

Abstract— Graphical Processing Units (GPUs) have been,
lately used for general purpose tasks owing to their implicit
parallel nature. One such task is that of pattern classification.
Highly parallel tasks like these suffer from performance loss
owing to the sequential nature of Central Processing Unit
(CPU). To match the image processing power of human brain
even slightly, this problem beckons the utilization of enor mous
computational power and parallel environs of GPUs. Unless
there is a task which can be parallelized to the required extent
the gain obtained is lost owing to the overhead involved. Thus,
it is equally impor tant to understand some limitations of GPU
before ventur ing in this direction and deal with it appropr iately
to obtain satisfactory results. Ar tificial Neural Networks (ANN)
are found to be appropr iate while dealing with pattern
recognition problems. Kohonen’s Self Organizing Map (SOM)
has been used for classification out of other approaches for its
implicit parallel nature, albeit with minor modifications to
make it suit the parallel environment. nVIDIA GeForce 6150
Go with Microsoft Research Accelerator as the high level
library has been chosen as the platfor m to provide this
environment.

I. INTRODUCTION

HE field of pattern classification has always been

intriguing. There are several reasons for this, out of

which prominent ones have been its computationally

intensive nature, vastness of the domain of patterns, degree

of supervision required. To solve the latter problem, Self

Organizing Maps (SOMs) [1], [2] based on unsupervised

learning strategy have been used.

Self Organizing Maps have had a profound presence in

the field of machine learning. Several Artificial Neural

Network (ANN) literatures testify this. Unsupervised

learning differs from its supervised counterpart in that the

latter modifies its strategies (feedback) based on difference

between actual output and required output (which is known

during training phase).On the other hand, unsupervised

learning exploits the implicit structure of input domain to

assign them to their respective classes. A direct consequence

of this is that demarcation is sharper in case of supervised.

But, it can be seen that using supervised learning for patterns

which are not known beforehand and which have complex

mapping is clearly not feasible. Kohonen’s algorithm based

on competitive unsupervised learning plays significant role

here. A 2-dimensional quadratic layer of weights have been

used which are randomized on first run but future runs use

Raghavendra D Prabhu is a student of B.Tech, Computer Engineering at

National Institute of Technology, Karnataka (NITK), India. (Phone: +91

9900405904; email: raghu.prabhu13@gmail.com).

the weights which are stored to stable storage in the first run.

Input vectors are arrays of floating-point values which best

approximate the pattern obtained after sampling the original

monochromatic image. These one-dimensional input vectors

are fully/partially connected to output layer of neurons.

Winner Takes All (WTA) [2] strategy has been employed

where output neuron with maximum activation is assigned

output of 1.0 and all others is assigned 0.0. The criterion for

winner selection can also be based on the factor of minimal

Euclidean distance. Maximum activation method is used

when the weights are normalized beforehand. Designated

numbers of neurons in the vicinity of winner neuron have

their weights updated along with the winner neuron. A

neuron winning persistently can also be suppressed

temporarily to absorb others into learning process. This

neighborhood is decided by a rough approximation of the

Mexican Hat function which is normalized second derivative

of a Gaussian function. Learning is controlled by the

parameter alpha which is initialized to a value in {0, 1}.This

training process is repeated for several patterns for a certain

number of iterations until there is convergence. The

neighborhood size is decreased steadily over time along with

alpha in order to attain stability. The output of this phase is a

set of weights which map the input domain to a great extent.

SOMs are also used in problems of NP-Complete nature like

Travelling Salesman Problem (TSP) [3], [4] where general

algorithmic approach turns to be expensive.

