queue build-up and Buffer pressure result in frequent
timeouts and in turn, lead to missed deadlines and significant
degradation in the performance of TCP. Phanishayee et al
show that reducing the minimum RTO from 200ms to 200𝜇s
significantly alleviates the problems of TCP in simulations
and improves the overall throughput by several orders of
magnitude.

Advantages: The major advantage of this approach is that
it requires minimum modification to the traditional TCP and
hence, can be easily deployed without any further complexity.

Shortcomings: The real time deployment of fine grained
timers is a challenging issue because the present operating
systems lack the high-resolution timers required for such low
RTO values. Moreover, fine grained RTOs may be not suitable
for servers that communicate to clients through the Internet.
Apart from the implementations issues of fine grained timers,
it must be noted that this approach of eliminating drawbacks
of TCP in Data Center Networks is a reactive approach. It tries
to reduce the impact of a packet loss rather than avoiding the
packet loss in the first place. Hence, though this approach
minimizes the implications of TCP Incast, it cannot overcome
the problems such as Queue build-up, Buffer pressure or even
TCP Outcast.

B. Fine grained TCP RTO + Delayed ACKs disabled [2]

Delayed ACKs are mainly used for reducing the overhead of
ACKs on the reverse path. When delayed ACKs are enabled,
the receiver sends only one ACK for every two data packets
received. If only one packet is received, the receiver waits
for delayed ACK timeout period before sending an ACK.
This timeout period is usually 40ms. This scenario may lead
to spurious retransmissions if fine grained RTO timers (as
explained in the previous section) are deployed. The reason
is that receiver waits for 40ms before sending an ACK for the
received packet and by that time, fine grained RTO which is
in order of few microseconds, expires and forces the sender to
retransmit the packet. Thus, either the delayed ACK timeout
period must be reduced to a few microseconds or must be
completely disabled while using fine grained RTOs to avoid
such spurious retransmissions. This approach further enhances
the TCP throughput in Data Center Networks.

Advantages: It has been shown in [2] that reducing the
delayed ACK timeout period to 200𝜇s while using fine grained
RTO achieves far better throughput than the throughput ob-
tained when delayed ACKs are enabled. Moreover, completely
disabling the delayed ACKs while using fine grained RTO
further improves the overall TCP throughput.

59

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 09,2021 at 05:59:55 UTC from IEEE Xplore. Restrictions apply.

Shortcomings: The shortcomings of this approach are ex-
actly similar to that of the previous one because this approach
is an undesired side-effect of the previous approach.

C. DCTCP: Data Center TCP [1]

Additive Increase Multiplicative Decrease (AIMD) is the
cornerstone of TCP congestion control algorithms. When an
acknowledgement (ACK) is received in AIMD phase, the
congestion window (cwnd) is increased as shown in (1). This
is known as Additive Increase phase of the AIMD algorithm.

𝑐𝑤𝑛𝑑 = 𝑐𝑤𝑛𝑑+
1

𝑐𝑤𝑛𝑑
(1)

When congestion is detected either through dupacks or
Selective Acknowledgement (SACK), cwnd is updated as
shown in (2). This is known as Multiplicative Decrease phase
of the AIMD algorithm.

𝑐𝑤𝑛𝑑 =
𝑐𝑤𝑛𝑑

2
(2)

DCTCP employs an efficient multiplicative decrease mech-
anism which reduces the cwnd based on the amount of con-
gestion in the network rather than reducing it by half. DCTCP
leverages Explicit Congestion Notification (ECN) mechanism
[8] to extract multi-bit feedback on the amount of congestion
in the network from the single bit stream of ECN marks. On
receiving the congestion notification via ECN, the cwnd in
DCTCP is reduced as shown in (3).

𝑐𝑤𝑛𝑑 = 𝑐𝑤𝑛𝑑× (1− 𝛼

2
) (3)

where 𝛼 (0 ⩽ 𝛼 ⩽ 1) is an estimate of the fraction of
packets that are marked and is calculated as shown in (4). F
in (4) is the fraction of packets that are marked in the previous
cwnd and g (0 < g < 1) is the exponential weighted moving
average constant. Thus, when congestion is low (𝛼 is near 0),
cwnd is reduced slightly and when congestion is high (𝛼 is
near 1), cwnd is reduced by half, just like traditional TCP.

𝛼 = (1− 𝑔)× 𝛼+ 𝑔 × 𝐹 (4)

The major goal of DCTCP algorithm is to achieve low
latency (desirable for mice traffic), high throughput (desirable
for elephant traffic) and high burst tolerance (to avoid packet
losses due to incast). DCTCP achieves these goals by reacting
to the amount of congestion rather than blindly reducing the
cwnd by half. DCTCP uses a marking scheme at switches
that sets the Congestion Experienced (CE) codepoint [8] of
packets as soon as the buffer occupancy exceeds a fixed pre-
determined threshold (17% as mentioned in [9]). The DCTCP
source reacts by reducing the window by a factor that depends
on the fraction of marked packets: the larger the fraction, the
bigger the decrease factor.

