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ABSTRACT 

The Western Ghats of India is an environmental and climate-sensitive region of India. 

The Western Ghats are the mountainous forest range of a tropical region that play 

significant role in distributing Indian monsoon rains. Three west-flowing rivers of the 

Western Ghats representing different levels of anthropogenic influence were chosen for 

this study to understand the individual and combined effect of land use land cover 

(LULC) and climate change (CC) on the hydrology of river basins that spread over the 

northern, middle and southern portion of the west coast Karnataka. The study was 

carried out with five objectives which include (i) Assessment of satellite and India 

Meteorological Department (IMD) rainfall products for streamflow simulation in the 

study area, (ii) To investigate long-term changes in current LULC and model predicted 

future LULC scenarios on streamflow, (iii) To evaluate the impact of long-term climate 

change on regional hydrology using SWAT and to assess the river basin responses, (iv) 

To assess the combined impact of land use land cover change and climate change over 

the study area, (v) Scenario analysis of the combined effect of land-use change and 

climate change on blue water and green water availability. 

Evaluation of satellite precipitation data was performed using the Tropical Rainfall 

Measuring Mission (TRMM) and Climate Hazards Group InfraRed Precipitation with 

Station data (CHIRPS), employing a semi-distributed hydrological model, i.e., Soil and 

Water Assessment Tool (SWAT), for simulating streamflow and validating them 

against the flows generated by the India Meteorological Department (IMD) rainfall 

dataset. The historical land use (LU) changes were studied for four decades (1988–

2016) using the maximum likelihood algorithm and the long-term LU (2016–2100) was 

estimated using the Dyna-CLUE prediction model. Five General Circulation Models 

(GCMs) were utilized to assess the effects of climate change (CC) and the SWAT 

model was used for hydrological modeling of the three river basins. To characterize 

granular effects of LU and CC on regional hydrology, a scenario approach was adopted 

and three scenarios depicting near-future (2006–2040), mid-future (2041–2070), and 

far future (2071–2100) based on climate were established. 
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 It was observed that the IMD rainfall-driven streamflow emerged as the best followed 

by the TRMM, CHIRPS-0.05, and CHIRPS-0.25. The impact of climate change was 

more predominant than the impact due to land use land cover. However, deforestation 

and the conversion of other LULC into an unorganized plantation/ agriculture with 

urban expansion contribute to an increase in streamflow. As per the water availability 

and vulnerability assessment, the Aghanashini basin was classified under the extremely 

vulnerable sector, Gurupura and Varahi basins under the low vulnerable sector for water 

scarcity. The thesis is an attempt to study the LULC comprehensively on the impact on 

rivers of the Western Ghats of India and is an effective tool in understanding the 

hydrological impacts and adopting strategies to counter the impacts of LULC and CC. 

Keywords: Climate Change; Dyna CLUE; Land Use; Satellite precipitation data; 

SWAT; Water Scarcity; West Coast of Karnataka; Western Ghats of India 
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CHAPTER 1 

INTRODUCTION 

1.1 GENERAL  

Hydrologists and water managers are experiencing the problem of adequate water 

supply to the inhabitants due to the exploding population and exhausting water 

resources. Land Use Land Cover (LULC) and Climate Change (CC) and their potential 

hydrological impacts are predominantly contributing to this scarcity. The LULC change 

amends the precipitation process into runoff by changing hydrological parameters like 

surface runoff, lateral flow, return flow, percolation, and evapotranspiration (Sajikumar 

and Remya 2015). In contrast, the CC alters rainfall, the water content in the 

atmosphere, and soil moisture (Hung et al. 2020; Mekonnen et al. 2018). Hence, 

evaluating the effects of LULC and CC on hydrology is essential for river basin 

planning and management. These can be accomplished by the application of 

hydrological modelling, which is dependent on land use, precipitation and climatic 

conditions (Khairul et al. 2018; Venkatesh and Ramesh 2018). 

     Assessing changes to LULC over time provides an insight into some of the main 

drivers of water scarcity. It is a known phenomenon that greenhouse gas levels have 

grown dramatically, warming the surface and having other repercussions on CC. 

Human pressures on land use (LU) and CC, both individually and in combination, could 

lead to various disruptive ecological cascades (IPCC 2012, 2018). The impacts range 

from reducing crop and livestock productivity to a rapid expansion of invasive species 

to increased chances of wildfire occurrence, as is evident from catastrophes worldwide 

(https://www.c2es.org/content/wildfires-and-climate-change/). The combination of 

pressures coming from anthropogenic CC and LULC changes will contribute to food 

deprivation, the prevalence of dementia, and potential conflicts (IPCC 2012, 2018). It 

is thus vital to study the combined effect of LU changes and CC, and hence this study 

adopts a detailed modeling approach with forecasted scenarios for LU and CC. 
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     Studies suggest that high water scarcity is observed in locations with either large 

population density or the existence of highly irrigated agriculture or their combination 

(Boretti and Rosa 2019; Status et al. 2021). With agriculture and its allied sectors being 

the single largest contributor to India’s economy and further considering the high 

population density in India, it is imperative to carry out detailed regional studies on 

water scarcity. Especially in Karnataka, a southern Indian state, it is vitally pertinent to 

study water scarcity, as the absence of surface water in most locations elevates 

groundwater abstractions (Varghese et al. 2013). 

     In India, the Western Ghats (WG) is one of the highest rainfall receiving regions, 

has unique characteristics of mountainous terrain, and is characterized by complex 

precipitation patterns. Variability in precipitation is an important climatic aspect for 

society, agriculture, and the environment. Variation in precipitation results from 

atmospheric circulation and complex region-specific biological, geological, and 

climatic changes (Diodato 2005). There are different methods of precipitation 

measurement such as ground readings from rain gauges, satellite observations, 

numerical weather prediction models and other sources (Michaelides et al. 2009). 

Spatial rainfall data is a critical input to distributed hydrological models and a 

significant source of model uncertainty. Satellite-based precipitation products are 

increasingly being used as a substitute for ground-based rainfall predictions, in which 

case a thorough product evaluation is necessary before adoption. 

     Major inputs of the hydrologic cycle are rainfall and other sources of precipitation. 

All the land-mining, agriculture, urban development, and other anthropogenic activities 

within a watershed affect the quality and quantity of stormwater. Since various 

watershed processes are interdependent and highly variable concerning time and space, 

predicting watershed processes is challenging (Wagener et al. 2011). Understanding 

the potential implications of LULC and CC on water resources is critical for effective 

management and consumption. 
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1.2 CLIMATE CHANGE 

1.2.1 General aspects including various scenarios 

Climate change, according to the Intergovernmental Panel on Climate Change (IPCC-

2007), is a change in the state of the climate that can be detected (through statistical 

tests) through changes in the mean and/or variability of its attributes and that lasts for 

a long time, generally decades or more. Since pre-industrial times, greenhouse gas 

concentration in the atmosphere has grown dramatically, warming the surface and 

causing other climatic changes. Changes in weather and climate accompanied by the 

rising global temperature are clear-cut evidence of CC. Extreme events especially 

increased flood and drought occurrence rates, hot and cold waves are CC's results. CC 

has the potential to alter the prevalence and severity of extreme meteorological events 

like storms, floods, and droughts. 

     The hydrologic cycle is inextricably related to climate, as is widely known, and 

changes in the climate system are expected to impact water resources and regional 

development. Traditional water resource management techniques presume that a 

hydrologic time series is steady, but "stationarity is dead" because "significant 

anthropogenic alteration of Earth's climate is affecting the means and extremes of 

precipitation, evapotranspiration, and river discharge rates" (Milly et al. 2008). GCMs 

(General Circulation Models) simulate the earth's climate system in three dimensions 

under rising greenhouse gas emission scenarios. GCMs work at a coarse resolution by 

modeling climatic factors and hence their estimates for precipitation or other hydrologic 

variables at more minor scales are unreliable. Furthermore, coarse-scale precipitation 

models are ineffective in India, where the summer monsoon rainfall is characterized by 

increased geographical variability (Ghosh et al. 2012). This necessitates downscaling, 

or the extraction of finer-scale hydroclimatic variables from large-scale GCM 

simulations, to assess the underlying impacts. 



4 
 

1.3 LAND USE LAND COVER CHANGE 

1.3.1 General aspects and present trend 

Land-use change can lead to undesirable effects on ecosystems. It is one of the 

significant factors for water, soil, and air pollution that deteriorate the health of water 

bodies inside the river basin. LU changes can be classified into hydrologic, socio-

economic, ecological, and environmental effects. Many river basins across the globe 

have undergone massive changes due to various LU activities. LULC changes are more 

rapid in developing countries than in developed ones. The main factor responsible for 

LULC changes in developing countries is the urban sprawl. Deforestation and 

degradation of vegetated land can lead to soil erosion and an increase in nitrogen, 

phosphorous, and sediments transport into streams, resulting increased sedimentation, 

turbidity, and eutrophication. In a watershed, the type of LU, such as agricultural fields, 

forests, and urban settlements, influences the quantity of available water. 

     Being a developing country, India has enormous rural mitigation from rural to urban 

regions. Because of intense urbanization, rapid LULC changes have occurred in recent 

decades. Therefore, when considering LU changes and vegetation restoration, studying 

the effect of future LULC changes on surface runoff is crucial. This can ultimately lead 

to better management of the agriculture system and water resources. 

Furthermore, variable varieties and coverages of the vegetative surface can alter land 

surface features, water balance and surface water temperature through the constituents 

of the hydrological cycle. As a result, runoff, streamflow, groundwater flow, and 

physical, chemical, and biological processes in water bodies may be altered.  

1.4 SATELLITE-BASED RAINFALL DATA 

1.4.1 General aspects and significance 

Satellite-based remote sensing offers spatial and temporal rainfall measurements 

worldwide. Rainfall estimates generated from satellites cover most of the earth's crust 

(both over land and water). This capacity meets the need for near-real-time precipitation 
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data, resulting in an ever-increasing number of satellite-based rainfall products that 

fulfill various applications (Kidd and Levizzani 2011). 

     At the moment, products based on a mix of infrared and microwave data are better 

capable of generating precise and dependable precipitation estimations (Ebert et al. 

2007). The topic of much recent research has been combining the high sampling rate of 

geostationary satellites with the improved precision afforded by many passive 

microwave sensors. As a result, various global-scale high-resolution rainfall products 

are now accessible. 

     It is widely accepted that places with high rain gauge density may obtain more 

reliable precipitation estimates than areas with low rain gauge densities (Chappell et al. 

2013). However, due to economic or geographical constraints, ground-based 

observations are relatively few or unevenly dispersed. The incorporation of additional 

data such as radar, satellite, and topographic information, on the other hand, has been 

demonstrated to increase the estimation of spatial rainfall distribution. Furthermore, 

several research studies have employed high-resolution satellite rainfall estimates as a 

critical data source for hydrologic applications. 

1.5 SCOPE OF THE STUDY 

The Western Ghats play a critical role in regulating the hydroclimatic regime of the 

southern part of peninsular India. Their mountainous river basins are the principal 

drivers of river flows in the region. India's west coast basin is the source of many small 

river basins, which are primarily fed by precipitation. Especially Karnataka, a southern 

Indian state, is vitally pertinent to study water scarcity, as the absence of surface water 

in most locations elevates groundwater abstractions (Varghese et al. 2013). Increased 

temperatures, variations in precipitation intensity and magnitude, and LULC are 

expected to alter evapotranspiration rates and river runoff (Kiprotich et al. 2021). 

According to Fadnavis et al. (2020), the forests in the northern and central regions of 

Western Ghats of India are most vulnerable to CC, with temperatures rising 

disproportionately faster than rainfall. As a result, assessing variations in streamflow 

and their impact on the hydrological features of river basins is critical for watershed 
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development and management and flood and drought mitigation. Several investigations 

have been conducted to assess the trends in meteorological variables such as rainfall, 

temperature, and their regional and temporal distribution (Mudbhatkal et al. 2017; 

Ramesh and Goswami 2007). 

     LULC and CC are two significant elements closely linked to the hydrologic cycle 

and are expected to influence regional water resources. Over the last few decades in 

Karnataka, an extensive urbanization, increased agriculture area, and deforestation led 

to changes in the surface flow, soil erosion, and Evapotranspiration (ET), which 

ultimately caused flood or drought-like situations in the basins. The increase in soil 

erosion leads to the deposition of silt in the river bed, which decreases the water holding 

capacity of river flow and increases outflow, causing floods in the river basin. Thus, it 

is critical to investigate probable reasons, such as the effects of changes in LULC and 

climate on future hydrological parameters in river basins. As a result, this research aims 

to evaluate the impacts of LULC and CC on water resources in different time periods 

from 1981 (historical) to 2100 (future), using Representative Concentration Pathway 

(RCP) 4.5 and 8.5 emission scenarios. Though many hydrological models are available, 

the Soil and Water Assessment Tool (SWAT) is recommended for hydrological 

modeling to determine the impact on streamflow. It has been extensively used for 

different hydro-climatic conditions over the past two decades can accurately simulate 

river flows even in heterogeneous basins. 

1.6 OBJECTIVES 

Given the literature gap (section 2.8) and scope that exist for the west coast basin of 

India, the following objectives are proposed for the investigation: 

1. Assessment of satellite and India Meteorological Department (IMD) rainfall 

products for streamflow simulation in the study area. 

2. To investigate long-term changes in current LULC and model predicted future 

LULC scenarios on streamflow. 

3. To evaluate the impact of long-term climate change on regional hydrology using 

SWAT and to assess the catchment responses. 



7 
 

4. To assess the combined impact of land use land cover change and climate 

change over the study area. 

5. Scenario analysis of the combined effect of land use change and climate change 

on blue water and green water availability. 

1.7 ORGANIZATION OF THE THESIS 

The thesis report comprises of seven chapters as listed below: 

• Chapter 1 (Introduction) presents the overview of climate change, land use change, 

satellite based rainfall data and the basis for the research. 