Clearly the process is time devouring even for a modern

computer considering an input vector of length 1000 and

weights of size 1000 × 2000 and several hundred patterns

and several iterations. The human brain with its vast intricate

network of neurons has excelled in this field to a degree

beyond comparison. This is where the role played by

Graphical Processing Unit (GPU) is prominent, in

effectively reducing gargantuan nature of the problem

without crumbling under the load. The concept of using

GPUs for intensive problems is not new. They have been in

use for several years in rendering high quality images in real

time (up to a billion pixels per second), virtual reality

simulations and real-to-life games. The vast potential had

remained largely untapped. Efforts are being made since

2003 to map real life problems to fit the structure/topology

and nature of GPUs. This has been termed as GPGPU

(General Purpose Computation on Graphical Processing

Units) [5] and clearly is a beacon of hope when Moore’s law

is saturating for Central Processing Units (CPUs). Modern

GPUs comprise of nearly 128 cores which can perform

highly intensive parallel tasks independently compared to its

SOMGPU: An Unsupervised Pattern Classifier on Graphical
Processing Unit

 Raghavendra D Prabhu

T

1011

978-1-4244-1823-7/08/$25.00 c©2008 IEEE

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 25,2021 at 06:25:13 UTC from IEEE Xplore. Restrictions apply.

CPU counterpart where ‘true’ parallelism is still uncertain.

Tasks need to be of Single Program Multiple Data (SPMD)

type to be efficiently implementable on a GPU. Evidently,

there should be a scope for compartmentalizing the tasks

with little or no dependencies among them i.e. a matrix

representation. The problem at hand closely resembles them

due to the quadratic arrangement of neurons considered here.

SPMD model has been implemented using Microsoft

Research Accelerator library.

Rest of this document is organized as follows. Section II

deals with related work in this field. In Section III the design

of pattern recognition problem using SOM is considered.

Modifications to the above algorithm to fit the GPU and its

implementation are discussed in detail in Section IV.

Finally, Section V deals with experiments conducted and the

results obtained, observations made and Section VI

concludes the document.

II. RELATED WORK

Several approaches have been followed to improve the

performance of SOM and hence of pattern classification.

Luo Zhongwen et al. also implement SOMs on GPU [6] but

the fundamental difference lies is the way in which weights

are updated. It explicitly finds the location of winner using a

multi-pass method based on Kohonen’s algorithm and then

updating is done based on the position, which is not the case

here, as will be detailed in following sections. The multi-

pass method can be expensive for larger maps. Its reliance

on low-level textures also constrains it to use vector of

length 4. But, the fact that it uses low-level textures gives it

the advantage of fine-tuning the execution pipeline in

solving problems of space and time complexity. The work

presented in this paper obviates the need for finding the

explicit position of winner neuron and hence avoids the

overhead incurred.

Schabauer et al [4] propose cluster architecture to solve

the classical travelling salesman problem. But cluster

architectures have their own problems/overhead in terms of

communication costs, task management, task distribution

and fault-recovery which can offset the gain derived.

However, such architectures have assumed importance when

factors like locality of reference are weighted more. Neagoe

et al. proposes Concurrent Self Organizing Maps (CSOM)

[7] for biometrics where a collection of small SOM’s are

trained individually based on WTA strategy to provide

results for one class only. This has led to increased

recognition rate and reduced training time.

Vectorisation and partitioning of parameter-less SOM on

GPU has been proposed by Campbell et al. in [8]. It is more

suitable for interactive data exploration. Exploitation of

GPU for matrix multiplication operations can be seen in [9]

in the implementation of faster neural networks for text

detection. It also proposes converting several inner-product

operations into a single matrix operation.

III. DESIGN OF PROBLEM

In this section a generic approach to the pattern

recognition problem is considered. Only monochromatic

patterns drawn with mouse/stylus have been considered. A

Vector Space model is adopted where the primary task is to

construct a vector representing the image at-hand in most

appropriate way with minimal loss of information and

minimum entropy. It can also be seen that any such

representation is sparse due to the nature of pattern being

considered. Therefore, reduction and sampling is necessary

since the length of input vector of SOM depends on this and

this length is constrained by the memory of the Video RAM.

Reduction also reduces unnecessary load on GPU.