Advantages: DCTCP is a novel TCP variant which allevi-
ates TCP Incast, Queue-up and Buffer pressure problems in
Data Center Networks. It requires minor modifications to the
original design of TCP and ECN to achieve these performance

benefits. DCTCP employs a proactive behavior i.e., it tries to
avoid packet loss. It has been shown in [1] that when DCTCP
uses fine grained RTO, it further reduces the implications of
TCP Incast and also improves the scalability of DCTCP. The
stability, convergence and fairness properties of DCTCP [9]
make it a suitable solution for implementation in Data Center
Networks. Moreover, DCTCP is already implemented in latest
Microsoft Windows Server operating systems.

Shortcomings: The performance of DCTCP falls back to
that of TCP when the degree of Incast increases beyond 35
i.e., if there are more than 35 worker nodes sending data
to the same aggregator, DCTCP fails to avoid Incast and its
performance is similar to that of TCP. However, authors show
that dynamic buffer allocation at the switch can scale DCTCP’s
performance to handle upto 40 worker nodes in parallel.
Moreover, apart from the scalability issues, it is not clear
whether DCTCP can alleviate the problem of TCP Outcast.
DCTCP utilizes minimum buffer space in the switches, which
infact, is a desirable property to avoid TCP Outcast. However,
a few more experiments are required to conclude whether
DCTCP can overcome the problem of TCP Outcast.

D. ICTCP: Incast Congestion Control for TCP [5]

Like DCTCP, the main idea of ICTCP is to avoid packet
losses due to congestion rather than recovering from the packet
losses. It is well known that a TCP sender can send a minimum
of advertised window (rwnd) and congestion window (cwnd)
(i.e. min(rwnd, cwnd)). ICTCP leverages this property and
efficiently varies the rwnd to avoid TCP Incast. The major con-
tributions of ICTCP are: (a) The available bandwidth is used
as a quota to co-ordinate the rwnd increase of all connections.
(b) Per flow congestion control is performed independently and
(c) rwnd is adjusted based on the ratio of difference between
expected throughput and measured throughput over expected
throughput. Moreover, live RTT is used for the throughput
estimation.

Advantages: Unlike DCTCP, ICTCP does not require any
modifications at the sender side (i.e. worker nodes) or net-
work elements such as routers, switches, etc. Instead, ICTCP
requires modification only at the receiver side (i.e. an aggre-
gator). This approach is adopted to retain the backward com-
patibility and make the algorithm general enough to handle
the Incast congestion in future high-bandwidth, low-latency
networks.

Shortcomings: Although authors of ICTCP show that they
achieve almost zero timeout and high throughput, the scala-
bility of ICTCP is a major concern i.e., how to handle Incast
congestion when there are extremely large number of flows
because ICTCP employs per flow congestion control. Another
limitation of ICTCP is that it assumes that both the sender and
the receiver are under the same switch, which might not be
the case always. Moreover, it is not known how much buffer
space is utilized by ICTCP. Hence, it is difficult to conclude
whether ICTCP can handle Queue build-up, Buffer pressure
and TCP Outcast problems in a Data Center Network.

60

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 09,2021 at 05:59:55 UTC from IEEE Xplore. Restrictions apply.

E. IA-TCP: Incast Avoidance algorithm for TCP [10]

Unlike DCTCP and ICTCP which use window based con-
gestion control, IA-TCP uses rate based congestion control
algorithm to control the total number of packets injected in
the network. The motivation behind selecting rate based con-
gestion control mechanism is that window based congestion
control mechanisms in Data Center Networks have limitations
in terms of scalability i.e., number of senders in parallel.

The main idea of IA-TCP is to limit the total number of
outstanding data packets in the network so that it does not
exceed the bandwidth-delay product (BDP). IA-TCP employs
ACK regulation at the receiver and like ICTCP, leverages the
advertised window (rwnd) field of the TCP header to regulate
the cwnd of every worker node. The minimum rwnd is set
to 1 packet. However, if large number of worker nodes send
packets with respect to a minimum rwnd of 1 packet, the total
number of outstanding packets in the network may exceed the
link capacity. In such scenarios, IA-TCP adds delay, Δ, to the
ACK packet to ensure that the aggregate data rate does not
exceed the link capacity. Moreover, IA-TCP also uses delay,
Δ, to avoid the synchronization among the worker nodes while
sending the data.