• Chapter 2 (Literature Review) deals with a critical review of current understanding of 

work related to climate change, landuse change and its hydrological impacts. 

In chapter 2, a brief review of the literature on importance of hydrological models, 

studies on different land use land cover models, studies performed on land change 

modelling using CLUE model and literature on streamflow, sediment yield and satellite 

precipitation datasets are mentioned. Each of the study is discussed based on the past 

work that has performed by various researchers and the need of the present study has 

been identified. 

• Chapter 3 (Study Area) presents the details of the study area and the rivers considered. 

• Chapter 4 (Evaluation of satellite precipitation products in simulating streamflow) 

deals with different types of satellite precipitation products and its capability to simulate 

the steamflow. 

• Chapter 5 (River basin response on effects of land use and climate change) describes 

the impact of landuse change, climate change and the combined effect of both on the 

water availability in rivers of west coast of Karnataka. 

• Chapter 6 (Basin‑scale water availability and vulnerability assessment) deals with 

water availability in future scenarios in terms of Blue Water Flow (BWF), Green Water 

Flow (GWF) and Green Water Storage (GWS). 
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• Chapter 7 (Summary and Conclusions) presents the summary and conclusions, and 

other related information of the research. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 GENERAL 

The hydrology of the river basin is significantly affected due to changes in both natural 

and anthropogenic activities. Thus, it is a challenging but achievable task to evaluate 

the effect of these alterations in the watershed. The hydrological modeling offers a 

solution to analyze these impacts and understand the regime changes in the river basin. 

Various investigations have been carried out to understand the individual and the 

combined effects of these alterations on surface water in India and worldwide. 

2.2 ADEQUACY OF SATELLITE RAINFALL DATA FOR STREAMFLOW 

PREDICTION 

Precipitation is the critical element of the hydrological cycle responsible for 

replenishing the fresh water on the planet. It is an essential input for hydrologic 

modeling and forms the basis of hydrological, agricultural research applications, 

environment studies, and climate change studies (Gao et al. 2018; Stagl et al. 2013). It 

is seen that areas of high rain gauge density give more reliable precipitation estimates 

than low-density areas (Chappell et al. 2013; Su et al. 2020). But due to economic 

constraints and infeasibility due to natural conditions, such as in the Arctic (Zhao and 

Garrett 2008) and in the Tibetan Plateau, ground-based observations are usually sparse, 

especially in several developing countries where the ground-based rainfall observation 

networks have always been relatively sparse (Sharannya et al. 2020). As a result, 

precipitation data retrieved from satellite sensors is an excellent resource for various 

research projects (Huang et al. 2020; Schuster et al. 2011). Recently, many satellite 

rainfall estimates were made available free of cost from different sources having high 

temporal and spatial resolutions providing global coverage at sub-daily, daily, and 

monthly time steps (Funk et al. 2015). Various rainfall satellite products are available 

worldwide which could categorized into satellite only (Soil Moisture to Rain - SM2 
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RAIN product), satellite adjusted (Precipitation Estimation from Remotely Sensed 

Information using Artificial Neural Networks- Climate Data Record - PERSIANN 

CDR, Global Precipitation Climatology Centre - GPCC), reanalysis category 

(Climate Hazards Group Infrared Precipitation - CHIRP, European Centre for Medium-

Range Weather Forecasts ReAnalysis - ERA and Multi-Source Weighted-Ensemble 

Precipitation - MSWEP), and near real-time products (TRMM-RT) (Ashouri et al. 

2015; Beck et al. 2017; Ochoa et al. 2014; Pakoksung and Takagi 2016). The 

advancement in blending infrared, microwave and gauge datasets, and the availability 

of spatial and global coverages, and multi-temporal resolutions have increased the 

applicability of satellite rainfall datasets over a wide range of applications even though 

signal calibration and corrections for beam filling, bright band, attenuation, etc. could 

be considered as their limitations (Kerle and Oppenheimer 2002; Seyyedi 2010). These 

satellite data could be validated either by comparing them to station data and ground-

based radar estimates or by confirming their predictive ability and effectiveness through 

a hydrological modeling framework (Satge et al. 2019; Tuo et al. 2016). 

     A comparative analysis of various satellite-derived datasets with gauge datasets is 

available elsewhere (Islam 2018; Li et al. 2018; Shrestha et al. 2017; Xue et al. 2013). 

The statistical evaluation displays the inherent data consistency of the satellite 

precipitation data. In contrast, the hydrological simulation of these data gives an insight 

into the utility of the datasets within the given application. Many investigators 

addressed the assessment and evaluation of satellite precipitation products efficiency 

for the statistical and hydrological analysis (Kolluru et al. 2020; Tarek et al. 2020). 

Only a few were conducted over the Indian basins (Himanshu et al. 2018; Kumar and 

Lakshmi 2018). Several investigations (Li et al. 2018; Kolluru et al. 2020)  have 

reported that better statistical analysis for the precipitation have not yielded reliable 

hydrological analysis. This mandates the testing of each precipitation data using 

hydrological models for different applications. 

2.3 LAND USE LAND COVER STUDIES  

A study by Ghaffari et al. (2010) in Northwest Iran reported a significant association 

between changes in LU and its effect on hydrology. They reported a fall in grasslands 
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by 34.5% and an increase in rain-fed agriculture by 13.9%, resulting in a 33% increase 

in surface runoff and a 22% decline in groundwater recharge. Garg et al. (2019) studied 

the risks of anthropogenic (human-induced) LU changes on hydrology over Indian 

basins and revealed an increase in the runoff by ~0.14%. These changes were triggered 

by a 0.14% rise in the urban landscape and a reduction in natural forests by 0.7%. It 

may be noted from earlier studies that most of the research is carried out on past changes 

to LULC and very few researches studied future/projected LULC changes (Chen et al. 

2020; Roy and Inamdar 2019). A perspective toward future LULC is essential for 

developing ‘what-if’ scenarios and can support LU planning and policy. Therefore, this 

study presents a scenario analysis of impacts on water scarcity due to future/projected 

LU and climate change during the near (T1) (2006-2040), mid (T2) (2041-2070) and 

long term (T3) (2071-2100). 

     Numerous studies are carried out on LU prediction, and several models have been 

proposed for projecting future LU (Marquez et al. 2019; Verburg and Overmars 2009). 

Most of the models are Geographic Information System (GIS)-based models, machine 

learning models, and a combination of GIS and machine learning models known as 

hybrid models (Gaur et al. 2020; Kolluru et al. 2020; Shrestha et al. 2018; Verburg and 

Overmars 2009). From the review of theoretical and practical attributes of LU change 

modeling, a vast assortment of methods and approaches exist to model LU and more 

importantly, these approaches are rooted in a multitude of disciplinary backgrounds. 

The selection of a LU prediction model thus needs to be based upon achieving a balance 

between integrating the disciplinary approaches, earning a high degree of Spatio-

temporal dynamics, and multi-scale features of LU.  

     Data availability at the requisite resolution in both time and space is another 

significant consideration for selecting a model. Essentially, LU change models are 

constructed hierarchically that consider several layers of input data. The overall change 

volume is commonly computed by assigning the individual grid cells and applying cut-

down values to the probability surface for the research region as a whole (Bryan et al. 

2002). Actual LU change allocations are established by regional and local parameters 

and are assigned at aggregate levels to drivers such as the population. Conversion of 

Land Use and its Effects (CLUE) is a multi-scale model based on this approach that 
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generates spatial interactions through feedback over a large scale (Veldkamp and 

Fresco 1996). An improvement of CLUE is the Dyna-CLUE model (Dynamic 

Conversion of Land Use and its Effects), a more widely used Spatio-temporal model to 

test LU conversions and their effect. Dyna-CLUE has a flexible and generic framework 

that promotes scale and specific contexts for regional applications. One of the 

significant strengths of the Dyna-CLUE model is the elasticity allotted to each LU type. 

The model allows certain land uses (such as permanent crops) to be reluctant to change 

and other land uses (such as shifting cultivation, locally known as Jhum in India) to 

change easily. Several case studies in India have employed the Dyna-CLUE model 

justifying its suitability of the model (Behera and Behera 2020; Shrestha et al. 2020; 

Sinha and Eldho 2018; Venkatesh et al. 2020a).   

2.4 CLIMATE CHANGE STUDIES  

General models of circulation (GCMs) enable three-dimensional simulations under 

rising greenhouse gas concentration scenarios of the earth's climate system and are 

excellent tools for quantitative comprehension of climate dynamics (Raneesh and 

Santosh 2011; Xu et al. 2020). Evaluation of the hydrological effects of CC includes 

merging hydrological models with GCM outputs (Pechlivanidis et al. 2011; Wang et 

al. 2020). Pre-processing in terms of bias correction is required to ensure that GCMs 

are reasonably accurate and reproduce the future climate to remove the biases in the 

data (Kolluru et al. 2020b; Mudbhatkal and Mahesha 2018a). Various studies assessed 

the efficiency of bias correction methods and addressed the capability of the methods 

to fairly represent regional climate (Bennett et al. 2011; Iizumi et al. 2017; Teutschbein 

and Seibert 2012). Regarding the statistical properties of reanalysis and the time series 

simulated by GCM, quantile-based remapping yields satisfactory results (Bennett et al. 

2011; Mudbhatkal and Mahesha 2018b; Salvi et al. 2013). Numerous studies reported 

the effects of climate change on streamflow (Pervez and Henebry 2015; Phung et al. 

2019; Zhang et al. 2016) and it may be noted that these studies lack the use of multiple 

GCMs in their evaluations. Using multiple GCMs instead of single GCM for impact 

studies overcomes the limitations of imperfect parameterization of climate processes 

and uncertainties that may arise due to inappropriate boundary conditions (Phung et al. 

2019; Pierce et al. 2009; Raju and Kumar 2020; Teutschbein and Seibert 2012). The 
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GCMs developed by Beijing Normal University (BNU-ESM), second-generation 

Canadian Earth System Model (CanESM2), CNRM-CM5 (developed by French 

National Centre for Meteorological Research), MPI-ESM-LR and MPI-ESM-MR (both 

developed by Max Planck Institute for Meteorology) are reasonable over South Asian 

catchments (Salvi et al. 2013; Singh et al. 2017; Sinha et al. 2020). Therefore, this study 

employs outputs from five bias-corrected GCMs for carrying out a scenario analysis of 

water scarcity in the Western Ghats of India. 

2.5 RELATED STUDIES IN THE WESTERN GHATS 

Babar and Ramesh (2014) and Sinha and Eldho (2018) identified the response of 

streamflow due to LULC change over the Netravati River basin of Western Ghats. They 

found that the significant LULC changes have a substantial impact on the surface runoff 

and sediment yield in the past as well as near future. Hence, they might be considered 

for water resource management plan in the study area.  They also recommend that the 

methods used in their study can be used to assess changes in surface runoff and 

sediment yield due to LULC changes in other river basins where remotely sensed LULC 

data are available. Also, a longer-term analysis of future changes in climate and LULC 

is recommended to compare possible changes in streamflow and sediment yield beyond 

2030.  

     Mudhbhatkal et al. (2017, 2018a) confirmed spatiotemporal variation of rainfall and 

increasing temperatures in the Western Ghats region's sub-humid and per-humid river 

regimes due to climate change. They examined bias correction for the Regional Climate 

Model (RCM) data set for the Western Ghats of India and found southern rivers as 

extremely sensitive to changing climate, followed by the middle portion. Sharannya et 

al. (2018) assessed the hydrological consequences of climate change on rainfall, 

temperature, and streamflow in a west-flowing river originating in the Western Ghats 

of India and found a declining trend at a rate of 2.63mm per year for historical and 

8.85mm per year for RCP 4.5 future scenarios with 0.10˚C increase in average 

temperature in every decade. 
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2.6 THE RAINFALL-RUNOFF MODELS 

Model selection demands a deep understanding of the model's complexity and 

functioning. Analytical models solve the governing equations that define energy, mass, 

and momentum conservation, whereas experimental data is used to build empirical 

models. The climatic (rainfall, temperature, and other water balance components) and 

spatial variability (land use and land cover, soil, slope, and terrain) of watershed 

processes are fairly well represented by distributed models based on physicality 

(Niehoff et al. 2002; Sharannya et al. 2016). Infiltration excess, subsurface runoff, 

infiltration, canopy interception, soil moisture storage, and groundwater flow are all 

represented using hydrologic models. 

     Soil and Water Assessment Tool (SWAT) (Arnold et al. 1998), a physically-based 

semi-distributed model, has been widely utilized in analysing the impact of climate 

change on hydrology in the last two decades (Raneesh and Santosh 2011; Mudbhatkal 

et al. 2017). The applications of the SWAT model include: impacts of climate change 

on hydrology and water resources (Mudbhatkal et al. 2017), impacts of land 

management on water resources (Venkatesh et al. 2020b), assessment of watershed 

response to land use cover changes on the annual water balance and temporal runoff 

dynamics and streamflow prediction for a variety of watersheds (Kim et al. 2013; 

Shrestha and Htut 2016). 

2.7 WATER SCARCITY AND VULNERABILITY ANALYSIS 

The consumption and availability of blue water (i.e., fresh surface water and 

groundwater) are good indicators for assessing water scarcity. Several studies have 

assessed water scarcity in different parts of the world and most of the studies adopt an 

annual scale for their assessments. The principal driving forces for global growing 

water demands are rapid urbanization, higher living standards, deforestation, and the 

proliferation of irrigated croplands. In addition to these driving forces, there are 

auxiliary causes such as altered weather patterns, droughts, increased greenhouse gases, 

and variations to streamflow as a result of CC (Mukherjee et al. 2018; Papalexiou et al. 

