
 

 

 

  

Abstract— Graphical Processing Units (GPUs) have been, 
lately used for  general purpose tasks owing to their  implicit 
parallel nature. One such task is that of pattern classification. 
Highly parallel tasks like these suffer  from performance loss 
owing to the sequential nature of Central Processing Unit 
(CPU). To match the image processing power  of human brain 
even slightly, this problem beckons the utilization of enor mous 
computational power  and parallel environs of GPUs.  Unless 
there is a task which can be parallelized to the required extent 
the gain obtained is lost owing to the overhead involved. Thus, 
it is equally impor tant to understand some limitations of GPU 
before ventur ing in this direction and deal with it appropr iately 
to obtain satisfactory results. Ar tificial Neural Networks (ANN) 
are found to be appropr iate while dealing with pattern 
recognition problems. Kohonen’s Self Organizing Map (SOM) 
has been used for  classification out of other  approaches for  its 
implicit parallel nature, albeit with minor  modifications to 
make it suit the parallel environment. nVIDIA GeForce 6150 
Go with Microsoft Research Accelerator  as the high level 
library has been chosen as the platfor m to provide this 
environment. 

I. INTRODUCTION 

HE  field of  pattern classification has always been 

intriguing. There are several reasons for this, out of 

which prominent ones have been its computationally 

intensive nature, vastness of the domain of patterns, degree 

of supervision required. To solve the latter problem, Self 

Organizing Maps (SOMs) [1], [2] based on unsupervised 

learning strategy have been used.  

Self Organizing Maps have had a profound presence in 

the field of machine learning. Several Artificial Neural 

Network (ANN) literatures testify this. Unsupervised 

learning differs from its supervised counterpart in that the 

latter modifies its strategies (feedback) based on difference 

between actual output and required output (which is known 

during training phase).On the other hand, unsupervised 

learning exploits the implicit structure of input domain to 

assign them to their respective classes. A direct consequence 

of this is that demarcation is sharper in case of supervised. 

But, it can be seen that using supervised learning for patterns 

which are not known beforehand and which have complex 

mapping is clearly not feasible. Kohonen’s algorithm based 

on competitive unsupervised learning plays significant role 

here. A 2-dimensional quadratic layer of weights have been 

used which are randomized on first run but future runs use 
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the weights which are stored to stable storage in the first run. 

Input vectors are arrays of floating-point values which best 

approximate the pattern obtained after sampling the original 

monochromatic image. These one-dimensional input vectors 

are fully/partially connected to output layer of neurons. 

Winner Takes All (WTA) [2] strategy has been employed 

where output neuron with maximum activation is assigned 

output of 1.0 and all others is assigned 0.0. The criterion for 

winner selection can also be based on the factor of minimal 

Euclidean distance. Maximum activation method is used 

when the weights are normalized beforehand. Designated 

numbers of neurons in the vicinity of winner neuron have 

their weights updated along with the winner neuron. A 

neuron winning persistently can also be suppressed 

temporarily to absorb others into learning process. This 

neighborhood is decided by a rough approximation of the 

Mexican Hat function which is normalized second derivative 

of a Gaussian function. Learning is controlled by the 

parameter alpha which is initialized to a value in {0, 1}.This 

training process is repeated for several patterns for a certain 

number of iterations until there is convergence.  The 

neighborhood size is decreased steadily over time along with 

alpha in order to attain stability. The output of this phase is a 

set of weights which map the input domain to a great extent. 

SOMs are also used in problems of NP-Complete nature like 

Travelling Salesman Problem (TSP) [3], [4] where general 

algorithmic approach turns to be expensive. 