Following method is adopted to reduce the image vector:

1) Image is scanned across its length and breadth and

pixel value is checked and elements of a 2-D matrix are

assigned 1.0 or 0.0 accordingly.

2) Now some sampling is done on this matrix to reduce it

to length of input vector. Bounding box algorithm is used.

The outputs of the algorithm are the co-ordinates of the

smallest rectangle box which bounds the figure completely.

3) In the algorithm, the matrix is scanned from left to right

till first 1(minimum) is found and similarly last 1(maximum)

is found and hence are assigned to minX and maxX.

Similarly minY and maxY are calculated.

4) Now a new matrix is created with values between those

bounds of the old matrix.

5) At this stage sampling is performed. A new matrix is

created with each cell equal to the average of sum of values

in 8 neighboring cells along with this cell.

9),(),(
9

1

9

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑ ∑

= =i j

jiinputnmoutput (1)

This is repeated twice.

It is interesting to note that the same can be implemented on

a GPU. It is essentially an image convolution with filter of

value ‘1’.

 ∑ ∑
= =

−+−+=
m

k

n

l

lkKljkiIjiB
1 1

),()1,1(),(
 (2)

where K is the convolution kernel/filter and I(i,j) is the i,j
th

pixel of the image to be processed and B is the processed

image.

Since the image can be represented as a matrix of pixels,

convolution on GPU is done as follows.

()

2)2(

0,,,0,

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑ ∑

−= −=

r

ijimatrixM
r

ri

r

rj

δδ

 (3)

where δ(imatrix,i,j) shifts a matrix ‘i’ units to left and ‘j’

units to bottom with ‘0’ in the voids created, r is the number

of neighborhood pixels(on each side) taken into account.In

(1) it is taken as 1 (r = 1).M is a matrix obtained by finding

1012 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 25,2021 at 06:25:13 UTC from IEEE Xplore. Restrictions apply.

the average. The required matrix is obtained by scanning M

with a gap of ‘r’ cells ignoring the borders.

5) This new matrix is scanned in row-major order to

create a one-dimensional vector. If this vector is less than the

input vector length, then this vector is padded with zeroes

since SOM input vectors should be of same length.

6) Above procedure is repeated for all the images and all

the images are hence vectored.

At this stage a new Kohonen network is initialized with

following values.
TABLE I

PARAMETERS WITH VALUES

Parameter Value

Size of input layer 1500

Size of output layer 30
alpha 0.4

Initial Neighborhood size 6

Total Iterations 200
Number of patterns = Number of images

Initialization: Weights are initialized to pseudo-random

values and are normalized in the first run. However, in

consequent runs, we can use the weights obtained in the first

run (and saved to secondary memory) if the problem domain

is unchanged. An immediate consequence of this is that rich

information obtained in first run can be reused and further

optimized consequently leading to a faster convergence [1].

Without any GPU optimization following procedure is

repeated for certain number of iterations during training

phase:

 1) For each pattern in the set

 a) The winner neuron among the available neurons is

found based on the criteria of activation calculated using the

following formula:

)(max ∑=
i iijj xwwinner (4)

 b) Certain numbers of neurons in the neighborhood of

the winner neuron get their weights updated along with the

winner neuron according to the following formula.

)(),(ijiixcijij wxhww −+=

where h is a neighborhood function defined as

 ⎟
⎠

⎞
⎜
⎝

⎛ −−=
)(2

||||
exp)(2

2

),(t
rrth ci

ixc σ
α

However for simplicity it can be safely assumed to be as

))((ijiijij wxtww −+= α
 (5)

where α (t) is function of alpha decreasing monotonically

over the time with neighborhood size(σ(t)), ri and rc are

positions on the grid.

 2) The neighborhood size is decreased linearly (again for

simplicity) along with alpha by certain amounts based on

cycle rate (which is the number of cycles after which

reduction takes place every time).

Note: Only training phase is considered since it is the one

which is time consuming. Once the weights are trained,

testing is straight-forward and inexpensive and is

implemented on CPU.