2020; Rajulapati et al. 2020; Swain et al. 2020). Recent research on water availability 
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in the basin-scale has focused on quantifying Blue Water Flow (BWF), crop 

evapotranspiration concerning Green Water Flow (GWF), and soil moisture storage 

portion as Green Water Storage (GWS) (Swain et al. 2020; Vanham 2016). As per the 

global water cycle perspective, approximately 65% of the total precipitation is returned 

into the atmosphere in terms of ET from forests and croplands, constituting GWF 

(Gerten et al. 2005). The surface and groundwater runoff and the mid-soil flow are 

integrated into the BWF (Schuol et al. 2008; Zang and Mao 2019). Increased blue water 

significantly decreases green water when CC is induced (Zang & Mao, 2019). Much of 

the blue water is turned into green water by physical and anthropogenic activities to 

satisfy the water requirement (Mao et al. 2018). Numerous studies also emphasize 

changes in the streamflow pattern due to changes in climate and/or LU, along with the 

alterations in various water balance components such as base flow, soil and basin-scale 

evapotranspiration (Swain et al. 2020; Visakh et al. 2019). However, the research does 

not highlight the underlying risk of water scarcity for basin hydrology in historical and 

future periods.  

2.8 LITERATURE GAP 

Even though in-situ ground-based precipitation datasets provide highly accurate results, 

the non-availability of datasets, uneven distribution of gauges over unpopulated areas, 

makes it difficult to use for global applications. On the other hand, many satellite 

rainfall estimates were made available free of cost from different sources having high 

temporal and spatial resolutions providing global coverage at sub-daily, daily and 

monthly time steps. Several investigations have reported that better statistical analysis 

for the precipitation have not yielded reliable hydrological analysis. This mandates the 

testing of each precipitation data using hydrological models for different applications. 

Although studies on satellite-based rainfall on the Western Ghats have been carried out, 

none of those studies have evaluated it for simulating the streamflow in the study area. 

Considering this, the precipitation products that are produced from satellite sensors are 

used for hydrological modeling for simulating streamflow because of its competitive 

ability to establish when compared to gauge measured datasets in terms of availability 

and accuracy standards.  
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From the literature review, it is evident that several studies have been undertaken using 

SWAT model for assessing the impact of CC and LULC on streamflow in many parts 

of the world and proved to be effective. There are fewer studies where discrete and 

combined effects of both CC and LULC on hydrological impacts of west coast of 

Karnataka. Several studies have been undertaken using Dyna CLUE model for 

understanding and assessing the future impacts on land use land cover change due to 

external drivers and impacts of land use land cover change on various climatic and 

hydrological parameters in many parts of the world. There are fewer studies where 

Dyna CLUE has been applied for Indian basins for studying the dynamics of land use 

change which is of utmost necessary for land use management and policy studies. A 

perspective toward future LULC is essential for developing ‘what-if’ scenarios and can 

support LU planning and policy. Using multiple GCMs instead of single GCM for 

impact studies overcomes the limitations of imperfect parameterization of climate 

processes and uncertainties that may arise due to inappropriate boundary conditions. 

Numerous studies also emphasize changes in the streamflow pattern due to changes in 

climate and/or LU, along with the alterations in various water balance components such 

as base flow, soil and basin-scale evapotranspiration. However, the research does not 

highlight the underlying risk of water scarcity for basin hydrology in historical and 

future periods. Therefore, this study presents a scenario analysis of impacts on water 

scarcity due to future/projected LU and climate change using 5 GCM’s during the T1 

(2006-2040), T2 (2041-2070) and T3 (2071-2100).  
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CHAPTER 3 

STUDY AREA 

3.1 GENERAL 

The study area stretches from 12˚ 40̍ N to 14˚ 40̍ N latitude and 74˚ 20̍ E to 75˚ 20 ̍E 

longitude and covers the west coast of Karnataka. Three west-flowing rivers of the 

Western Ghats representing different levels of anthropogenic influence were chosen for 

this study to understand the combined effect of LU and CC on water scarcity which 

spreads over the northern, middle and southern portions of the west coast of Karnataka. 

They are Aghanashini River Basin (ARB) (north part of the study area), Varahi River 

Basin (VRB) (mid-central part of the study area) and Gurupura River Basin (GRB) 

(south part of the study area) (Fig.3.1). The basic information is presented in Table 3.1. 

 

Fig. 3.1. Study area 
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3.1.1 Aghanashini River Basin (ARB) 

In the Western Ghats region, the ARB has an elevation in the range of 0 – 700 m (Fig. 

3.2. (b)), a total river length of approximately 117 km and a catchment area of about 

1333 km2 (Fig. 3.2). It extends between 14º15’ – 14º37’ N and 74º 21, - 74º 56’ E. As 

per the 2016 land cover analysis, the basin is mainly covered by forests (58.57%), 

barren (25.93%) and plantations (12.74%) (Fig. 3.2 d). The monthly precipitation 

variation over the last 40 years (1981-2020) is plotted in Fig 3.2 e. The average annual 

rainfall is 3987 mm (based on 1981 to 2020 data), with most of the precipitation falling 

between June to September during the southwest monsoon season. 

Table 3.1. Salient characteristics of the study area 

Sl.

No 

Feature ARB VRB GRB 

1 Basin Extent 14º15’-14º37’ N and 

74º 21’ - 74º 56’ E 

13º31’-13º47’ N and 

74º 43’ - 75º 11’ E 

12º 50’ - 13º 11’ N 

and 74º 45’ - 75º 18’ E 

2  Area (Sq.km) 1333 813 839 

3 Mean Annual 

Rainfall (mm)  

3980 3753 3812 

4 Mean Minimum/ 
Maximum 

Temperature (ºC) 

21 / 31 19 / 30 20 / 35 

5 Numbers of 
gauging stations  

1 (Santeguli) 1 (Haladi) 1 (Addoor) 

 

     The minimum and maximum temperature of the basins are 21°C and 31°C, 

respectively. According to the soil map procured from the National Bureau of Soil 

Survey & Land Use Planning (NBSS & LUP) Nagpur India of the ARB, sandy clay 

loam and silty clay are predominant (Fig. 3.2 c). The land cover classes include forest, 

plantation, barren, water, and wetland. The river basin is divided into 23 sub-basins for 

hydrological parameter studies (Fig. 3.2). In this research, the digital elevation model 

(Cartosat, 30m), land cover (Landsat, 30m), soil (NBSS), and meteorological data 

(IMD - 0.25°) such as rainfall and temperature were employed as model inputs. Climate 
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Forecast System Reanalysis data on relative humidity, solar radiation, and wind 

velocity were interpolated at 0.25° as the same grid points to precipitation data for all 

three river basins. The hydrological data such as observed runoff is collected from a 

gauging location at Santeguli from 1989–2010 at a daily time scale from the Central 

Water Commission of India. Table 3.2 lists the necessary information on the input data, 

resolutions, and sources. 

 

Fig. 3.2. (a) Location map and sub-basins of the study area, (b) DEM (c) Soil 

data, (d) LULC categories, and (e) monthly average precipitation of ARB. 

3.1.2 Varahi River Basin (VRB) 

The VRB has an elevation in the range of 0 − 879 m (Fig. 3.3b), a total river length of 

approximately 66 km and a catchment area of about 813 km2 (Fig. 3.3). It extends 

between 13º31’ – 13º47’ N and 74º 43’ - 75º 11’ E. As per the 2016 land cover analysis, 

the basin is mainly covered by forests (61.78%), agriculture (23.55%) and barren 

(10.63%) (Fig. 3.3d). The monthly variation of precipitation over the last 40 years 

(1981-2020) is plotted in Fig. 3.3e. The average annual rainfall is 3850 mm (based on 
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1981 to 2020 data) and most of the precipitation occurs from June to September 

monsoon months. The minimum and maximum temperature of the basins are 19°C and 

30°C, respectively. As per the soil map procured from NBSS & LUP Nagpur India of 

the VRB, sandy clay loam and silty clay are predominant (Fig. 3.3c). The land cover 

classes include forest, agriculture, barren, water, and urban. The hydrological data such 

as observed runoff is collected from a gauging location at Haladi from 1986 to 2015 at 

a daily time scale from the Central Water Commission of India. The reservoir inflow 

data for Mani dam (Latitude=13˚ 40’ 34.68’’ and Longitude=75˚ 2’ 46.39’’) is collected 

from Karnataka Power Corporation Limited for 2009-2015. The reservoir area at Full 

Reservoir Level (FRL) is 56 km2 with a storage capacity of 883.8 Million Cubic Meters. 

The relevant details of the input data, resolutions, and sources are listed in Table 3.2. 

 

Fig. 3.3. (a) Location map and sub-basins of the study area, (b) DEM (c) Soil 

data, (d) LULC categories, and (e) monthly average precipitation of VRB. 
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3.1.3 Gurupura River Basin (GRB) 

The GRB has an elevation in the range of 0 − 1886 m (Fig. 3.4b), a total river length of 

approximately 85 km, and a catchment area of about 839 km2 (Fig. 3.4). It extends 

between 12º 50’ - 13º 11’ N and 74º 45’ - 75º 18’ E. As per the 2016 land cover analysis, 

the basin is mainly covered by agriculture (37.88%), forests (29.53%), and barren 

(13.35%) (Fig. 3.4d). The monthly variation of precipitation over the last 40 years 

(1981-2020) is plotted in Fig 3.4e. The average annual rainfall is 3902 mm (based on 

1981 to 2020 data), and most of the precipitation occurs from June to September 

monsoon months. The average minimum and maximum temperatures are 20°C and 

35°C, respectively. As per the soil map procured from NBSS & LUP Nagpur India of 

the GRB, sandy clay loam is predominant (Fig. 3.4c). The land cover classes include 

forest, agriculture, plantation, barren, water, and urban. The hydrological data such as 

observed runoff is collected from a gauging location at Addoor for 2006–2012 at a daily 

scale from the Central Water Commission of India. The relevant information of the 

input data, resolutions, and sources are listed in Table 3.2. 

 

Fig. 3.4. (a) Location map and sub-basins of the study area, (b) DEM (c) Soil 

data, (d) LULC categories, and (e) monthly average precipitation of GRB. 
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Table 3.2 Input data used in the study. 

Input data  Resolution Source 

Cartosat Digital Elevation 

Model (DEM) 

30 m 

 

National Remote Sensing Centre 

(http://www.nrsc.gov.in/) 

Land use map 30 m  Landsat-imageries 

(http://earthexplorer.usgs.gov/) 

Soil data Toposheet National Bureau of Soil Survey & Land 

Use Planning (NBSS&LUP) 

Meteorological data (rainfall 

and min-max temperature) 

0.25º (daily)  India Meteorological Department 

(IMD) 

TRMM rainfall data 0.25º /daily https://disc.gsfc.nasa.gov 

CHIRPS rainfall data 0.05º and 

0.25º /daily 

ftp://ftp.chg.ucsb.edu/pub/org/chg/produ

cts/CHIRPS-2.0/global_daily/netcdf/p25 

Meteorological data (solar 

radiation, relative humidity, 

and wind velocity) 

0.25º (daily)  Climate Forecast System Reanalysis 

(CFSR) 

Observed Hydrological data 

(streamflow) 

Daily  Central Water Commission 

(http://www.indiawris. 

nrsc.gov.in/) 

 

 

 

 

 

 

 



23 
 

CHAPTER 4 

EVALUATION OF SATELLITE PRECIPITATION PRODUCTS 

IN SIMULATING STREAMFLOW  

4.1 GENERAL 

In this study, an attempt was made to evaluate the performance of Tropical Rainfall 

Measuring Mission (TRMM) and Climate Hazards Group InfraRed Precipitation with 

Station data (CHIRPS), employing a semi-distributed hydrological model, i.e., Soil and 

Water Assessment Tool (SWAT). This is used for simulating streamflow and validating 

them against the flows generated by the IMD rainfall dataset in the Gurupura river basin 

of India. Various testing scenarios for simulating streamflow were attempted to 

examine the suitability of these satellite precipitation datasets. 

4.2 SATELLITE PRECIPITATION DATASETS 

4.2.1 Gauge-Based Meteorological Data 

Since the study area is poorly gauged, daily precipitation data for 1998 – 2013 were 

collected from 0.25˚x 0.25˚ grid points from the India Meteorological Department 

(IMD), Government of India (Pai et al. 2014). Similarly, daily maximum and minimum 

temperature, relative humidity, wind speed and solar radiation for the same period were 

obtained from the IMD (1˚x 1˚) (Srivastava 2009) and Climate Forecast System Re-

analysis (CFSR, 0.25˚x 0.25˚) for calculating the potential evapotranspiration (PET) 

which are required for the SWAT model. Even though CFSR data is not up to the mark 

compared to such as ERA in terms of resolution and  real time availability, ERA was 

proved to give poor streamflow simulation for Indian basins in the study by (Kolluru et 

al. 2020). Also, studies have proved that CFSR data suits watershed modeling to meet 

the challenges of modelling un-gauged watersheds and real-time hydrological 

modelling (Fuka et al. 2014; Tomy and Sumam 2016). Hence in the present study CFSR 

data is used for hydrological modelling. The daily discharge data for 2006-2012 at the 

Addoor gauging station is collected from the Central Water Commission (CWC) via 

India Water Resources Information System (IWRIS) platform. 
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4.2.2 TRMM Rainfall Data 

The Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation 

Analysis (TMPA) 3B42 version 7 algorithm is the post real-time version which is a 

gauge–adjusted product superseding all the previous versions of TRMM launched by 

NASA and the Japanese Aerospace Exploration Agency (JAXA) to monitor 

precipitation in the tropical and subtropical areas of 50˚S – 50˚N with near-global 

coverage (Huffman et al. 2007). Its spatial and temporal resolutions are 0.25˚x 0.25˚ 

and 3-hourly, respectively spanning from 1998 to the present. Daily TRMM 3B42 v7 

is obtained by summing 3-hourly precipitation, obtained as a combination of 

microwave-IR-gauge precipitation estimates from multiple independent satellites. The 

daily rainfall data obtained from https://disc.gsfc.nasa.gov during from 1998-2013 is 

being used to drive the SWAT model.  