Clearly the process is time devouring even for a modern 

computer considering an input vector of length 1000 and 

weights of size 1000 × 2000 and several hundred patterns 

and several iterations. The human brain with its vast intricate 

network of neurons has excelled in this field to a degree 

beyond comparison. This is where the role played by 

Graphical Processing Unit (GPU) is prominent, in 

effectively reducing gargantuan nature of the problem 

without crumbling under the load. The concept of using 

GPUs for intensive problems is not new. They have been in 

use for several years in rendering high quality images in real 

time (up to a billion pixels per second), virtual reality 

simulations and real-to-life games. The vast potential had 

remained largely untapped. Efforts are being made since 

2003 to map real life problems to fit the structure/topology 

and nature of GPUs. This has been termed as GPGPU 

(General Purpose Computation on Graphical Processing 

Units) [5] and clearly is a beacon of hope when Moore’s law 

is saturating for Central Processing Units (CPUs). Modern 

GPUs comprise of nearly 128 cores which can perform 

highly intensive parallel tasks independently compared to its 
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CPU counterpart where ‘true’ parallelism is still uncertain. 

Tasks need to be of Single Program Multiple Data (SPMD) 

type to be efficiently implementable on a GPU. Evidently, 

there should be a scope for compartmentalizing the tasks 

with little or no dependencies among them i.e. a matrix 

representation. The problem at hand closely resembles them 

due to the quadratic arrangement of neurons considered here. 

SPMD model has been implemented using Microsoft 

Research Accelerator library. 

Rest of this document is organized as follows. Section II 

deals with related work in this field. In Section III the design 

of pattern recognition problem using SOM is considered. 

Modifications to the above algorithm to fit the GPU and its 

implementation are discussed in detail in Section IV. 

Finally, Section V deals with experiments conducted and the 

results obtained, observations made and Section VI 

concludes the document. 

II. RELATED WORK 

Several approaches have been followed to improve the 

performance of SOM and hence of pattern classification. 

Luo Zhongwen et al. also implement SOMs on GPU [6] but 

the fundamental difference lies is the way in which weights 

are updated. It explicitly finds the location of winner using a 

multi-pass method based on Kohonen’s algorithm and then 

updating is done based on the position, which is not the case 

here, as will be detailed in following sections. The multi-

pass method can be expensive for larger maps. Its reliance 

on low-level textures also constrains it to use vector of 

length 4. But, the fact that it uses low-level textures gives it 

the advantage of fine-tuning the execution pipeline in 

solving problems of space and time complexity. The work 

presented in this paper obviates the need for finding the 

explicit position of winner neuron and hence avoids the 

overhead incurred. 

Schabauer et al [4] propose cluster architecture to solve 

the classical travelling salesman problem. But cluster 

architectures have their own problems/overhead in terms of 

communication costs, task management, task distribution 

and fault-recovery which can offset the gain derived. 

However, such architectures have assumed importance when 

factors like locality of reference are weighted more. Neagoe 

et al. proposes Concurrent Self Organizing Maps (CSOM) 

[7] for biometrics where a collection of small SOM’s are 

trained individually based on WTA strategy to provide 

results for one class only. This has led to increased 

recognition rate and reduced training time. 

Vectorisation and partitioning of parameter-less SOM on 

GPU has been proposed by Campbell et al. in [8]. It is more 

suitable for interactive data exploration. Exploitation of 

GPU for matrix multiplication operations can be seen in [9] 

in the implementation of faster neural networks for text 

detection. It also proposes converting several inner-product 

operations into a single matrix operation.  

III. DESIGN OF PROBLEM 

In this section a generic approach to the pattern 

recognition problem is considered. Only monochromatic 

patterns drawn with mouse/stylus have been considered. A 

Vector Space model is adopted where the primary task is to 

construct a vector representing the image at-hand in most 

appropriate way with minimal loss of information and 

minimum entropy. It can also be seen that any such 

representation is sparse due to the nature of pattern being 

considered. Therefore, reduction and sampling is necessary 

since the length of input vector of SOM depends on this and 

this length is constrained by the memory of the Video RAM. 

Reduction also reduces unnecessary load on GPU. 

Following method is adopted to reduce the image vector: 

1) Image is scanned across its length and breadth and 

pixel value is checked and elements of a 2-D matrix are 

assigned 1.0 or 0.0 accordingly. 

2) Now some sampling is done on this matrix to reduce it 

to length of input vector. Bounding box algorithm is used. 

The outputs of the algorithm are the co-ordinates of the 

smallest rectangle box which bounds the figure completely.  