IV. GPU MAPPING

The procedure detailed in previous section needs to be

tweaked to ensure its parallelization on a GPU to appreciable

extent. This is because the algorithm is not explicitly data

parallel. But before that, we need to consider the fragment

types which can be parallelized.

Broadly, there are two kinds of control dependency.

1) Spatial Dependency: Fragments are sometimes

executed sequentially due to lack of additional hardware

available. An instance of this can be applying an operator to

the independent elements of a set. This is dealt on sequential

systems with iteration. This sort of dependency is dealt here

with a GPU. Parallelization of this may or may not call for

modification of the algorithm.

 2) Temporal Dependency: This kind of dependency

arises when result of a calculation on a set of element is

required in the next iteration on the same set of elements. As

is obvious from the nature of the problem, parallelizing this

dependency is not possible unless a complete redesign of the

algorithm is done to eliminate this dependency.

GPGPU primitives do not permit the index of an element

in a parallel array to be revealed. Therefore, the important

aspect to be noticed is the role played by the winner
neuron. It can be clearly seen that its role in training phase

is just to indicate the neurons whose weights need to be

updated and hence we don’t need the absolute position of the

winner neuron. The algorithm to be proposed obtains the

position implicitly in order for the updating to occur. A

mask-based approach is used which marks the neurons to be

updated.

Revised version of the algorithm is as follows.

1) The vectors representing the image are obtained as

detailed in the previous section.

2) FPA (Floating Point Array) representation is created

for the input(containing the patterns(collection of

vectors),will be referred to as pinput) and 2-D

weights(which are randomized in first run, will be referred

to as pweight). The size of the input matrix will be

number_of_patterns × length of an image vector and of

weight vector will be number_of_inputs ×

number_of_outputs.

(Note: All operations detailed here forth are GPU operations

and act on parallel vectors/arrays (prefixed with ‘p’) as a

whole and not on individual cells and hence knowing index

of an element is not possible. Complex operations like

multiplication are carried out in a single instruction.)

Let numpat = number of patterns.

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 1013

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 25,2021 at 06:25:13 UTC from IEEE Xplore. Restrictions apply.

 ni = number of neurons in input layer.

 no = number of neurons in output layer.

 neisize = neighborhood size.

 numimage = number of images.

3) pacc, a matrix product of pinput and pweight is

obtained.

),(pweightpinputproductpacc =
(6)

4) Now, maximum element is found for each row in

above product and put into column vector pmxval. Clearly

this vector contains activations of winner neuron for each

input pattern and is of length equal to numpat.
5) Clearly, we cannot obtain the index of the winner

neuron for reasons detailed above. So a workaround is

needed.

A new binary matrix is created which acts as a mask to

indicate as to which neurons are to be updated. The mask

will have ‘1’ corresponding to neurons to be updated and

zero otherwise.

 Fig. 1. showing the mask required for all 6

 patterns with neighborhood size 3 in either

 direction.

It is done as follows.

 a) pmxval is replicated along the x –direction to make it

of size numpat × no.

 b) A new matrix called pwinner is created by subtracting

pmxval from pacc.

),(pmxvalpaccsubtractpwinner = (7)

 c) pwinner contains zero for winner neuron and non-zero

otherwise. To make neurons in its neighborhood defined by

neisize equal to zero as well, pwinner is AND (Boolean,

shown by ∑) by the matrix obtained by rotating(shown by

∇) pwinner in the range [-neisize , neisize]. Rotating a

matrix involves changing the order of columns circularly.

 pwinnerpneighbor =

 ()∑ −=∇=)(, pwinnerpneighborpneighbor neisize
neisizei

 (8)

 d) Now pneighbor contains zero for neurons to be

updated and non-zero otherwise. It is converted to a matrix

with ‘1’ in place of ‘0’ and ‘0’ otherwise to make the binary

mask pmask.