4.2.3 CHIRPS Rainfall Data 

The CHIRPS rainfall data Climate Hazards Group InfraRed Precipitation with Station 

data version 2 (CHIRPS-2.0) is a 30+ year quasi-global rainfall dataset to analyze the 

precipitation at different scales. The CHIRPS was created in collaboration with 

scientists at the United States Geological Survey (USGS) and Earth Resources 

Observation and Science (EROS) Centre (Funk et al. 2015) to deliver reliable up-to-

date , and more complete datasets for several early warning objectives. Spanning 50˚S-

50˚N (and all longitudes), starting from 1981 to the present, CHIRPS incorporates 0.05˚ 

x 0.05˚ and 0.25˚ x 0.25˚resolution satellite imagery with in-situ station data to create 

gridded rainfall time series for trend analysis and seasonal drought monitoring. The 

CHIRPS is a gridded land-only precipitation dataset developed by synergistic satellite 

infrared cold cloud duration measurements and ground-based rain gauge observations 

(Funk et al. 2015). The daily rainfall data were extracted for 1998 – 2013 and were 

added as an input for the rainfall-runoff model (ftp://ftp.chg.ucsb.edu/). The main 

difference between climate hazard group climatology  and other precipitation 

climatology is that, it uses longer period satellite rainfall for deriving climatological 

surfaces, which improves its performance in mountainous terrain (Funk et al. 2015). 

ftp://ftp.chg.ucsb.edu/
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4.3 METHODOLOGY 

4.3.1 Statistical Evaluation of the Satellite Precipitation Data 

In the present work, categorical and continuous statistics were computed between the 

satellite precipitation data and the gauge-based products (IMD gridded data) to 

understand these datasets error characteristics and estimation capabilities. The 

categorical statistics included Probability of Detection (POD), False Alarm Ratio 

(FAR), and Critical Success Index/Threat score (CSI/TS) metrics. In contrast, 

continuous statistical indices included Correlation Coefficient (r), Root Mean Square 

Error (RMSE), and Percentage Bias (PBIAS). The categorical statistics are the number 

of rainfall events detected or missed by the satellite rainfall data with respect to gauge 

data. The continuous statistics signify the efficiency of satellite datasets in estimating 

the amount of precipitation. The POD refers to the ratio of hits (successful detection of 

rainfall as reference data) to the actual number of rainfall events recorded according to 

base datasets (sum of hits and misses), whereas FAR represents the ratio of false alarms 

(satellite precipitation products detecting the rainfall during non-occurrence of 

precipitation in the base dataset) to the events that are not diagnosed by reference 

dataset (Jiang and Wang 2019; Li et al. 2018). R represents the degree of significance 

or the synchronicity of precipitation differences between satellite precipitation products 

and gauge or gridded data. The RMSE measures the precision of data or the average 

error magnitude between the gauge and satellite data, while PBIAS shows the 

likelihood of overestimation and underestimation. Lower bias and RMSE and higher   

R-value reflect higher accuracy of satellite datasets with respect to reference datasets 

(Bitew and Gebremichael 2011; Jiang et al. 2018). The POD and CSI/TS values close 

to one, and FAR values close to zero reflect a satellite precipitation dataset’s better 

capacity to detect rainfall events. 

4.3.2 Hydrologic Model 

The Soil and Water Assessment Tool (SWAT) is a physically-based semi-distributed 

model intended to compute and route water, sediments and contaminants from the 

individual drainage units (sub-basins) to their outlets throughout the river basin (Arnold 
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et al. 1998). The SWAT is widely used for simulating the hydrological process ie. 

erosion, vegetative growth, water quality, streamflow and pollutant concentration for 

quite a long period (Liew et al. 2003; Mudbhatkal et al. 2017; Venkatesh et al. 2020b). 

It segments the river basin into a number of sub-basins leading to Hydrologic Response 

Units (HRUs), defined by various combinations of land use, soil characteristics, 

topography and management systems.  

     The hydrological cycle is determined based on water balance, which is regulated by 

climate inputs such as daily precipitation and maximum/minimum air temperature. The 

SWAT simulates the daily, monthly and annual water fluxes and solutes in river basins 

using daily input time series. The simulations begin by calculating the amount of water, 

sediment, and pollutants loading into the main channel   each sub-basin’s land. These   

loads are conveyed and routed through the streams and reservoirs within the basin. The 

Shuttle Radar Topography Mission (SRTM), Digital Elevation Model (DEM), Land 

use land cover map (LULC) obtained from the supervised classification technique 

(maximum likelihood algorithm) for the year 2003 and the soil map were the input to 

the SWAT model. The spatial/temporal resolution and source of data obtained are listed 

in table 3.2. After providing the land use and soil maps as input, 27 sub-basins and 266 

Hydrologic Response Units (HRU) were generated. The user-defined weather generator 

could supply the residual climate data such as solar radiation, relative humidity, and 

wind speed (Table 3.2). 

4.3.3 Model Calibration, Validation and Uncertainty Analysis 

The first five years (2001-2005) were used as a warm-up period to denote the initial 

conditions in the model. The model was calibrated against the daily runoff from 2006-

to 2009 and was validated for 2010-to 2012 for the Gurupura river. The calibration and 

validation of the model were performed using the Sequential Uncertainty Fitting 

version 2 (SUFI2) (Abbaspour et al. 2007) in the SWAT Calibration and Uncertainty 

Program (SWAT-CUP) tool developed for SWAT as an interface. The SUFI2 program 

parameter uncertainty accounts for all the sources of uncertainties such as, uncertainty 

in driving variables (e.g., rainfall), conceptual model, parameters, and measured data. 

Initially, the models were calibrated using the initial ranges of parameters listed in table 
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4.2. According to the new parameters suggested by the program (Abbaspour et al. 2007) 

and their physical limitations, the ranges of each parameter are modified after each 

iteration. The sensitivity analysis before calibration helps to reduce the number of 

parameters and reduces the computational time. Many iterations were carried out to 

obtain an optimized parameter value. In each step, previous parameter ranges are 

updated to a new value-based sensitivity matrix calculation sets. The parameters are 

then updated way so that the new ranges are always smaller than the previous ranges 

and centered around the best simulation. SUFI-2 methodology could be found 

elsewhere (Khoi and Thom 2015; Me et al. 2015). 

 

4.3.4 Performance Indices for Examining Streamflow Simulation 

The ability of a hydrological model to reproduce observed streamflow could be 

expressed through various output measurement indices. A variety of performance 

indices usually evaluates the streamflow simulations. These evaluations include 

statistical performance measurements, e.g. Pearson correlation coefficient; weighted 

R2, and hydrological performance measurements (e.g. Nash and Sutcliffe Efficiency 

(NSE). The performance evaluation of hydrological models is commonly made by 

comparing the simulated and observed values. The statistical coefficients used for 

assessing the model performance were the percent bias (PBIAS), coefficient of 

determination (R2), and the Nash-Sutcliffe efficiency (NSE).  The criteria (Moriasi et 

al. 2007) were used to evaluate the model performance. The statistical indices were 

determined as follows: 

     The percent bias (PBIAS) measures the tendency of simulation compared to the 

observed streamflow (Mudbhatkal and Amai 2018a). The optimal value of percent bias 

is zero. A negative value indicates that the model is overestimating and a positive value 

suggests that the model  is underestimating (Musie et al. 2019). 

                                        𝑃𝐵𝐼𝐴𝑆 = 100 ∗
∑ (𝑂𝑖−𝑃𝑖)𝑛

𝑖=1

∑ (𝑂𝑖
𝑛
𝑖=1 )

                                               (4.1) 

where O is the observed value, P is the predicted value, n is the number of samples, and 

�̅� and �̅� denote the average observed and predicted values. 
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     The coefficient of determination (R2) is the proportion of the variation which can be 

explained by fitting a regression line. This is a crucial output of regression analysis. 

The coefficient of determination is a number that shows how well the data fit a 

statistical model. R2 is the squared value of the correlation coefficient (r). Its value 

ranges from 0 to 1, with higher values indicating lesser error variance. 

                                       𝑅2 =
∑ (𝑂𝑖−�̅�)(𝑃𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑂𝑖−�̅�)𝑛
𝑖=1 √∑ (𝑃𝑖−�̅�)𝑛

𝑖=1

                                               (4.2) 

     The Nash-Sutcliffe Efficiency (NSE) is a statistical criterion used to assess the 

predictive power of hydrological models. This  normalized statistic determines the 

relative magnitude of the residual variance compared to the measured data variance 

(Musie et al. 2019).  

                                       𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑖−𝑃𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖−�̅� )2𝑛
𝑖=1

                                                     (4.3) 

4.3.5 Streamflow Simulations Using Satellite Precipitation Datasets in SWAT 

Four calibration scenarios were considered using gauge and satellite precipitation 

datasets to simulate streamflow using the SWAT model. (a) The IMD rainfall data were 

first used to drive the model and optimise the parameter values, and (b) the daily 

TRMM, CHIRPS-0.25, and CHIRPS-0.05 rainfall data were subsequently used to run 

the model with the same optimal parameter values, and (c) the simulated runoffs for the 

three model runs were compared with IMD rainfall-driven results. 

     Scenario 2 (S2): the daily TRMM rainfall was used to drive the SWAT model and 

optimise the parameter values, and then, the IMD, CHIRPS-0.25, and CHIRPS-0.05 

rainfall were taken to drive the model.  

     Scenario 3 (S3): CHIRPS-0.25 rainfall data were used to obtain the optimal 

parameter values, and the IMD, TRMM, and CHIRPS-0.05 rainfall data were used to 

drive the model. 
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     Scenario 4 (S4): CHIRPS-0.05 was used to run the model and obtain the optimal 

parameter value, and the other three rainfall datasets viz. IMD, TRMM, and CHIRPS-

0.25 were utilized to run the model for comparison. 

4.4 RESULTS AND DISCUSSION 

4.4.1 Performance of Satellite Precipitation Datasets 

In the present study, three categorical statistical metrics (POD, FAR and CSI/TS) were 

used to understand the capability of satellite precipitation products to detect rainfall 

events (Table 4.1). The TRMM exhibited higher POD value (0.74) than CHIRPS-0.25 

(0.71) and CHIRPS-0.05 (0.58). The TRMM also exhibited a lower FAR value of 0.11 

than CHIRPS-0.25 and CHIRPS-0.05 (0.18 and 0.16 respectively). The FAR value near 

zero represents the capability of a satellite rainfall product to detect rainfall events 

accurately. The critical success index that measures the satellite precipitation products 

event was correctly predicted should have values closer to 1. CHIRPS-0.25 exhibited 

excellent value for CSI which has better rainfall detection capabilities than TRMM.  

     Continuous statistics such as CC, PBIAS and RMSE were obtained for the satellite 

datasets with respect to IMD data. The correlation between TRMM and IMD data was 

better than the correlation between CHIRPS and IMD data. Among the satellite data, 

TRMM exhibited lower bias than IMD data and a similar pattern was observed in the 

case of RMSE also. From the overall statistical analysis of rainfall, TRMM produced 

better results than CHIRPS-0.25 followed by CHIRPS 0.05. 

Table 4.1. Categorical and continuous statistical values of precipitation datasets. 

 TRMM CHIRPS 0.25 CHIRPS 0.05 

POD 0.74 0.71 0.58 

FAR 0.11 0.18 0.16 

CSI/TS 0.67 0.85 0.52 

CC 0.56 0.47 0.47 

Bias 0.91 1.02 1.02 

RMSE 19.44 22.78 23.74 
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4.4.2 Evaluation of Streamflow Generation 

A large number of parameters are available, sensitive parameters are identified based 

on the previous literature (Sinha and Eldho 2018) and are used for calibration and 

validation of streamflow. The calibration of the SWAT model was carried out by 

comparing the observed and simulated streamflow on the daily scale at the outlet of the 

basin i.e. Addoor. Around 14 parameters with varying ranges were used for different 

sets of iterations required for different input product calibrations. The various 

parameters used in the present study are CN2 (Initial Soil Conservation Service Curve 

Number - SCS CN II Value), GW_Delay (Groundwater delay (days)), CH_K2 

(Effective hydraulic conductivity in main channel alluvium (mm/h)), ALPHA_BNK 

(Baseflow alpha factor for bank storage (days)), SOL_AWC (Available water capacity 

of the soil layer), Alpha_BF (Base flow  alpha-factor (day)), GWQMN (Threshold 

depth of water in the shallow aquifer required for return flow to occur (mm)), ESCO 

(Soil evaporation compensation factors), GW_REVAP (Groundwater “revap” 

coefficient) , CH_N2 (Manning ‘n' coefficient for the main channel), SOL_K (Saturated 

hydraulic conductivity of soil), REVAPMN (Depth of water required for revap to occur 

in the shallow aquifer), SLSUBBSN (Average slope length) and SLSOIL (Slope length 

for lateral subsurface flow). Out of the above parameters, global sensitivity analysis 

was performed using the SUFI-2 algorithm of SWAT-CUP and the nine most sensitive 

parameters were selected for simulating the flow using the model. The allowable ranges 

and fitted values for each dataset are represented in Table 4.2. 

     The daily simulation of streamflow using the four datasets is represented in Fig 4.1. 

It is noticed that the IMD gridded data which was derived from the observed gauged 

data is the best simulating the observed flow compared with other datasets. In the daily 

time scale, the TRMM underestimates the flow whereas it tries to match the peak flow. 

This may be mainly because of orographic precipitation during the monsoon season 

resulting from the Western Ghats mountainous region in the study area. The orographic 

lifting of moist air leads to cloud formation, and even when the cloud top is relatively 

warm the rainfall will occur. The deep convection of this cloud system is due to latent 

heat release. The infrared satellite sensors may not detect precipitation from warm 

clouds and may lose the capture of ice loft, thereby seeing only a portion of rain from 
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deep convection (Funk et al. 2015; Sharannya et al. 2018). This process may be the 

reason for the lower performance of the satellite data-driven model than the IMD data-

driven model. Even though the spatial resolution of both CHIRPS datasets (0.25˚ and 

0.05˚) is different, it was found that the finer resolution does not make much 

improvement in the flow simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



32 
 

 

 

Fig. 4.1. Daily simulation of streamflow for different precipitation datasets.
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Table 4.2. The optimized value of each sensitive parameter for the four scenarios (“v_” and “r_” stand for replacement and a relative 

change to the initial parameter values, respectively). 