3) In the algorithm, the matrix is scanned from left to right 

till first 1(minimum) is found and similarly last 1(maximum) 

is found and hence are assigned to minX and maxX. 

Similarly minY and maxY are calculated.  

4) Now a new matrix is created with values between those 

bounds of the old matrix.  

5) At this stage sampling is performed. A new matrix is 

created with each cell equal to the average of sum of values 

in 8 neighboring cells along with this cell.   
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This is repeated twice. 

It is interesting to note that the same can be implemented on 

a GPU. It is essentially an image convolution with filter of 

value ‘1’.  
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where K is the convolution kernel/filter and I(i,j) is the i,j
th 

pixel of the image to be processed and B is the processed 

image. 

Since the image can be represented as a matrix of pixels, 

convolution on GPU is done  as follows. 
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where δ(imatrix,i,j) shifts a matrix ‘i’ units to left and ‘j’ 

units to bottom with ‘0’ in the voids created, r is the number 

of neighborhood pixels(on each side) taken into account.In 

(1) it is taken as 1 (r = 1).M is a matrix obtained by finding 
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the average. The required matrix is obtained by scanning M  

with a gap of ‘r’ cells ignoring the borders. 

5) This new matrix is scanned in row-major order to 

create a one-dimensional vector. If this vector is less than the 

input vector length, then this vector is padded with zeroes 

since SOM input vectors should be of same length.  

6) Above procedure is repeated for all the images and all 

the images are hence vectored. 

At this stage a new Kohonen network is initialized with 

following values. 
TABLE I 

PARAMETERS WITH VALUES 

Parameter Value 

Size of input layer 1500 

Size of output layer 30 
alpha 0.4 

Initial Neighborhood size 6 

Total Iterations 200 
Number of patterns =  Number of images 

 

Initialization:  Weights are initialized to pseudo-random 

values and are normalized in the first run. However, in 

consequent runs, we can use the weights obtained in the first 

run (and saved to secondary memory) if the problem domain 

is unchanged. An immediate consequence of this is that rich 

information obtained in first run can be reused and further 

optimized consequently leading to a faster convergence [1].  

Without any GPU optimization following procedure is 

repeated for certain number of iterations during training 

phase: 

   1) For each pattern in the set  

         a) The winner neuron among the available neurons is 

found based on the criteria of activation calculated using the 

following formula: 

 

                       )(max ∑=
i iijj xwwinner                          (4) 

                                                      
         b) Certain numbers of neurons in the neighborhood of 

the winner neuron get their weights updated along with the 

winner neuron according to the following formula. 
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However for simplicity it can be safely assumed to be as 

 

                      ))(( ijiijij wxtww −+= α
        (5) 

 

where α (t) is function of alpha decreasing monotonically 

over the time with neighborhood size(σ(t)), ri and rc are 

positions on the grid.
 

   2)  The neighborhood size is decreased linearly (again for 

simplicity) along with alpha by certain amounts based on 

cycle rate (which is the number of cycles after which 

reduction takes place every time).  

Note: Only training phase is considered since it is the one 

which is time consuming. Once the weights are trained, 

testing is straight-forward and inexpensive and is 

implemented on CPU. 

IV. GPU MAPPING 

The procedure detailed in previous section needs to be 

tweaked to ensure its parallelization on a GPU to appreciable 

extent. This is because the algorithm is not explicitly data 

parallel. But before that, we need to consider the fragment 

types which can be parallelized.  

Broadly, there are two kinds of control dependency. 

1 ) Spatial Dependency: Fragments are sometimes 

executed sequentially due to lack of additional hardware 

available. An instance of this can be applying an operator to 

the independent elements of a set. This is dealt on sequential 

systems with iteration. This sort of dependency is dealt here 

with a GPU. Parallelization of this may or may not call for 

modification of the algorithm. 

       2) Temporal Dependency: This kind of dependency 

arises when result of a calculation on a set of element is 

required in the next iteration on the same set of elements. As 

is obvious from the nature of the problem, parallelizing this 

dependency is not possible unless a complete redesign of the 

algorithm is done to eliminate this dependency.   