 6) To apply this mask, (5) is slightly modified as follows

 () iijij xww αδα +−= 1 (9)

where xi is the slice of pinput which has been replicated to

be of size ni × no and δ is the slice of pmask which has

been similarly replicated. To see why slicing is required we

need to understand that the above mask is for all patterns, so

while updating weights it has to be done for each pattern

individually. Therefore, matrix is sliced row-by-row and

each such slice is replicated vertically to make it

conformable to be added to pweight. Both slicing and

replication can be implemented on GPU as atomic

instructions.

Steps 3-5 are implemented purely on a GPU.

The above operation is iterated in a loop numpat times,

slicing each row successively.

After analyzing the above algorithm it is imperative to

note that if Kohonen’s algorithm is implemented as it is on a

GPU without any modifications, then severe performance

degradation can occur while finding the position of the

winner neuron and while updating the weights in its vicinity.

This is discussed in next section with empirical results. This

is to easy to justify when we observe that the above

operations increase the traffic between GPU and CPU, since

in finding index in a normal way GPU cannot help us, we

need to use a CPU. In that case only matrix multiplication

operations will be implemented on GPU efficiently.

V. EXPERIMENTAL RESULTS

A. Environment

The following experiments are conducted on a computer

running Dual-Core AMD Turion 64 X2 1.66 GHz with 512

MB RAM and nVIDIA GeForce 6150 Go GPU with 256

MB Video RAM, supporting Pixel Shader Version 3.0.To

implement the algorithm several GPGPU libraries/languages

are available. They differ in the level of abstraction they

offer to the programmer. High level shading languages like

Cg [10], HLSL and OpenGL Shading Language (GLSL)

[11] require knowledge of graphics API like OpenGL and

DirectX. High level GPGPU languages/libraries like Brook

[12], Sh, and Accelerator [13] focus more on algorithm

rather than implementation and obviate the need to have

deep knowledge of graphics extensions. Vendor specific

extensions like nVIDIA Compute Unified Device

Architecture (CUDA) [14] and AMD Close to Metal (CTM)

[15] are also available which while providing high level

accesses also expose some low level details to the

programmer. Microsoft Research Accelerator has been

chosen for implementing the algorithm. The Operating

System chosen is Microsoft Windows XP SP2 with DirectX

9.0c and runtime environment is .NET 2.0 with C# 2.0 as the

language.

Winner neuron

1014 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 25,2021 at 06:25:13 UTC from IEEE Xplore. Restrictions apply.

Operations detailed in (6)-(7) to obtain winner matrix is

implemented with the following statements in C# with

Accelerator.

fmaxval =PA.MaxVal(PA.InnerProduct(dinput,dweight),1);

fmaxval= PA.Replicate(fmaxval, numpat, no);

winnerMatrix = PA.Subtract(facc, fmaxval)

PA is prefix indicating that it is a Parallel Array operation.

The library used supports data parallelism. Explicit

partition of data (as has been shown in previous section

since the algorithm by default is not data parallel) eliminates

any data dependencies. This obviates the need for any

synchronization primitives, one of the hardware limitations

of a GPU.

B. Implementation Consideration

Since the maximum video memory available is 256 MB,

all the operations detailed will operate on matrix of

maximum size 4096 × 4096. High-end GPUs available have

up to 768 MB video memory and hence considerably higher

array sizes. Hence, even better results can be expected on

these high-end GPUs. Research is on to make array size

independent of memory available by using virtual graphics

memory. The available runtime does not support ‘scatter’

operation for GPU, hence initialization, randomization are

all done on CPU itself. Also unrolling the loop can be done

only to a limited extent since the shader length cannot

exceed the instruction limit. Only two-dimensional arrays

are possible at present. Even though it is possible to

implement higher dimensional arrays using lower dimension

arrays but due to lack of GPU native support and primitives

such an implementation is not efficient. This restriction is

also due to the GPGPU library used.

An important consequence of these is that in following

places in the algorithm, sequential looping is inevitable.