Parameter Description 

Lower 

limit 

Upper 

limit 

Optimal value 

Process 

S1 S2 S3 S4 

r_CN2 Initial SCS CN II Value -0.20 0.20 -0.08(2) 0.18(7) -0.18(1) -0.12(4) Runoff  

v_GW_DELAY  Groundwater delay (days) 10 350 22.09(9) 309.25(8) 9.56(4) 14.61(3) Groundwater  

v_CH_K2  Effective hydraulic conductivity in main channel 

alluvium (mm/h) 

0 500 291.50(7) 483.44(5) 422.13(8) 487.19(9) Channel 

v_Alpha_Bnk Baseflow alpha factor for bank storage (days) 0.5 1 0.79(1) 0.70(6) 0.54(9) 0.89(8) Channel  

r_SOL_AWC Available water capacity of the soil layer 0 1 0.31(3) 0.79(2) 0.24(2) 0.73(2) Soil  

v_ALPHA_BF Baseflow alpha-factor (day) 0 1 0.89(6) 0.42(9) 0.43(7) 0.86(5) Groundwater  

v_GWQMN Threshold depth of water in the shallow aquifer 

required for return flow to occur (mm) 

0 5000 4100.8(8) 1391.14(4) 1706.12(6) 3742.63(7) Groundwater  

v_ESCO Soil evaporation compensation factors 0 1 0.88(4) 0.45(3) 0.41(5) 0.36(6) Evaporation  

v_GW_REVAP Groundwater “revap” coefficient 0.02 0.2 0.17(5) 0.02(1) 0.11(3) 0.19(1) Groundwater  

Note: Numbers in the parenthesis represent the rank of sensitive parameters. 
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4.4.3 Hydrologic Process Simulation 

To assess runoff predictions obtained from the IMD and satellite rainfall datasets, 

specific analysis were performed by applying the SWAT model with inputs from both 

datasets over the Gurupura river basin. The SWAT model includes the parameters that 

need calibration for reasonable flow simulation. Nonetheless, calibrated values were 

swayed due to the correlation between model parameters and the observed data  (Li et 

al. 2018). The NSE is the objective function for testing the hydrological processes for 

four scenarios. Each scenarios is explained below to eliminate the calibration effects of 

different datasets that are important (Li et al. 2018) but not adequately discussed in the 

relevant literature: 

     Scenario 1 (S1) is used to check the capacity of IMD gridded data and to assess the 

other datasets in the simulation process. In the first phase of S1, the daily IMD rainfall 

data is used to calibrate the model and obtain the optimized value for each sensitive 

parameter. In the second phase of S1, the daily TRMM, CHIRPS 0.25 and CHIRPS 

0.05 rainfall data were used to drive the model with the same optimized parameter 

values of phase S1. The rationale behind implementing this second phase is to 

understand the effect of satellite precipitation products on the variations in streamflow 

simulations under a set of normal calibration sensitive parameters (Bitew and 

Gebremichael 2011). The last phase of S1 is to compare the simulated runoff of satellite 

datasets with the IMD rainfall-driven results.  

     In Scenarios 2, 3 and 4 (S2, S3, S4), the daily TRMM, CHIRPS 0.25 and CHIRPS 

0.05 rainfall were used to drive the SWAT model and optimize the parameter values 

respectively. The corresponding phases used in the case of S1 are performed. The 

rationale behind this scenario is that (i) Calibrating the model with different satellite 

precipitation products collected from various sources reveals the impact of the rainfall 

data source on calibration performance and discharge simulations and (ii) 

understanding the hydrological usability of these data products, which significantly 

helps in data-scarce basins and ungauged basin where there are only satellite 

precipitation products. 
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     Based on the SUFI-2 algorithm of SWAT-CUP, the sensitivity analysis was 

performed prior to calibration to identify before calibration the most sensitive 

parameters (Table 4.2). In general, in  subtropical and tropical regions, the SUFI-2 

approach is a promising technique in the calibration and uncertainty analysis (Uniyal et 

al. 2015) and was adopted for the present study. It may be noted that, each parameter 

exhibits different optimized values for different scenarios. The curve number, which is 

the most sensitive parameter, showed different optimized values for all the datasets. 

The value of CN2 for S1, S2, S3 and S4 are -0.8, 0.18, -0.18 and -0.12, respectively. 

These values correspond to the relative values of the parameter in the SWAT model.  

     The shallow aquifer transit parameter GW_DELAY (Malagò et al. 2015) showed a 

higher value of 309. Twenty-five days for TRMM rainfall whereas IMD and CHIRPS 

datasets had lower values as the value is higher, the lag between the entry of water into 

shallow aquifer to release increases. Other groundwater parameters such as 

ALPHA_BF, a direct index for altering the recharge of groundwater response, 

GWQMN the measure of capillary rise, and GW_REVAP the indicator of water 

removed from the aquifer correspond to different optimized values for meeting up with 

the observed streamflow. It could be observed that the pair of IMD and CHIRPS-0.05 

& TRMM and CHIRPS-0.25 datasets represented an optimized value closer to each 

other for groundwater parameters. It may be presumed that the spatial resolution in the 

CHIRPS datasets and their optimized parameter values are significantly different which 

shows a variation in resolution and parameter value.  

     The parameter ESCO is directly related to the evapotranspiration process (Malagò 

et al. 2015). As the value of ESCO decreases, it makes the lower layer to compensate 

for the water deficit in the upper layer such that the soil evapotranspiration increases. 

The satellite-based rainfall datasets depicted an opposite trend to IMD with a lower 

value of ESCO corresponding to higher soil evapotranspiration. Similar patterns were 

expressed by the channel parameter CH_K2 used to estimate the peak runoff. The 

sensitive parameter values of SOL_AWC which influence the streamflow and base flow 

having a range of 0-1 are given in table 4.2. As the value increases, the ability of soil to 

hold water also increases which leads to decreased streamflow.   
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     The details of the model performance under all four scenarios are presented in table 

4.3. In Scenario 1, the IMD rainfall model generated a strong overall fit for hydrological 

processes. The NSE, PBIAS and R2 for Gurupura river using IMD data are 0.86, 0.87, 

0.86 during calibration and 0.76, -13.5, and 0.81 for the validation period respectively. 

This exhibits an excellent performance rating (Moriasi et al. 2007), indicating that IMD 

rainfall data leads to a robust and reliable testing model for applicability and precision 

that could be used to validate and compares the results obtained from TRMM and 

CHIRPS rainfall (phase one in S1). Nevertheless, the subsequent performances using 

TRMM and CHIPRS data exhibited relatively lower agreements (see phase two above).  

     The NSE, R2 and PBIAS were in the range of 0.57 to 0.7, 0.57 to 0.74, and -21.69 

to 0.44 respectively which are in the range of satisfactory and good performance ratings 

as per (Moriasi et al. 2007). The TRMM results showed better agreement than CHIPRS-

0.05 spatial resolution, which is better than the coarser-resolution product of CHIRPS 

with 0.25 spatial resolutions.  

     For scenario 2, the model performance using TRMM also produced a good score 

with NSE, PBIAS and R2 of 0.71, -14.98, 0.75 and 0.71, -8.18, 0.72 during calibration 

and validation respectively. The performance of IMD data with TRMM optimized 

parameter showed a higher value than the parent model (TRMM model) which is 

interesting. The CHIRPS data under S2 is also in the acceptable range. In the case of 

S3 and S4 it was found that, as spatial resolution increases, there is an improvement in 

the model’s performance. This indicates that the resolution of datasets also has a vital 

role in model performance and hydrologic processes.  

     It showed higher performance for the IMD gridded data irrespective of the 

parameters of the models which are used for calibrating. While comparing the 

performance of model simulations, the IMD rainfall-driven streamflow emerged as the 

best followed by the TRMM, CHIRPS 0.05 and CHIRPS 0.25. Since the TRMM and 

CHIRPS rain driven model results are in the acceptable range. They could be utilized 

for similar basins to analyze hydrologic responses since these datasets are available free 

of cost with different spatial and temporal resolutions. This result and the performance 

of satellite precipitation products are particularly desirable for data-scarce and 
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ungauged river basins. As the performance of the satellite precipitation data-driven 

model reduces by using the calibrated parameters of the other datasets, it may be better 

for each dataset should be calibrated and validated separately when using satellite 

rainfall products in hydrological modeling, rather than using gauge-calibrated sensitive 

parameters to calibrate other data sets. Such findings are consistent with the results of 

Kolluru et al (2020), Xue et al. (2013) and Yuan et al. (2018). 

     It is noteworthy that the parameters of a dataset which provided better results during 

calibration of the model, served similar or higher performance for the other datasets by 

transferring the same parameters in the model. For example, IMD rainfall-driven model 

outperformed both TRMM and CHIRPS models which were forced with calibrated 

parameters using TRMM and CHIRPS. When TRMM data was used to simulate using 

the calibrated parameters of the CHIRPS-0.05 model, products yielded better or higher 

results than when forced with CHIRPS-0.05 parameters. Therefore, it is inferred from 

these results that the parameters from a dataset that    prove efficient when calibrated 

and could be transferred to calibrate the model with other datasets.  Nonetheless, 

applying satellite precipitation products specific sensitive parameters for calibration is 

recommended  because it often leads to substantially improved hydrological 

simulations compared to a model calibrated with other sensitive parameters of the 

satellite dataset or gage dataset (Bitew and Gebremichael 2011; Thiemig et al. 2013). 
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Table 4.3. Statistical indexes for Gurupura streamflow using different rainfall data. 

Scenario 

 

Period of 

model run 

IMD Rainfall based 

model 

TRMM Rainfall based 

model 

CHIRPS-0.25 Rainfall based 

model 

CHIRPS-0.05 Rainfall 

based model 

NSE PBIAS R2 NSE PBIAS R2 NSE PBIAS R2 NSE PBIAS R2 

1 

Calibration 0.86 0.87 0.86 0.66 -21.69 0.74 0.61 -7.21 0.61 0.65 -2.32 0.66 

Validation 0.76 -13.50 0.81 0.70 -12.92 0.73 0.57 -7.03 0.57 0.63 0.44 0.64 

2 

Calibration 0.75 10.71 0.77 0.71 -14.98 0.75 0.55 4.90 0.56 0.54 -1.85 0.58 

Validation 0.72 -5.52 0.73 0.71 -8.18 0.72 0.55 3.98 0.56 0.55 2.40 0.59 

3 

Calibration 0.73 2.08 0.73 0.63 -27.25 0.74 0.64 -6.20 0.65 0.63 -0.70 0.64 

Validation 0.67 -13.19 0.70 0.67 -19.22 0.73 0.62 -7.41 0.63 0.61 1.66 0.62 

4 

Calibration 0.75 -0.91 0.75 0.60 -30.8 0.74 0.67 -9.67 0.65 0.66 -13.76 0.69 

Validation 0.70 -16.09 0.65 0.66 -22.60 0.75 0.62 -10.71 0.65 0.65 -11.01 0.67 

Note: Values in bold represent the statistical index values obtained when a particular set of precipitation data is used to calibrate the 

model.
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4.5 CLOSURE 

An attempt was made to evaluate the Tropical Rainfall Measuring Mission (TRMM) 

and Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) 

employing a semi-distributed hydrological model i.e. Soil and Water Assessment Tool 

(SWAT) for simulating streamflow and validating them against the flows generated by 

driving India Meteorological Department (IMD) rainfall dataset in the Gurupura river 

basin of India. Distinct testing scenarios for simulating streamflow were made to check 

the suitability of these satellite precipitation data. The TRMM was able to estimate 

better rainfall than CHIRPS after performing categorical and continuous statistical 

results concerning IMD rainfall data. While comparing the performance of model 

simulations, the IMD rainfall-driven streamflow emerged as the best followed by the 

TRMM, CHIRPS-0.05 and CHIRPS-0.25. The coefficient of determination (R2), Nash- 

Sutcliffe efficiency (NSE) and percent bias (PBIAS) were in the range of 0.56 to 0.86, 

0.54 to 0.86 and -14.98 to 10.71 respectively. 
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CHAPTER 5 

RIVER BASIN RESPONSE ON EFFECTS OF LAND USE AND 

CLIMATE CHANGE  

 

5.1 METHODOLOGY 

5.1.1 Historical and predicted climate database 

Two sets of meteorological data (historical and predicted) were used in the present 

study to investigate the long-term climate variation in the ARB, VRB and GRB. All the 

datasets were consistent on a daily time step with a spatial resolution of 0.25° × 0.25°. 

Historical rainfall and temperature data from 1981 to 2010 were collected from the 

IMD. For evaluating future/forecasted climate in the river basins, precipitation and 

temperature data from five downscaled GCMs was employed. The five GCMs used in 

this investigation were carefully selected based on the review of earlier studies (Kannan 

and Ghosh 2013; Salvi et al. 2018; Sinha et al. 2020). The direct use of climate 

variables simulated by GCMs might be acceptable over a large scale. However, at a 

local scale, the data may demonstrate considerable bias compared with the measured 

data (Salvi et al. 2013). For better accuracy and representation of rainfall characteristics, 

the climate variables must be bias corrected. In this study, the daily GCM data which 

is bias corrected using the quantile-based method proposed by Li et al. (2010) against 

the India Meteorological Department (IMD) gridded data were obtained from 

www.regclimindia.in. The quantile-based remapping approach provides accurate 

results until the statistical properties of the observed and simulated (GCM) time series 

are concerned (Salvi et al. 2013). A detailed description of the methodology is provided 

by Li et al. (2010). The obtained bias corrected GCM data are segregated into the three 

climate windows viz; near-future (T1) (20011–2040), mid-future (T2) (2041–2070), 

and far-future (T3) (2071–2099). The output from the five GCMs including CCCMA 

CanESM2; CNRM CM5; MPI ESM MR; MPI ESM LR, and BNU ESM respectively 

are the source of predictor data used for precipitation downscaling for future RCP 

scenarios. A brief description of the GCM datasets is given in Table 5.1 below. 
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Table 5.1 The GCM input data used for the future period in the present study for 

RCP 4.5 and 8.5 emission scenarios. 