GPGPU primitives do not permit the index of an element 

in a parallel array to be revealed. Therefore, the important 

aspect to be noticed is the role played by the winner  
neuron. It can be clearly seen that its role in training phase 

is just to indicate the neurons whose weights need to be 

updated and hence we don’t need the absolute position of the 

winner neuron. The algorithm to be proposed obtains the 

position implicitly in order for the updating to occur. A 

mask-based approach is used which marks the neurons to be 

updated.   

Revised version of the algorithm is as follows. 

1) The vectors representing the image are obtained as 

detailed in the previous section. 

2)  FPA (Floating Point Array) representation is created 

for the input(containing the patterns(collection of 

vectors),will be referred to as pinput) and 2-D 

weights(which are randomized in first run, will be referred 

to as pweight). The size of the input matrix will be 

number_of_patterns × length of an image vector and of 

weight vector will be number_of_inputs × 

number_of_outputs. 

(Note: All operations detailed here forth are GPU operations 

and act on parallel vectors/arrays (prefixed with ‘p’) as a 

whole and not on individual cells and hence knowing index 

of an element is not possible. Complex operations like 

multiplication are carried out in a single instruction.)   

Let numpat   =   number of patterns. 
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      ni            =   number of neurons in input layer.    

      no           =   number of neurons in output layer.   

      neisize     =   neighborhood size. 

      numimage =   number of images.   

3)  pacc, a matrix product of pinput and pweight is 

obtained. 

 

),( pweightpinputproductpacc =              
(6)  

 

4)  Now, maximum element is found for each row in 

above product and put into column vector pmxval. Clearly 

this vector contains activations of winner neuron for each 

input pattern and is of length equal to numpat.  
5) Clearly, we cannot obtain the index of the winner 

neuron for reasons detailed above. So a workaround is 

needed.  

A new binary matrix is created which acts as a mask to 

indicate as to which neurons are to be updated. The mask 

will have ‘1’ corresponding to neurons to be updated and 

zero otherwise.  

 

 

 

                
                Fig. 1. showing the mask required for all 6  

                    patterns with neighborhood size 3 in either 

                    direction. 

 

It is done as follows.  

     a)  pmxval is  replicated along the x –direction to make it 

of size numpat × no. 

     b)  A new matrix called pwinner is created by subtracting 

pmxval from pacc. 

 

             ),( pmxvalpaccsubtractpwinner =                  (7) 

 

     c)  pwinner contains zero for winner neuron and non-zero 

otherwise. To make neurons in its neighborhood defined by 

neisize equal to zero as well, pwinner is AND (Boolean, 

shown by ∑) by the matrix obtained by rotating(shown by 

∇ )  pwinner in the range [ -neisize , neisize]. Rotating a 

matrix involves changing the order of columns circularly.  

 
  pwinnerpneighbor =  

 ( )∑ −=∇= )(, pwinnerpneighborpneighbor neisize
neisizei

     (8)  

 

     d) Now pneighbor contains zero for neurons to be 

updated and non-zero otherwise. It is converted to a matrix 

with ‘1’ in place of ‘0’ and ‘0’ otherwise to make the binary 

mask pmask. 

  6) To apply this mask, (5) is slightly modified as follows 

 

              ( ) iijij xww αδα +−= 1                                         (9) 

 

where xi is the slice of pinput which has been replicated to 

be of size ni × no and δ  is the slice of pmask which has 

been similarly replicated. To see why slicing is required we 

need to understand that the above mask is for all patterns, so 

while updating weights it has to be done for each pattern 

individually. Therefore, matrix is sliced row-by-row and 

each such slice is replicated vertically to make it 

conformable to be added to pweight. Both slicing and 

replication can be implemented on GPU as atomic 

instructions.   

Steps 3-5 are implemented purely on a GPU. 

The above operation is iterated in a loop numpat times, 

slicing each row successively. 

After analyzing the above algorithm it is imperative to 

note that if Kohonen’s algorithm is implemented as it is on a 

GPU without any modifications, then severe performance 

degradation can occur while finding the position of the 

winner neuron and while updating the weights in its vicinity. 