 1) Slicing and replication operation while updating the

 weights.

 2) Iterating the network for a fixed number of

 iterations.

 3) Iteration of (8) over all rotations.

Even though slicing and replication mentioned above are

GPU primitives they need to be repeated for all the rows

corresponding to different patterns, hence the sequential

looping. The effect of this is not as severe on the speedup

obtained as anticipated.

Certain speedup obtained is lost in the process of

obtaining the ‘normal’ arrays from parallel arrays since we

need these in testing phase which is sequential and for

storing them. Only primitives with 32-bit precision are

considered, again constrained by GPU and GPGPU library.

Final and the most important issue is that GPU queues all

its operations until we need explicit array representation or

when the result is actually needed. Hence, to obtain speedup

GPU is explicitly forced by using ‘Evaluate’ statements

provided by library. The count and position of these

statements determines the net speedup obtained. In the above

algorithm, ‘Evaluate’ is used in (6) to obtain an additional
speedup of 10% approximately. Usage without proper care

can disturb the optimizations implemented internally by the

GPU, hence, should be used carefully after analyzing the

result. Empirical results obtained during the trials conducted

have confirmed this.

C. Algorithmic Complexity

Before delving into the details of the results obtained

analyzing the algorithm in a theoretical manner is necessary.

Theta (Θ) notation has been adopted for asymptotic analysis.

The assumption underlying the analysis is that all the GPU

operations are Θ (1) treating it as a black-box. So in

analyzing the running time we concentrate mainly on its

sequential parts [16].

The analysis broadly concentrates on two major areas.

1) Building the update mask:The main operation is the

iteration detailed in (8). This has complexity of Θ (neisize).

But as we know neisize depends on number of output

neurons (no). Hence, it becomes Θ (no).

2) Updating the weights: Here also we find a very

conspicuous iteration which is of repeatedly slicing the rows

and replicating them. This leads us to estimate it be Θ

(numpat) which again is equal to Θ (numimage).

Putting them all together, for a single iteration they become

Θ (no) + Θ (numimage).

Extending them over iterations n, they become

k + m) *n (+ no) *n (θθ
 (10)

where k is a constant signifying cost of disposing the video

memory in each iteration and m(=numimage) is the number

of images.

In contrast while analyzing the CPU version, following

procedure is adopted.

To find the position of winner neuron for each pattern and

for each iteration the complexity is Θ(ni * no + no).

To update the weights, similarly we can find that it is

equal to O(no * ni) which reduces to Θ(neisize * ni) since

neisize number of neurons are actually updated.

Therefore, for a single pattern and single iteration we find

that it is Θ(ni*no + no) + Θ(neisize * ni).

Extending to ‘m’ patterns (= numimage) and ‘n’ iterations it

becomes

 n)*m*ni*(neisize + n)*m*no + no*ni*n*(m θθ

 (11)

Comparing (10) and (11) it is clear that the CPU version has

the added complexity of ‘ni’, the length of input vector and

‘neisize’, the neighborhood distance and ‘m’, the number of

images. This is not surprising since the parallelization is

prominent in the sections where these parameters are

involved.

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 1015

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 25,2021 at 06:25:13 UTC from IEEE Xplore. Restrictions apply.

D. Results

All the experiments conducted vary CPU and GPU versions

on following parameters with respect to time:

 1) Number of patterns.

 2) Number of iterations.

 3) Network size, defined as number of input neurons

 × number of output neurons.

Nearly 10 to 20 trials were conducted for each test case;

hence the execution time considered here is average case.

Nature of results produced is identical in both cases, hence

only running time is considered for evaluation.

The measurement of time is accurately done with

negligible skew, with minimum resolution of 0.838μs using

Win32 API QueryPerformanceCounter and DirectX timer

provided by the runtime. The measurement overhead is

about 0.1927μs which is used to further adjust the readings

obtained. It can also be noted that due to the difference in the

order of time complexity between the two, these

discrepancies can be ignored.