Model  Institution Spatial 

Resolution 

CanESM2  Canadian Centre for Climate Modelling and 

Analysis 

2.8˚x2.8˚ 

BNU-ESM 

 

Beijing Climate Center, China Meteorological 

Administration”  

2.8˚ x2.8˚ 

CNRM-CM5 

 

Centre National de Recherches 

Meteorologiques/Centre Europeen de Recherche 

et Formation Avancees en Calcul Scientifique 

1.4˚x1.4˚ 

MPI-ESM-LR   Max Planck Institute for Meteorology (MPI-M) 1.8˚x1.8˚ 

MPI-ESM-MR Max-Planck-Inst. for Meteorology 1.87˚x1.87˚ 

 

5.1.2 Pre-processing of Landsat data  

The Landsat images were procured for 1988, 1995, 2003 and 2016 to determine to 

determine land cover changes. All of the images in this research were obtained during 

the post-monsoon season (October to January) and were clear of clouds. Because of its 

effectiveness, the supervised maximum likelihood approach was employed to classify 

images (Wagle et al. 2020). The overall accuracy and kappa coefficient (κ) in 76%–

83% and 0.75–0.83 respectively for ARB, 82%–89% and 0.79–0.86 for VRB and 79%–

respectively 85% and 0.78–0.86 for GRB,  are generally acceptable. Section 5.2.2 

describes the details of classified images and their changes. 

5.1.3 Principle of Dyna-CLUE and its structure for projection of future LULC 

To   determine the effects of future changes in land cover on runoff, the future land 

cover for 2030, 2050, 2075, and 2100 were projected.  The Dyna-CLUE model was 

used for obtaining future land use in the river basin. The Dyna-CLUE has a flexible and 

generic framework that promotes scale and specific contexts for regional applications. 

One of the significant strengths of the Dyna-CLUE model is the elasticity allotted to 
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each LU type. The model allows certain land uses (such as permanent crops) to be 

reluctant to change and other land uses (such as shifting cultivation, locally known as 

Jhum in India) to change easily (Venkatesh et al. 2020b). Dyna-CLUE model is 

categorized into two modules: the non-spatial and the spatial. 

In the non-spatial module, demands of different land use classes are calculated, while 

the spatial module transforms the yearly demands into possible land use changes at 

different spatial locations within the given time frame in the study area.  

The second module is a spatially explicit allocation module, which uses a raster-based 

system to estimate land use demands and to convert into land use changes at different 

locations within the study region. Spatial module again has two parts. The first part 

aims at establishing relations between land use and its driving factors, explicitly 

considering scale dependencies. The second part aims at dynamically allocating 

demanded land use through an iterative procedure to ensure that a location gets the most 

suitable land class.  

 Model Parameters  

Land use demand: Land use demand estimation cannot be done using the Dyna-CLUE 

model user interface as it only has the ability to spatial allocate land use change. For 

estimation of land use demand, different models are adopted. Such a model could be as 

simple as trend extrapolations to complex economic models. Demand estimation model 

should be chosen based on the nature of land use conversions taking place and the 

scenarios to be simulated.  

Spatial policies and restrictions: Land use policies and land tenure can influence the 

outline of land use conversions. For the simulation of land use maps, areas with policy 

implementation and the restriction must be indicated. An area for which the policy is 

implemented is supplied as restriction layer.  

Land use type specific conversion settings: Each land use class changes its states 

differently. The temporal characteristics of land use and their specific conversion 

settings are specified in a conversion matrix. This matrix defines the possible and not 

possible interchangeability among different land use types and approximate time 

required for each change process.  
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Conversion elasticity: Conversion elasticity defines the flexibility of a land use types 

towards change. Land use class with high capital investment is less prone for 

conversion to other land uses as long as there is ample demand. Examples are urban 

areas, plantations with permanent crops (e.g., fruit trees), etc. Value needs to be 

specified for each land use class that represents the relative elasticity to change. 

Elasticity co-efficient ranges from 0 (easy conversion) to 1 (irreversible change) and 

defined by the user based on experience or observed behaviour in the recent past.  

Time steps: Defines the time of a land use class in a location should remain the same 

before it can change into another class. This can be relevant in the case of regrowth of 

the forest.  

Location Characteristics: Finally, a location most suitable for a specific type of land 

use at that moment gets converted. Suitability embodies the result of interaction 

between different actors and decision-making processes that have resulted in a spatial 

land use pattern. The preference is calculated using Equation (5.1).  

  𝑅𝑘𝑖=𝑎𝑘𝑋1𝑖+𝑏𝑘𝑋2𝑖+....…              (5.1) 

Where R is the preference to devote location i to land use type k, X1, 2,... are biophysical 

or socio-economical characteristics of location i and ak and bk the relative impact of 

these characteristics on the preference for land use type k. Rki is estimated as a 

probability because it cannot be observed or measured directly. A logit model is defined 

(Equation 5.2) to relate these probabilities with biophysical and socioeconomic location 

characteristics. 

                  logit (𝑃𝑖) = ln (
𝑃𝑖

1−𝑃𝑖
) = 𝛽𝑜 + ∑  𝑛

𝑗=0 𝛽𝑗𝑋𝑗,𝑖                         (5.2) 

 

Where Pi : probability of a grid cell to be allocated with a specific land-use class in a 

specific location;  

β0 : constant obtained from the BLR model;  

βj : driving factors coefficients estimated through the BLR model; and  

Xj.i : the (jth) location factor affecting the suitability of land-use (i).  

Details of the Logistic regression model is presented below  
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5.1.4 Logistic Regression  

To interpret the locational preferences of each land use class, the possible driving 

factors and each land use class are related by constructing a Binary Logistic Regression 

(BLR) model. BLR is a form of statistical regression, used when the dependent variable 

is dichotomous (0 or 1) and the independent variables are continuous or categorical. In 

logistic regression, the dependent variable follows Bernoulli distribution with an 

unknown probability p. Bernoulli distribution is a kind of Binomial distribution where 

n = 1. The occurrence of a variable is 1 and not occurrence is 0. So the probability of 

occurrence is p and not occurrence is q = 1 - p. In logistic regression, unknown p is 

estimated for any given linear combination of independent variables. Here a function is 

required to essentially link independent variables with the probability of occurrences of 

dependent variables which follow Bernoulli distribution. The natural log of the odds 

ratio (ratio between the probability of occurrence and not occurrence) is that link 

function.  

If p = 0, then ln (
𝑃𝑖

1−𝑃𝑖
) = ln (

0

1−0
) = ln 0 = 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑. Similarly, if p = 1, then 

ln (
𝑃𝑖

1−𝑃𝑖
) = ln (

1

1−1
) = 𝐼𝑛 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 = 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑. Interestingly, when p = 0.5, then 

ln (
𝑃𝑖

1−𝑃𝑖
) = ln (

0.5

1−0.5
) = ln1 = 0. Thus, when the odds ratio is even the logit is 0. If it is 

plotted on a graph, 0 to 1 run along the x axis. However, it should be along the y axis 

to fulfil our objective. Inverse of the logit function can be used to achieve that. Part of 

Equation 5.1 is represented here again for better clarity, here P is between 0 and 1.  

      logit (𝑃𝑖) = ln (
𝑃𝑖

1−𝑃𝑖
)                                                  (5.3) 

Then inverse of the logit is  

log−1 (𝛼) =
1

1+𝑒−𝛼 =
𝑒𝛼

1+𝑒𝛼                                           (5.4) 

Here α is some number  

For the present study, “some number” will be the linear combination of the driving 

factors (independent variables) and their coefficients. The Inverse-logit will return the 

probability of being a ‘1’ or the probability of occurrence of a particular land use class.  
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In the case of land use maps, land use classes act as the dependent variables and the 

absence or presence of a particular land use class in a specific grid cell is indicated by 

the value 0 or 1 (Overmars and Verburg 2005).  

The driving factors are independent variables in the equation. In SPSS® software 

package, an estimation model is developed that fits the Inverse logit model. The 

analysis gives the coefficients that can be input into the model.  

The estimation of regression coefficients is a Maximum Likelihood Estimation or MLE. 

In this study, the main goal is to estimate the probability of each cell to be allocated to 

a land use class. The natural logarithm of the odds ratio is equivalent to a linear function 

of the independent variables. The antilog of the logit function allows to find the 

estimated probability. The binary logistic regression model of Equation 5.2 is 

represented here again for better clarity,  

logit (𝑃𝑖) = ln (
𝑃𝑖

1−𝑃𝑖
) = 𝛽𝑜 + ∑  𝑛

𝑗=0 𝛽𝑗𝑋𝑗,𝑖                      (5.5) 

Now a method is essential to solve the P. Using antilog this can be done. Hence,  

𝑃𝑖

1−𝑃𝑖
= 𝑒𝛽0+𝛽𝑗𝑋𝑗,𝑖                                                    (5.6) 

Or,  

          𝑃𝑖 = 𝑒𝛽0+𝛽𝑗𝑋𝑗,𝑖(1 − 𝑃)                                            (5.7) 

Or,  

  𝑃𝑖 = 𝑒𝛽0+𝛽𝑗𝑋𝑗,𝑖 − 𝑒𝛽0+𝛽𝑗𝑋𝑗,𝑖 ∗ 𝑃𝑖                                     (5.8) 

Or,  

               𝑃𝑖 + 𝑒𝛽0+𝛽𝑗𝑋𝑗,𝑖∗𝑃𝑖 = 𝑒𝛽0+𝛽𝑗𝑋𝑗,𝑖                                      (5.9) 

Or,  

                                     𝑃𝑖(1 + 𝑒𝛽0+𝛽𝑗𝑋𝑗,𝑖) = 𝑒𝛽0+𝛽𝑗𝑋𝑗,𝑖                                       (5.10) 

Or,  

𝑃𝑖 =
(1+𝑒

𝛽0+𝛽𝑗𝑋𝑗,𝑖)

𝑒
𝛽0+𝛽𝑗𝑋𝑗,𝑖

                                  (5.11) 

Then Known β is used to estimate the probability of a cell to change its state.  
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5.1.5 Allocation Procedure     

The spatial allocation module iteratively compares the allocated area of individual land 

use types to grids with the land use demand. The iterative process continues until the 

demand has been satisfied.  

The allocation procedure allocates at the time (t) for each location (i) the land use type 

(lu) with the highest total probability (Ptoti,t,lu). The total probability is defined as the 

sum of the location suitability (Ploci,t,lu), neighbourhood suitability (Pnbhi,t,lu), 

conversion elasticity (ELASlu) and competitive advantage (COMPt,lu) in Equation 

(5.12).  

Ptoti,t,lu= Ploci,t,lu+ Pnbhi,t,lu + ELASlu + COMPt,lu,                      (5.12) 

Among the model parameters, land use demand is very crucial. Accuracy of model 

output largely depends on this. Biophysical characterization of study area is usually 

carried out to generate land use time series data. Land use time series data could be 

extrapolated or interpolated to fill missing time step and could be used as a land use 

demand parameter. Land use demands, as well as spatial land use configuration, are 

outcomes of interactions between different factors and decision making processes in 

the study area. Different factors are spatially mapped as driving factors and used in 

statistical models as independent variables. 

5.1.6 Mapping of Input Drivers  

Thematic maps of three categories of drivers are prepared by integrating data from 

several sources using GIS platform. The three categories of drivers are broadly 

classified as Bio-physical, proximity, and socio-economic drivers (Fig. 5.1, Fig 5.2 and 

Fig. 5.3). Socio-economic and biophysical driving factors of land use change are 

location specific and scale dependent. They are selected based on experts’ knowledge 

of study area and factors frequently identified in land-change studies (Geist and Lambin 

2006; Hersperger et al. 2010). A list of proximate land use change drivers are identified 

from literature and existing case studies (Lin et al. 2011). Distance to cities, distance to 

road and distance to railway are grouped under proximity drivers. 

Lack of theoretical understanding of land use system is the first roadblock to identify 

land use change drivers in India. Land use change is locally influential and scale-
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dependent mechanism. Due to that, having a guideline or a handbook for listing up the 

proximate drivers of land use change is not possible. Some studies have used household 

survey to list up the proximate land use change drivers (Overmars and Verburg 2005; 

Kindu et al. 2015). Several other related literatures such as district handbooks, planning 

report could also be assimilated to gain an insight into the proximate causes of land use 

change. In order to identify proximate land use change driving factors in present study 

area, a number of existing literature on land use change modeling are reviewed (Koch 

et al. 2012; Zheng et al. 2012; Li and Wu 2013; Venkatesh et al. 2020b).  

The land use database for the Dyna-CLUE model was constructed with the data 

retrieved from the supervised maximum likelihood classification technique for 1988, 

1995, 2003 and 2016 as described earlier. The land use map corresponding between 

1995 and 2003 was used to predict the land use of 2016. The overall accuracy of 76% 

(ARB), 79% (VRB), and 76% (GRB) was achieved when compared to the historical 

land use map of 2016. A total of 12 drivers categorized under bio-physical, proximity 

and socio-economic were implemented in this study. The bio-physical drivers 

examined were the Digital Elevation Model (DEM), lineament density, average annual 

precipitation, slope, average annual solar radiation, average annual temperature, and 

average annual wind speed.  The proximity drivers were distance to cities, roads and 

water bodies and population density obtained from open-source spatial data provided 

by DIVA-GIS (https://www.diva-gis.org/). The data on socio-economic drivers such as 

population was obtained from WorldPop (https://www.worldpop.org/).  