This is discussed in next section with empirical results. This 

is to easy to justify when we observe that the above 

operations increase the traffic between GPU and CPU, since 

in finding index in a normal way GPU cannot help us, we 

need to use a CPU. In that case only matrix multiplication 

operations will be implemented on GPU efficiently. 

V. EXPERIMENTAL RESULTS 

A. Environment

The following experiments are conducted on a computer  

running Dual-Core AMD Turion 64 X2 1.66 GHz with 512 

MB RAM and nVIDIA GeForce 6150 Go GPU with 256 

MB Video RAM, supporting Pixel Shader Version 3.0.To 

implement the algorithm several GPGPU libraries/languages 

are available. They differ in the level of abstraction they 

offer to the programmer. High level shading languages like 

Cg [10], HLSL and OpenGL Shading Language (GLSL) 

[11] require knowledge of graphics API like OpenGL and 

DirectX. High level GPGPU languages/libraries like Brook 

[12], Sh, and Accelerator [13] focus more on algorithm 

rather than implementation and obviate the need to have 

deep knowledge of graphics extensions.  Vendor specific 

extensions like nVIDIA Compute Unified Device 

Architecture (CUDA) [14] and AMD Close to Metal (CTM) 

[15] are also available which while providing high level 

accesses also expose some low level details to the 

programmer. Microsoft Research Accelerator has been 

chosen for implementing the algorithm. The Operating 

System chosen is Microsoft Windows XP SP2 with DirectX 

9.0c and runtime environment is .NET 2.0 with C# 2.0 as the 

language. 

Winner neuron  
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Operations detailed in (6)-(7) to obtain winner matrix is 

implemented with the following statements in C# with 

Accelerator.   
 
fmaxval =PA.MaxVal(PA.InnerProduct(dinput,dweight),1); 

fmaxval= PA.Replicate(fmaxval, numpat, no); 

winnerMatrix = PA.Subtract(facc, fmaxval)  

 

PA is prefix indicating that it is a Parallel Array operation. 

The library used supports data parallelism. Explicit 

partition of data (as has been shown in previous section 

since the algorithm by default is not data parallel) eliminates 

any data dependencies. This obviates the need for any 

synchronization primitives, one of the hardware limitations 

of a GPU.  

B. Implementation Consideration

Since the maximum video memory available is 256 MB, 

all the operations detailed will operate on matrix of 

maximum size 4096 × 4096. High-end GPUs available have 

up to 768 MB video memory and hence considerably higher 

array sizes. Hence, even better results can be expected on 

these high-end GPUs.  Research is on to make array size 

independent of memory available by using virtual graphics 

memory. The available runtime does not support ‘scatter’ 

operation for GPU, hence initialization, randomization are 

all done on CPU itself. Also unrolling the loop can be done 

only to a limited extent since the shader length cannot 

exceed the instruction limit. Only two-dimensional arrays 

are possible at present. Even though it is possible to 

implement higher dimensional arrays using lower dimension 

arrays but due to lack of GPU native support and primitives 

such an implementation is not efficient. This restriction is 

also due to the GPGPU library used.  

An important consequence of these is that in following 

places in the algorithm, sequential looping is inevitable. 

 

        1) Slicing and replication operation while updating the  

           weights.  

       2) Iterating the network for a fixed number of  

           iterations. 

       3) Iteration of (8) over all rotations. 

 

Even though slicing and replication mentioned above are 

GPU primitives they need to be repeated for all the rows 

corresponding to different patterns, hence the sequential 

looping. The effect of this is not as severe on the speedup 

obtained as anticipated.   

Certain speedup obtained is lost in the process of 

obtaining the ‘normal’ arrays from parallel arrays since we 

need these in testing phase which is sequential and for 

storing them. Only primitives with 32-bit precision are 

considered, again constrained by GPU and GPGPU library.  