Advantages: Like ICTCP, IA-TCP also requires modifica-
tion only at the receiver side (i.e. an aggregator) and does not
require any modifications at the sender or network elements.
IA-TCP achieves high throughput and significantly improves
the query completion time. Moreover, the scalability of IA-
TCP is clearly demonstrated by configuring upto 96 worker
nodes sending data in parallel.

Shortcomings: Like ICTCP, it is not clear how much buffer
space is utilized by IA-TCP. Hence, it is difficult to conclude
whether IA-TCP can handle Queue build-up, Buffer pressure
and TCP Outcast problems in a Data Center Network.

F. D2TCP: Deadline-aware Datacenter TCP [11]

D2TCP is a novel TCP-based transport protocol which is
specifically designed to handle high burst situations. Unlike
other TCP variants (DCTCP, ICTCP and IA-TCP) which are
deadline-agnostic, D2TCP is deadline-aware. D2TCP uses a
distributed and reactive approach for bandwidth allocation
and employs a novel deadline-aware congestion avoidance
algorithm which uses ECN feedback and deadlines to vary
the sender’s cwnd via a gamma-correction function [11].

D2TCP does not maintain per flow information and instead,
inherits the distributed and reactive nature of TCP while
adding deadline-awareness to it. Similarly, D2TCP employs its
congestion avoidance algorithm by adding deadline-awareness
to DCTCP. The main idea, thus, is that far-deadline flows back-
off aggressively and the near-deadline flows back-off only a
little or not at all.

Advantages: The novelty of D2TCP lies in the fact that it is
easily deployable, avoids TCP Incast as well as Queue build-up
and has high burst tolerance because it is built upon DCTCP.
In addition, it is deadline-aware and reduces the fraction of
missed deadlines upto 75% as compared to DCTCP.

Shortcomings: The shortcomings of D2TCP are exactly
similar to those of DCTCP. The major concern is scalability
in terms of number of worker nodes in parallel. Further
experiments are required to conclude whether D2TCP can
overcome TCP Outcast problem.

IV. SUMMARY

Table II summarizes the comparative study of TCP variants
proposed for Data Center Networks. Apart from the novelty of
the proposed TCP variant, the table also highlights the deploy-
ment complexity of each protocol. The protocols which require
modifications in sender, receiver and switch are considered as
hard to deploy. The ones which require modification only at
the sender or receiver are considered as easy to deploy.

Apart from the above mentioned parameters, the summary
also includes which problems amongst TCP Incast, TCP
Outcast, Queue build-up and Buffer pressure are alleviated
by each TCP variant. The details regarding the tools used /
approach of implementation adopted by the authors are also
listed.

V. OPEN ISSUES

As discussed throughout the paper, several modifications
have been proposed to the original design of TCP. However,
there is an acute need to further optimize the performance of
TCP variants discussed above. A few open issues are listed
below:

∙ An experimental evaluation and comparison of the above
mentioned TCP variants over a wide range of Data Center
Network scenarios is highly desired to confirm their
suitability and sustainability in Data Center Networks.

∙ DCTCP, ICTCP and D2TCP have scalability issues i.e.,
if the number of worker nodes increases beyond 40, these
TCP variants fail to avoid TCP Incast. The performance
degradation in such scenarios can be significantly min-
imized if these TCP variants are modified to use fine
grained RTO and delayed ACKs are disabled. Though
this has been already done by the authors of DCTCP in
[1], it has not been carried out with respect to ICTCP
and D2TCP. Thus, the robustness of ICTCP and D2TCP
in Data Center Networks can be further enhanced by
coupling each with fine grained RTO + disabled delayed
ACK approach.

∙ The buffer space utilization while using ICTCP and IA-
TCP needs further investigation to ensure these protocols
overcome the problems of Queue build-up and Buffer
pressure. Moreover, the performance of ICTCP and IA-
TCP has not been analyzed when switches employ Active
Queue Management (AQM) mechanisms such as RED,
SFQ, etc.

∙ Except D2TCP, all other TCP variants are deadline-
agnostic. Meeting deadlines is the most important re-
quirement in Data Center Networks. While D2TCP pro-
poses once approach of meeting deadlines, a few more
approaches need to be explored to improve the overall
performance of Data Center Networks.

61

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 09,2021 at 05:59:55 UTC from IEEE Xplore. Restrictions apply.