 

https://www.worldpop.org/
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Fig. 5.1. Input drivers used for predicting land use in ARB 
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Fig. 5.2. Input drivers used for predicting land use in VRB 

 

Fig. 5.3. Input drivers used for predicting land use in GRB 
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The drivers adopted for LU forecasting in the ARB, VRB and GRB are presented in 

Fig. 5.1, Fig 5.2 and Fig. 5.3 respectively. As the effect of independent variables 

(drivers) on dependent variables (LU classes) cannot be directly established, Binary 

Logistic Regression (BLR) (Behera et al. 2018; Khoury 2012; Trisurat et al. 2010; 

Zheng et al. 2012) was performed and the influence of each of the drivers for a 

particular LU was evaluated. 

5.1.7 Scenario Analysis  

Impacts of LULC changes on streamflow are carried out by holding the climatology 

constant understanding the hydrological effects of man-made LULC variations. 

Simulations are performed to examine the impact of climate change on streamflow.  To 

explore the impact of climate change on streamflow, simulations are carried out   with 

LULC fixed for 2016 and the changing climate during the baseline period (1981 to 

2010) and future periods (2011-2099). GCM results for future periods are divided into 

three-time slices for both emission scenarios (RCP 4.5 and 8.5): T1 (2011-2040), T2 

(2041-2070), and T3 (2071-2099). The SWAT was performed using five downscaled, 

bias-corrected GCM ensemble outputs (RCP 4.5 and 8.5) to quantify the change in 

streamflow. The simulation results were compared with simulated results from the 

baseline period (1981 to 2010).  The results obtained during simulations are referred to 

as Qclim hereon. To carry out the analysis of both LULC and climate change, three 

different scenarios were set up: (i) near (2011-2040) – baseline (T1); (ii) mid (2041-

2070) – baseline (T2); and (iii) far (2071-2100) – baseline (T3). In this study the 

strategy developed is the baseline as climate 1981-2010 by using 2016 LULC (near to 

present), and for the future period, it is near, mid and far scenarios are considered like 

the climate of 2011-2040 by using 2030 LULC (for the T1 scenario), climate 2041- 

2070 by using 2050 LULC (for the T2 scenario), climate 2071-2100 by using 2075 

LULC (for T3 scenario) respectively. 
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5.2 RESULTS AND DISCUSSION 

5.2.1 GCM climate data analysis   

The statistics of the observed and the GCM-simulated climate variables (after bias 

correction) for the ARB, VRB and GRB are illustrated in a Taylor diagram in Fig. 5.4. 

As GCM outputs came from the same modeling centre, all GCM models may have been 

clustered together. The model cluster for precipitation (Fig. 5.4 (i, ii, iii) a) was slightly 

away from the observed point for all river basins. However, perfect correlation (> 0.90) 

for ARB and (>0.95) for VRB and GRB were noted between the observed and GCM 

precipitation.  

Fig. 5.4 Taylor diagram for: a) rainfall (mm/month), b) Tmax (°C), and c) Tmin 

(°C) for (i) ARB, (ii) VRB, (iii) GRB 
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     Furthermore, from 1981 to 2005, the long-term average daily data of observed and 

GCM-simulated variables were compared for an average of all grids inside the basins 

daily (Fig. 5.5- ARB, Fig. 5.6- VRB, Fig. 5.7- GRB). The figure illustrates the rainfall, 

maximum and minimum temperature comparisons of all 5 GCMs and ensemble data 

after bias adjustments with IMD data. From fig.5.5a, it could be observed that, BNU, 

CNRM, MPIL and MPIM represents average daily rainfall better when compared with 

CCMA for ARB. The ensemble of all five GCM show poor peak rainfall estimation. 

Therefore the outputs of CCMA is excluded in ensemble of rainfall for streamflow 

simulation in ARB. For VRB, MPIM is removed for ensemble calculation of GCM as 

it shows poor simulation in rainfall (Fig 5.6a). Whereas CNRM is eliminated for GRB 

ensemble rainfall for streamflow simulations as it represented poor trend with IMD 

when compared with other GCMs (Fig 5.7a). In the case of maximum and minimum 

temperature, all GCM could generate better simulation. Thus GCMs were able to 

correctly depict the trend of rainfall and temperature climatology, as seen in the figures. 

As a result, downscaled variables accurately reflected the climatic conditions in the 

research region and were utilized in SWAT model simulations. 
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Fig. 5.5 GCM variables (red) compared with observed variables (black) for daily: 

a) rainfall; b) maximum temperature, and c) minimum temperature from 1981 to 

2005 in ARB. 
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Fig. 5.6 GCMs variables (red) compared with observed variables (black) for daily: 

a) rainfall; b) maximum temperature, and c) minimum temperature from 1981 to 

2005 in VRB. 
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Fig. 5.7 GCMs variables (red) compared with observed variables (black) for daily: 

a) rainfall; b) maximum temperature, and c) minimum temperature from 1981 to 

2005 in GRB. 

     Fig. 5.8, Fig 5.9, and Fig 5.10 shows the time series plots of historical IMD rainfall 

with historical GCMs rainfall from 1981 to 2005 and future GCMs from 2006 to 2100 

for both RCP 4.5 and RCP 8.5 scenarios for ARB, VRB and GRB respectively. The 

trend of ensemble GCM (ENS) is showing a decreasing trend in the historic period and 

an increasing trend in the projected period for both RCP 4.5 and 8.5 emission scenarios 

in ARB. However in the overall time period it depicts an increasing trend (Fig 5.8) in 

ARB. It could be observed that, the GCMs underestimates the rainfall when comparing 

with IMD in the historic period for ARB (Fig 5.8). Also from the figure 5.8, it could be 

noticed that MPIL shows comparatively better results in ARB. In the case of VRB, 

CNRM is the best rainfall predicted GCM (Fig 5.9). The trends of GCMs are good for 

VRB when compared it with ARB trends. The trend of all GCMs and as well ensembled 



57 
 

(ENS) are showing slightly decreasing trend in VRB (Fig 5.9) for projected period for 

both RCP 4.5 and 8.5 emission scenarios. In the case of GRB, BNU depicted matching 

trend with IMD (Fig 5.10). The trend of ENS is showing a slight decreasing trend in 

the historic period and an increasing trend in the projected period for both RCP 4.5 and 

8.5 emission scenarios in GRB. However in the overall time period it potrays an 

increasing trend (Fig 5.10) in VRB. However, the variations for ensembled scenarios 

(ENS) are reasonably matching giving good correlations (Fig. 5.4) for the all the three 

river basins.  

 

Fig. 5.8 Comparison of historical observed and GCMs simulated rainfall (1981 to 

2005) and projection of future rainfall (2006 to 2100) of RCP emission scenarios 

in ARB 
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Fig. 5.9 Comparison of historical observed and GCMs simulated rainfall (1981 to 

2005) and projection of future rainfall (2006 to 2100) of RCP emission scenarios 

in VRB 

 

Fig.5.10 Comparison of historical observed and GCMs simulated rainfall (1981 to 

2005) and projection of future rainfall (2006 to 2100) of RCP emission scenarios 

in GRB 
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     Fig. 5.11, Fig. 5.12, Fig. 5.13 gives comparison of historical maximum temperature 

(Tmax.) from the IMD and historical maximum temperature of different GCMs 

including ensemble (ENS) which shows the good correlation for ARB, VRB and GRB 

respectively. The future maximum temperature of RCP 4.5 and 8.5 for all the 5 GCMs 

as well as ensembled one (ENS) indicated that the RCP 8.5 scenario would have higher 

maximum temperature in comparison to RCP 4.5 by 2 degrees Celsius for ARB (Fig 

5.11), by 1 to 2 degree Celsius for VRB (Fig 5.12) and by 1 to 2 degrees Celsius for 

GRB (Fig 5.13). The trend for RCP 4.5 and 8.5 for maximum temperature is acceptable 

for future time periods. CCMA and MPIM depicts the best trends when compared with 

other GCMs in the ARB (Fig 5.11) and VRB (Fig 5.12). Whereas in the case of GRB, 

all the five GCM represented a matching trend with IMD maximum temperature (Fig 

5.13). Similarly, the minimum temperature (Tmin.) time series plot for the historical 

and future period is plotted in Fig.14 for ARB, Fig 15 for VRB and Fig 16 for GRB. It 

is also showing a good correlation with the IMD observed data. The comparison of the 

future minimum temperatures for RCP 4.5 and 8.5 using all five GCMs and the 

ensemble model (ENS) revealed that the RCP 8.5 scenario would have higher minimum 

temperatures than RCP 4.5 by 3 degrees Celsius for ARB (Fig 5.14) and VRB (Fig 

5.15), and 2 degrees Celsius for GRB (Fig 5.16). After the bias correction, the figures 

show acceptable range for future maximum and minimum temperature for these river 

basins the temperatures. Hence, these data are used to estimate hydrological simulations 

in the basin. 
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Fig. 5.11 Comparison of historical observed and GCMs simulated maximum 

temperature (1981 to 2005) and projection of future maximum temperature (2006 

to 2100) of RCP 4.5 and RCP 8.5 emission scenarios (ENS- Ensembled) for ARB. 

 

Fig. 5.12 Comparison of historical observed and GCMs simulated maximum 

temperature (1981 to 2005) and projection of future maximum temperature (2006 

to 2100) of RCP 4.5 and RCP 8.5emission scenarios (ENS- Ensembled) for VRB. 
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Fig. 5.13 Comparison of historical observed and GCMs simulated maximum 

temperature (1981 to 2005) and projection of future maximum temperature (2006 

to 2100) of RCP 4.5 and RCP 8.5 emission scenarios (ENS- Ensembled) for GRB. 

 

 
Fig. 5.14 Comparison of historical observed and GCMs simulated minimum 

temperature (1981 to 2005) and projection of future minimum temperature (2006 

to 2100) of RCP 4.5 and RCP 8.5 emission scenarios (ENS- Ensembled) for ARB. 
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Fig. 5.15 Comparison of historical observed and GCMs simulated minimum 

temperature (1981 to 2005) and projection of future minimum temperature (2006 

to 2100) of RCP 4.5 and RCP 8.5 emission scenarios (ENS- Ensembled) for VRB. 

 

 
Fig. 5.16 Comparison of historical observed and GCMs simulated minimum 

temperature (1981 to 2005) and projection of future minimum temperature (2006 

to 2100) of RCP 4.5 and RCP 8.5 emission scenarios (ENS- Ensembled) for GRB. 
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5.2.2 LULC Change Analysis from 1988 to 2100 

The different temporal LULC maps for 1988, 1995, 2003 (historical), 2016 (present), 

2030, 2050, 2075 and 2100 (future) are presented in Fig. 5.17 for ARB, Fig. 5.18 for 

VRB and Fig. 5.19 for GRB. The major assumptions considered in the prediction of 

LULC are (i) the Dyna Clue is a linear model, and hence it is assumed that the trend in 

LULC demand is also linear and (ii) the drivers are maintained as static variable and an 

average of the input is used for the prediction of LULC.  The changes in various LULC 

types of the river basins are calculated and presented in Table 5.2. In the case of ARB 

the forest and barren were the most dominant land use in 1988 (87.43% collectively). 

The barren area decreased throughout the period. The wetland area is showing an 

increasing trend (0.81% to 7.53%) from 1988 to 2100. It could be due to the conversion 

of forests and barren into plantations and water bodies into wetlands. So, the sequence 

of transformation of land use is from forest to the plantation, water to wetlands and 

barren to the plantation. For VRB, forest and agriculture were the most prevalent land 

use in 1988 (85.59%). The barren area decreased throughout the period. The urban area 

is showing an increasing trend (0.01% to 0.54%) from 1988 to 2100. It could be due to 

the conversion of forests and barren into agriculture and urban areas. So, the sequence 

of conversion of land use is from forest and barren into agriculture and the urban 

regions. The results indicate that in the future, the expansion of plantations and wetlands 

in the ARB may lead to changes in the streamflow. On the other hand, the increase of 

plantation from 1988 to 2100 which are converted from forest land produces huge 

foliage and behaves like forested land use. Whereas in VRB, the increase of agriculture 

converted from forest land produces agricultural runoff that are known to be associated 

with higher transport of nutrient-rich sediments. 

     For GRB, the forest and agriculture were the most dominant land use in 1988 

(80.48%). From 1988, the evergreen forest decreased and continued throughout though 

the % decrease was reduced. The agriculture area decreased throughout the period. The 

amount of plantation showed an increasing trend in 2003 but decreased by 2016 and 

then further a rising trend throughout the period (this may be due to the similarities in 

few crops and growing stages of plantation and related classification issues). The land 

used by forest, agriculture, and water are dynamically changed throughout the study 
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period (1988 to 2100). The urban area shows an increasing trend (1.70% to 24.25%) 

from 1988 to 2100. It could be due to the highest deforestation after 1988 and converted 

into plantation and urban. So, the sequence of land-use conversion is from forest to 

plantation, to agriculture to urban in GRB. The results indicate that the expansion of 

mainly plantation and urbanization in GRB leads to land degradation/ desertification in 

the future, significantly affecting the streamflow. On the other hand, the increase of 

urban and plantations together from 1988 to 2100 indicates that previous desertification 

may lead the local people to further farm/ plant trees to cope with the scarcity of fuel-

wood and other uses. Soil stabilization, stopping wind and water erosion, and 

maintaining the soil nutrients cycle are the better appropriate ways to protect land 

deterioration and desertification in the GRB. The most affected LULC between 2050 

to 2100 could be the forest and agriculture, which is likely to decrease. However, on 

the other hand, plantation and urban areas are supposed to increase simultaneously. The 

increase in plantations such as Coconut and Arracunut in coastal areas through a 

decrease in agriculture may be due to the availability of seawater for the plantation to 

cope with the water required for agriculture. 