Final and the most important issue is that GPU queues all 

its operations until we need explicit array representation or 

when the result is actually needed. Hence, to obtain speedup 

GPU is explicitly forced by using ‘Evaluate’ statements 

provided by library. The count and position of these 

statements determines the net speedup obtained. In the above 

algorithm, ‘Evaluate’ is used in (6) to obtain an additional 
speedup of 10% approximately. Usage without proper care 

can disturb the optimizations implemented internally by the 

GPU, hence, should be used carefully after analyzing the 

result. Empirical results obtained during the trials conducted 

have confirmed this.  

C. Algorithmic Complexity

Before delving into the details of the results obtained 

analyzing the algorithm in a theoretical manner is necessary. 

Theta (Θ) notation has been adopted for asymptotic analysis. 

The assumption underlying the analysis is that all the GPU 

operations are Θ (1) treating it as a black-box. So in 

analyzing the running time we concentrate mainly on its 

sequential parts [16]. 

The analysis broadly concentrates on two major areas. 

1 ) Building the update mask:The main operation is the 

iteration detailed in (8). This has complexity of Θ (neisize). 

But as we know neisize depends on number of output 

neurons (no). Hence, it becomes Θ (no). 

2) Updating the weights: Here also we find a very 

conspicuous iteration which is of repeatedly slicing the rows 

and replicating them. This leads us to estimate it be Θ 

(numpat) which again is equal to Θ (numimage). 

Putting them all together, for a single iteration they become 

Θ (no) + Θ (numimage). 

Extending them over iterations n, they become  

 

k + m) *n  (  + no) *n  ( θθ
                                              (10)  

 

where k is a constant signifying cost of disposing the video 

memory in each iteration and m(=numimage) is the number 

of images. 

In contrast while analyzing the CPU version, following 

procedure is adopted.   

To find the position of winner neuron for each pattern and 

for each iteration the complexity is Θ(ni * no + no).    

To update the weights, similarly we can find that it is 

equal to O(no * ni) which reduces to  Θ(neisize * ni) since 

neisize number of neurons are actually updated.  

Therefore, for a single pattern and single iteration we find 

that it is Θ(ni*no + no) + Θ(neisize * ni). 

Extending to ‘m’ patterns (= numimage) and ‘n’ iterations it 

becomes  

                 

 n)*m*ni*(neisize +  n)*m*no + no*ni*n*(m  θθ
 

                      (11) 

 

Comparing (10) and (11) it is clear that the CPU version has 

the added complexity of ‘ni’, the length of input vector and 

‘neisize’, the neighborhood distance and ‘m’, the number of 

images. This is not surprising since the parallelization is 

prominent in the sections where these parameters are 

involved. 
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D. Results

All the experiments conducted vary CPU and GPU versions 

on following parameters with respect to time: 

           1) Number of patterns. 

           2) Number of iterations. 

            3)  Network size, defined as number of input neurons 

               × number of output neurons. 

Nearly 10 to 20 trials were conducted for each test case; 

hence the execution time considered here is average case. 

Nature of results produced is identical in both cases, hence 

only running time is considered for evaluation.  

The measurement of time is accurately done with 

negligible skew, with minimum resolution of 0.838μs using 

Win32 API QueryPerformanceCounter and DirectX timer 

provided by the runtime. The measurement overhead is 

about 0.1927μs which is used to further adjust the readings 

obtained. It can also be noted that due to the difference in the 

order of time complexity between the two, these 

discrepancies can be ignored.    

In Fig. 2. number of patterns available is varied against 

time. Here input layer size is 1000 and output layer size is 

2000 with alpha being 0.4. Fig. 3. sketches the loci of the 

network size curve with respect to time. Here the number of 

patterns is 20 and alpha is 0.4. The dip in the GPU curve can 

be explained by its caching (a similar computation is 

performed faster) and pipeline optimizing capabilities. And 

lastly variation of running time of the algorithm with number 

of iterations is shown in Fig. 4..The difference between this 

and other two is conspicuous because of the presence of loop 

overhead here and hence even GPU curve is linear. The 

speedup derived also depends on arithmetic intensity. 