In Fig. 2. number of patterns available is varied against

time. Here input layer size is 1000 and output layer size is

2000 with alpha being 0.4. Fig. 3. sketches the loci of the

network size curve with respect to time. Here the number of

patterns is 20 and alpha is 0.4. The dip in the GPU curve can

be explained by its caching (a similar computation is

performed faster) and pipeline optimizing capabilities. And

lastly variation of running time of the algorithm with number

of iterations is shown in Fig. 4..The difference between this

and other two is conspicuous because of the presence of loop

overhead here and hence even GPU curve is linear. The

speedup derived also depends on arithmetic intensity.

Arithmetic intensity is defined the ratio of the computation

performed to the bandwidth ratio. In the trials of Fig.2. and

Fig. 3. arithmetic intensity is considerably higher than that

of trials in Fig. 4., hence the observed speedup.

Some significant observations which can be made are,

1) At initial stages running time in case of CPU curve is

significantly less compared to that of GPU. This can be

explained by the fact that at initial stages overhead is

considerably high and at later stages gain factor dominates if

following relation is considered.

 Fig.2. showing variation of pattern count with respect to time.

Net gain = gain due to parallelism – overhead (12)

The overhead is manifests mainly in the form of

communication cost between the main memory and the

video memory.

2) As the size (pattern or network size) factor doubles or

increases by greater amounts, CPU curve is nearly linear

(Fig.2.) or exhibits exponential characteristics (Fig.3.).On

the other hand, the growth rate of GPU curve is

comparatively low and does not grow with problem size in

same way. This reassures the fact that the gain obtained from

GPU is high if the problem is of considerable size as from

(12).

 Fig.3. Curve describing variation of time taken with respect to

 network size which is in the order of 10000.

1016 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 25,2021 at 06:25:13 UTC from IEEE Xplore. Restrictions apply.

 Fig.4. showing the similarity in behavior exhibited when iteration

 count is varied against time.

The final experiment conducted is to compare the

performance of SOM on a GPU with and without any

modifications. The performance of the algorithm without

any modification is as worse as being implemented on a

CPU. The reason being that, when implemented as it is,

several CPU instructions are interleaved between GPU ones,

thus incurring a great amount of overhead. A great deal of

overhead is also incurred in transferring results between

CPU and GPU regularly. One such example is the operation

used to find the position of winner neuron. After obtaining

the necessary product of weight and input matrices on GPU,

it needs to be converted from a GPU array to a normal

primitive array and then maximum needs to found and

position determined through a series of iterative steps. And

in steps following it, again it needs to be converted to a GPU

array. This drives up the complexity making it as worse (or

sometimes even more) as running it on a CPU as shown in

Fig.5.

 Fig.5. shows the effect of implementing SOM as it is on a GPU

 and with modifications.

After observing the results of the experiments conducted

and analyzing them, it is necessary to compare it with the

theoretical bounds derived in the previous section. The

experimental results match the theoretical bounds when the

parameters considered are large in number. However, when

the number of parameters is small, actual performance fails

to match the theoretical performance. As discussed in (12),

this is mainly due to the overhead factor which dominates.

Runtime and API overhead also contribute to this. At the

same time, performance observed at greater values has

surpassed the theoretical limits. This is mainly due to the

optimizations implemented by the GPU internally. More

deviation from the theoretical bounds can be observed if the

number of sequential components in the algorithm increases

as evident from Fig. 5.

VI. CONCLUSION

The implications of designing an algorithm for a GPU and

using that algorithm in pattern classification has been

presented in this paper supported by the results of a series of

tests conducted. These tests have clearly shown that the

algorithm design for a GPU is still in its growing phase and

GPU can complement a CPU, if not replace it for some time

to come. Nevertheless, this work paves way for future

attempts to implement general tasks on a GPU overcoming

many of its shortcomings.