TABLE II
SUMMARY OF TCP VARIANTS PROPOSED FOR DATA CENTER NETWORKS

TCP Variants proposed
for Data Center

Networks

Modifies
Sender

Modifies
Receiver

Modifies
Switch

Solves
TCP
Incast

Solves
TCP
Outcast

Solves
Queue
build-up

Solves
Buffer
pressure

Implementation

Fine grained TCP RTO ✓ x x ✓ x x x ns-2
Fine grained TCP RTO +
Delayed ACKs disabled

✓ x x ✓ x x x ns-2

DCTCP ✓ ✓ ✓ ✓ x ✓ ✓ Testbed and ns-2
ICTCP x ✓ x ✓ x x x Testbed
IA-TCP x ✓ x ✓ x x x ns-2
D2TCP ✓ ✓ ✓ ✓ x ✓ ✓ Testbed and ns-3

∙ A convincing solution to TCP Outcast problem is un-
available. An optimal solution to overcome TCP Outcast
must ensure minimal buffer occupancy at the switch and
usage of efficient AQM mechanisms rather than simple
drop-tail mechanisms.

∙ All the TCP variants discussed in the paper above have
not yet been tested in TCP Outcast scenarios. An exper-
imental analysis of the same is highly desired.

VI. CONCLUSIONS

Data Centers in the present scenario house a plethora of
Internet applications. These applications are diverse in nature
and have various performance requirements. Majority of these
applications use many-to-one communication pattern to gain
performance efficiency. TCP, which has been a mature trans-
port protocol of Internet since past several decades, suffers
from performance impairments such as TCP Incast, TCP
Outcast, Queue build-up and Buffer pressure in Data Center
Networks.

In this paper, we have described each of the above men-
tioned impairment in brief along with the causes and possible
approaches to mitigate them. Moreover, we have carried out
a comparative study of TCP variants which have been specif-
ically designed for Data Center Networks and the advantages
and shortcomings of each TCP variant are highlighted. The
study is summarized by briefly listing out the following for ev-
ery TCP variant: the deployment complexity, efficiency against
the above mentioned impairments and the tools used for
implementation. A few open issues related to the performance
of the TCP variants proposed for Data Center Networks are
also discussed.

REFERENCES

[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data Center
TCP (DCTCP),” SIGCOMM Computer Communications Review,
vol. 40, no. 4, pp. 63–74, Aug. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1851275.1851192

[2] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G.
Andersen, G. R. Ganger, G. A. Gibson, and B. Mueller, “Safe
and effective Fine-grained TCP Retransmissions for Datacenter
Communication,” SIGCOMM Computer Communications Review,
vol. 39, no. 4, pp. 303–314, Aug. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1594977.1592604

[3] P. Prakash, A. Dixit, Y. C. Hu, and R. Kompella, “The TCP
Outcast Problem: Exposing Unfairness in Data Center Networks,”
in Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI’12. Berkeley, CA,
USA: USENIX Association, 2012, pp. 30–30. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2228298.2228339

[4] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph,
“Understanding TCP Incast Throughput Collapse in Datacenter
Networks,” in Proceedings of the 1st ACM workshop on
Research on Enterprise Networking, ser. WREN ’09. New
York, NY, USA: ACM, 2009, pp. 73–82. [Online]. Available:
http://doi.acm.org/10.1145/1592681.1592693

[5] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast Congestion
Control for TCP in Data Center Networks,” in Proceedings
of the 6th International Conference, ser. Co-NEXT ’10. New
York, NY, USA: ACM, 2010, pp. 13:1–13:12. [Online]. Available:
http://doi.acm.org/10.1145/1921168.1921186

[6] Y. Ren, Y. Zhao, P. Liu, K. Dou, and J. Li, “A survey on
TCP Incast in Data Center Networks,” International Journal of
Communication Systems, pp. n/a–n/a, 2012. [Online]. Available:
http://dx.doi.org/10.1002/dac.2402

[7] S. Floyd and V. Jacobson, “Random Early Detection Gateways for
Congestion Avoidance,” IEEE/ACM Transactions on Networking,
vol. 1, pp. 397–413, August 1993. [Online]. Available:
http://dx.doi.org/10.1109/90.251892

[8] K. K. Ramakrishnan and S. Floyd, “The Addition of Explicit Congestion
Notification (ECN) to IP,” 2001, rFC 3168.

[9] M. Alizadeh, A. Javanmard, and B. Prabhakar, “Analysis of DCTCP:
Stability, Convergence and Fairness,” in Proceedings of the ACM
SIGMETRICS, Joint International Conference on Measurement and
Modeling of Computer Systems, ser. SIGMETRICS ’11. New
York, NY, USA: ACM, 2011, pp. 73–84. [Online]. Available:
http://doi.acm.org/10.1145/1993744.1993753

[10] J. Hwang, J. Yoo, and N. Choi, “IA-TCP: A Rate Based Incast-
Avoidance Algorithm for TCP in Data Center Networks,” ICC 2012,
2012.

[11] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware Datacenter
TCP (D2TCP),” SIGCOMM Computer Communications Review,
vol. 42, no. 4, pp. 115–126, Aug. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2377677.2377709

62

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 09,2021 at 05:59:55 UTC from IEEE Xplore. Restrictions apply.