Arithmetic intensity is defined the ratio of the computation 

performed to the bandwidth ratio. In the trials of Fig.2. and 

Fig. 3. arithmetic intensity  is considerably higher than that 

of trials in Fig. 4., hence the observed speedup.  

Some significant observations which can be made are, 

1) At initial stages running time in case of CPU curve is 

significantly less compared to that of GPU. This can be 

explained by the fact that at initial stages overhead is 

considerably high and at later stages gain factor dominates if 

following relation is considered. 

 
          Fig.2. showing variation of pattern count with respect to  time. 

Net gain = gain due to parallelism – overhead               (12)       

 

The overhead is manifests mainly in the form of 

communication cost between the main memory and the 

video memory.  

2) As the size (pattern or network size) factor doubles or 

increases by greater amounts, CPU curve is nearly linear 

(Fig.2.) or exhibits exponential characteristics (Fig.3.).On 

the other hand, the growth rate of GPU curve is 

comparatively low and does not grow with problem size in 

same way. This reassures the fact that the gain obtained from 

GPU is high if the problem is of considerable size as from 

(12). 

 

 
             Fig.3. Curve describing variation of time taken with respect to  

             network size which is in the order of 10000.  
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         Fig.4. showing the similarity in behavior exhibited when iteration  

        count is varied against time.  

 

 

The final experiment conducted is to compare the 

performance of SOM on a GPU with and without any 

modifications. The performance of the algorithm without 

any modification is as worse as being implemented on a 

CPU. The reason being that, when implemented as it is, 

several CPU instructions are interleaved between GPU ones, 

thus incurring a great amount of overhead. A great deal of 

overhead is also incurred in transferring results between 

CPU and GPU regularly. One such example is the operation 

used to find the position of winner neuron. After obtaining 

the necessary product of weight and input matrices on GPU, 

it needs to be converted from a GPU array to a normal 

primitive array and then maximum needs to found and 

position determined through a series of iterative steps. And 

in steps following it, again it needs to be converted to a GPU 

array. This drives up the complexity making it as worse (or 

sometimes even more) as running it on a CPU as shown in 

Fig.5. 
 

 

 
             Fig.5. shows the effect of implementing SOM as it is on a GPU  

             and with modifications. 

 

After observing the results of the experiments conducted 

and analyzing them, it is necessary to compare it with the 

theoretical bounds derived in the previous section. The 

experimental results match the theoretical bounds when the 

parameters considered are large in number. However, when 

the number of parameters is small, actual performance fails 

to match the theoretical performance. As discussed in (12), 

this is mainly due to the overhead factor which dominates. 

Runtime and API overhead also contribute to this. At the 

same time, performance observed at greater values has 

surpassed the theoretical limits. This is mainly due to the 

optimizations implemented by the GPU internally. More 

deviation from the theoretical bounds can be observed if the 

number of sequential components in the algorithm increases 

as evident from Fig. 5.            

VI. CONCLUSION 

The implications of designing an algorithm for a GPU and 

using that algorithm in pattern classification has been 

presented in this paper supported by the results of a series of 

tests conducted. These tests have clearly shown that the 

algorithm design for a GPU is still in its growing phase and 

GPU can complement a CPU, if not replace it for some time 

to come. Nevertheless, this work paves way for future 

attempts to implement general tasks on a GPU overcoming 

many of its shortcomings. 

Future Work can be in the following areas:  

1) Increasing the degree of parallelism of the algorithm by 

reducing sequential iterations in the algorithm.  

2) Enhancing the arithmetic intensity of the algorithm to 

increase the speedup. 

3) Transformation of existing iterative phases into GPU 

primitives. 

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 1017

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 25,2021 at 06:25:13 UTC from IEEE Xplore.  Restrictions apply. 



 

 

 

4) Handling image processing on the GPU in a more ‘native’ 

way to broaden the scope for achieving parallelism. 

5) Achieving initialization, randomization on GPU itself i.e. 

efficient implementation of ‘scatter’ operation. 

6) Hand-optimizing the algorithm further to increase its 

efficiency. 

7) Overcoming the restriction on the size of the images 

imposed by the video memory of GPU.  
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