Future Work can be in the following areas:

1) Increasing the degree of parallelism of the algorithm by

reducing sequential iterations in the algorithm.

2) Enhancing the arithmetic intensity of the algorithm to

increase the speedup.

3) Transformation of existing iterative phases into GPU

primitives.

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 1017

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 25,2021 at 06:25:13 UTC from IEEE Xplore. Restrictions apply.

4) Handling image processing on the GPU in a more ‘native’

way to broaden the scope for achieving parallelism.

5) Achieving initialization, randomization on GPU itself i.e.

efficient implementation of ‘scatter’ operation.

6) Hand-optimizing the algorithm further to increase its

efficiency.

7) Overcoming the restriction on the size of the images

imposed by the video memory of GPU.

 REFERENCES

[1] Teuvo Kohonen, Self-organizing maps. Springer Verlag, New York,
1997.

[2] Samuel Kaski, Teuvo Kohonen, “Winner-take-all networks for

physiological models of competitive learning,” Neural Networks, vol.
7,(6-7), pp. 973-984, 1994.

[3] Vieira, F. Neto, A. Costa, J., “An efficient approach of the SOM

algorithm to the traveling salesman problem,” in VII Brazilian
Symposium on Neural Networks, 2002, pp. 152-.

[4] Hannes Schabauer, Erich Schikuta, Thomas Weishäupl, “Solving

Very Large Traveling Salesman Problems by SOM Parallelization on
Cluster Architectures,” in PDCAT 2005,pp. 954-958.

[5] Mark Harris, “Mapping computational concepts to GPUs,” in

SIGGRAPH '05: ACM SIGGRAPH 2005 Courses, ACM, 2005, pp.
50.

[6] Zhongwen Luo, Hongzhi Liu, Zhengping Yang, Xincai Wu, “Self-

Organizing Maps computing on Graphic Process Unit,” in 1 3th
European Symposium on Artificial Neural Networks,Belgium,2005,

pp. 557-562.

[7] Victor-Emil Neagoe, Armand-Dragos Ropot, “Concurrent Self-
 Organizing Maps for Pattern Classification,” in 1 st IEEE

International Conference on Cognitive Informatics, 2002,

 pp. 304-312.
[8] Alexander Campbell, Erik Berglund and Alexander Streit, “Graphics

Hardware Implementation of the Parameter-Less Self-organizing

Map,” in Intelligent Data Engineering and Automated Learning–
IDEAL, 2005, pp. 343-350.

[9] Kyoung-Su Oh, Keechul Jung, “GPU implementation of neural

networks,” Pattern Recognition, vol. 37, (6), pp. 1311-1314, 2004.
[10] Randima Fernando, Mark J. Kilgard, The Cg Tutorial: The Definitive

Guide to Programmable Real-Time Graphics. Addison-Wesley, 2003.

[11] Randi J. Rost, OpenGL Shading Language. Pearson Education, Inc,
2004.

[12] Ian Buck, Tim Foley et al., “Brook for GPUs: Stream Computing on

Graphics Hardware,” in SIG-GRAPH ’04, ACM, 2004, pp. 777-786.
[13] David Tarditi, Sidd Puri, and Jose Oglesby, “Accelerator: using data-

parallelism to program GPUs for general-purpose uses,” Microsoft

Corporation, Tech. Rep. MSR-TR-2004-184, December, 2005.
[14] Hubert Nguyen. GPU Gems 3. Addison-Wesley Professional, 2007.

[15] Justin Hensley. (2007,Aug.). Close to the Metal. Presented at

SIGGRAPH’07.[Online].Available:
http://ati.amd.com/developer/gdc/2007/Hensley-

Close_to_the_Metal(Siggraph07_GPGPUCourse).pdf.

[16] Gene Amdahl, "Validity of the Single Processor Approach to
Achieving Large-Scale Computing Capabilities", AFIPS Conference

Proceedings, (30), pp. 483-485, 1967.

1018 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 25,2021 at 06:25:13 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