 

Fig. 5.17 LULC maps for 1988, 1995, 2003, 2016 (actual), 2016 (projected), 2030, 

2050, 2075 and 2100 for ARB 
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Table 5.2 LULC changes analysis between 1988 to 2100 

LULC Types 

 

ARB Area (% of the total area of 1333 km2) 

 1988 1995 2003 2016 2030 2050 2075 2100 

Plantation 9.93 12.75 13.80 15.74 22.12 34.19 49.40 64.46 

Barren 22.88 25.93 26.54 27.93 26.98 24.22 20.77 17.30 

Forest 64.55 58.57 56.89 53.57 46.93 36.32 23.03 9.89 

Wetlands 0.81 1.46 1.48 1.47 2.71 4.12 5.87 7.53 

Water 1.83 1.29 1.29 1.29 1.26 1.15 0.93 0.81 

LULC Types 

 

VRB Area (% of the total area of 813 km2) 

Agriculture 19.34 21.39 21.34 23.55 25.91 29.26 33.34 37.63 

Barren 11.88 10.78 11.98 10.63 9.57 7.77 3.86 1.74 

urban 0.01 0.03 0.03 0.05 0.20 0.29 0.44 0.54 

Forest 64.25 63.67 62.49 61.78 60.66 59.36 59.36 57.51 

Water 4.51 4.13 4.16 3.99 3.65 3.32 3.00 2.58 

LULC Types 

 

GRB Area (% of the total area of 839 km2) 

Agriculture 42.80 40.01685 37.52 37.88 31.26 21.55 12.66 11.68 

Forest 37.69 34.40872 33.03 29.53 20.86 17.26 12.08 11.21 

Plantation 3.44 5.665367 9.82 6.97 14.07 16.54 21.43 21.65 

Urban 1.70 1.88592 2.06 9.44 10.11 18.23 23.9 24.25 

Water 5.15 4.069955 2.91 2.83 3.45 3.26 3.04 3.01 

Barren 9.23 13.95319 14.66 13.35 20.25 23.16 26.89 28.20 
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Fig. 5.18 LULC maps for 1988, 1995, 2003, 2016 (actual), 2016 (projected), 2030, 

2050, 2075 and 2100 for VRB. 

 

Fig. 5.19 LULC maps for 1988, 1995, 2003, 2016 (actual), 2016 (projected), 2030, 

2050, 2075 and 2100 for GRB. 



67 
 

5.2.3 Calibration and Validation of the SWAT Model 

The Soil and Water Assessment Tool (SWAT) is a physically-based semi-distributed 

model intended to compute and route water, sediments, and contaminants from the 

individual drainage units (sub-basins) to their outlets throughout the river basin (Sinha 

and Eldho 2018). The model calibration and validation goal are to improve the SWAT 

model's performance for streamflow on a monthly time scale. In the present study, it is 

hypothesised that there won’t be significant change in the sensitive parameters with 

change in LULCs. Similar result was obtained by Sinha and Eldho (2018) in which they 

ccompared the fitted value of sensitive parameters in calibration for different LULC 

scenarios, which were found to be exactly similar. Therefore the three river basins were 

calibrated and validated using a single LULC map from 2003. ARB, VRB, and GRB 

have calibration periods of 1989-2003, 1986-2005, and 2006-2009, respectively, and 

validation periods of 2004-2010, 2006-2015, and 2010-2012. The model was run using 

the three-year warm-up period for the basins. The figure 5.20 shows the time series 

hydrograph of the monthly values of the discharge variation between observed and the 

simulated for calibration period of 15 years, i.e. 1989 to 2003 and validation period of 

7 years (2004-2010) for ARB. The graph clearly indicatbes that the peak occurs each 

year during the monsoon period. The graph shows the variation of discharge during the 

considered time period. It can be noticed that, the SWAT model for calibration period 

underestimated the peak flow and for validation period SWAT model overestimated the 

peak flow for the year 2004, 2006 and 2009 (Fig 5.20). Overestimation may be 

attributed to the fact that, water percolates to the deep aquifer considered lost and is not 

included in the simulation process in SWAT. However, the SWAT model shows good 

performance in simulating monthly streamflow in the ARB with acceptable range of 

performance indices (Table 5.3).  

The monthly discharge deviation between actual and simulated values for a 20-year 

calibration period, from 1986 to 2005, and a 10-year validation period (2006-2015) are 

depicted in the time series hydrograph in figure 5.21 for VRB. Here also the graph 

makes it abundantly evident that during the monsoon season, the peak happens 

annually. It can be noticed that, the SWAT model for calibration period underestimated 

the peak flow and for validation period SWAT model overestimated the peak flow (Fig 
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5.21). However, the SWAT model exhibits adequate range of performance indices and 

good performance in modelling monthly streamflow in the VRB (Table 5.3). The time 

series hydrograph in figure 5.22 for GRB shows the monthly discharge variation 

between actual and simulated values over a 4-year calibration period, from 2006 to 

2009, and a 3-year validation period (2010-2012). As the data available for GRB was 

only for a short period, the calibration and validation period was divided as above said. 

In this case as well, the graph makes it plainly clear that the peak occurs every year 

during the monsoon season. The SWAT model underestimated peak flow during the 

calibration and validation period for GRB (Fig 5.22) and performed good in simulating 

the monthly streamflow.  

Table 5.3 shows the values of statistical indicators for calibration and validation 

periods. According to Moriasi et al. 2007, the statistical metrics R2 and NSE for 

streamflow are more than 0.75, and the PBIAS ranges within 20% for both calibration 

and validation, indicating satisfactory model performance (Table 5.3).  

Table 5.3 The model performance during the calibration and validation 

Items ARB VRB GRB 

Calibration 

(1989-

2003) 

Validation 

(2004-

2010) 

Calibration 

(1986-

2005) 

Validation 

(2006-

2015) 

Calibration 

(2006-

2009) 

Validation 

(2010-

2012) 

Streamflow 

R2 0.86 0.80 0.84 0.80 0.94 0.96 

NSE 0.76 0.79 0.79 0.76 0.94 0.91 

PBIAS  24.36 -4.83 9.36 15.89 2.94 -11.33 
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Fig. 5.20 Comparison between the observed and simulated monthly streamflow 

value for the calibration (a) and validation (b) for ARB 

 

Fig. 5.21 Comparison between the observed and simulated monthly streamflow 

value for the calibration (a) and Validation (b) for VRB 
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Fig. 5.22 Comparison between the observed and simulated monthly streamflow 

value for the calibration (a) and Validation (b) for GRB 

 

5.2.4 Impacts of LULC changes on streamflow  

As discussed earlier, it is vital to analyse the impacts of LULC changes by keeping the 

climate constant, to understand the hydrological effects of man-made LULC variations. 

In the ARB and VRB, the most substantial variations are noticed in the LULC classes 

for the forest and plantation, whereas in the GRB, it is seen for forest and agriculture. 

The effect of LULC changes on the ET and surface runoff is analyzed by considering 

the average climatology (including rainfall, temperature, solar radiations etc.) from 

1981 to 2010. The spatial distribution of historical mean rainfall at sub-basin scale is 

presented in Fig. 5.23. It indicates high rainfall (more than 4000 mm) in the downstream 

of the basin, medium rainfall (2500 mm to 4000 mm) in the middle part and upstream 

of the basin while less rainfall (less than 2500 mm) in the south-east part of the ARB. 

The VRB indicates high rainfall (more than 4500 mm) distribution in downstream of 

the basin, medium rainfall (3500 mm to 4500 mm) in the middle part and less rainfall 

(less than 3500 mm) occurs in the areas around the medium rainfall. For GRB, it is with 

high rainfall (more than 4000 mm) distribution in the center of the basin, medium 
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rainfall (3700 mm to 4000 mm) in the upstream of the basin while less rainfall (less 

than 3700 mm) occurs in the downstream of the basin. 

 

Fig: 5.23 Spatial distribution of historical mean rainfall at sub-basin scale used 

for simulation: (i) ARB, (ii) VRB, (iii) GRB. 

     Fig. 5.24 shows the comparison of the time series of runoff at the outlet for various 

LULC variations. It may be noted that the impacts on surface runoff are not significant 

as the LULC occurs gradually over substantial period time. Compared to ARB and 

VRB, the GRB exhibits slight variations in streamflow at the outlet. This may be due 

to expansion of urbanization over the basin. 

     The spatial distribution of surface runoff due to the LULC impacts on the historical 

and future are presented in Fig. 5.25 for ARB. The results show that, the change in 

surface runoff is very less in the historical and future period. This is mainly because the 

entire river basin is dominated by forest and plantations that exhibit the same vegetative 

characteristics with higher water percolation of water due to huge foliage (Ilstedt et al. 

2016). Also, the increase in wetland compensated for the variation in inflow due to the 

deforestation. This makes the river basin pristine and resilient even though the forested 

area is converted into to plantation. The change in surface runoff in the historical period 

is with respect to the year 1988, whereas for future period it is with respect to the year 

2016. It can be seen that in the historic period, surface runoff slightly increases from 

1995 to 2016. Similarly in the case of future period also it is observed a slight increase 

in the streamflow (Fig 5.25).  
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Fig. 5.24 Intercomparison of simulated streamflow at the watershed outlet for 

the LULC from 1988 to 2100: (i) ARB, (ii) VRB, (iii) GRB. 

The LULC classification performed in this study is level 1 which considered all 

vegetation types except forest as agricultural land. It can be visualized that the 

streamflow variation over the T3 also exhibited a very minor change with respect to the 

baseline. The forest department has taken the initiative for development activity in this 

particular basin to convert all degraded land into either Acacia auriculiform or mixed 

forest which consumes more water and increases the percolation or groundwater 

recharge (Cover 1993). Large vegetated areas lead to greater water storage capacity of 

soil and thereby increase the increasing infiltration and groundwater recharge 

(Guevara-Escobar et al. 2007; Marhaento et al. 2018). This could be attributed to 

constant streamflow which makes it pristine. The decrease in surface runoff for 

historical period from 1988 to 1995, 1998-2003 and 2003-2016 are 0.002%, 0.023% 

and 0.002% respectively. Compared to the present LULC (2016), the average 

streamflow will be decreased by 0.017% by LULC 2030 and 0.01% by 2100.  And 

decrement from 2016 to 2030 is by 0.017%, 2030 to 2050 by 0.0019%, 2050 to 2075 

by 0.0017, and 2075 to 2100 by 0.01%. The maximum change in streamflow was found 

from 1988 to 2003 (0.02%) in historical and from 2016 to 2100 (0.01%) for the future. 
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Due to LULC change, the surface runoff will decrease in 2030, 2050, 2075, and 2100 

by 0.017%, 0.018%, 0.02%, and 0.01% in comparison to baseline (2016) land use. The 

variation could be due to deforestation (mixed forest) and the conversion of other LULC 

into an unorganized plantation/ agriculture. 

 

Fig. 5.25 Spatial distribution of change in the surface runoff (m3/s) for historical 

LULC 1988 to 2003 (a) 1988– 1995; (b)  1988– 2003; (c) 1988-2016; and for future 

(d) 2016 – 2030; (e) 2016 –2050; (f) 2016 – 2075; (g) 2016 – 2100 for the ARB. 

     The spatial distribution of surface runoff due to LULC impacts for historical and 

future are presented in Fig. 5.26 for VRB. The results show that, decrease in surface 

runoff   for historical time period from 1988 to 1995 and till 2016 by 0.34%, from 1988 

to 1995, 1995 to 2003 and 2003 to 2016 by 0.28%, 0.02% and 0.03%, and plausible 

increment from 2016 to 2030 by 0.09%, 2030 to 2050 by 0.03%, 2050 to 2075 by 

0.16%, and 2075 to 2100 by 0.02% in comparison to LULC (2003).  The maximum 
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change in streamflow was found from 1988 to 1995 (0.28%) in historical and from 2050 

to 2075 (0.16%) for the future. The average streamflow will rise by 0.09% by LULC 

2030 compared to the current LULC. However, the average annual streamflow 

increased by 0.318% from the current LULC (2016) to the projected LULC (2100) in 

the VRB. The variation in streamflow is more clearly observed in the lower part of the 

VRB (Fig 5.26) as more changes in LULC has occurred in the sub-basins these region.  

 

Fig. 5.26 Spatial distribution of change in the surface runoff (m3/s) for historical 

LULC 1988 to 2003 (a) 1988– 1995; (b)  1988– 2003; (c) 1988-2016; and for future 

(d) 2016 – 2030; (e) 2016 –2050; (f) 2016 – 2075; (g) 2016 – 2100 for the VRB. 
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     The spatial distribution of surface runoff due to LULC impacts for historical and 

future are presented in Fig. 5.27 for GRB. Increase in surface runoff for historical time 

period from 1988 to 1995, 1998-2003 and 2003-2016 are 0.01%, 0.08% and 0.06% 

respectively. Compared to the present LULC (2016), the average streamflow will be 

increased by 0.06% by LULC 2030 and 0.14% by 2100.  And increment from 2016 to 

2030 is by 0.06%, 2030 to 2050 by 0.04%, 2050 to 2075 by 0.02, and 2075 to 2100 by 

0.02%. The maximum change in streamflow was found from 1988 to 2003 (0.08%) in 

historical and from 2016 to 2030 (0.06%) for the future. Due to LULC change, the 

surface runoff will increase in 2030, 2050, 2075, and 2100 by 0.06%, 0.09%, 0.12%, 

and 0.14% in comparison to baseline (2016) land use. It could be due to deforestation 

(mixed forest) and the conversion of other LULC into an unorganized plantation/ 

agriculture. Furthermore, urban expansion may contribute to an increase in streamflow. 

Urban expansion is focussed in the downstream of the river basin in which the increased 

flow also is observed (Fig 5.27) 

 

Fig. 5.27 Spatial distribution of change in the surface runoff (m3/s) for historical 

LULC (1988 to 2003 (a) 1988– 1995; (b)  1988– 2003; (c) 1988-2016; and for future 

(d) 2016 – 2030; (e) 2016 –2050; (f) 2016 – 2075; (g) 2016 – 2100 for the GRB. 
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     Fig. 5.28, Fig 5.29 and Fig 5.30 show the variation in monthly, seasonally, and 

annual streamflow for the change in historical and future as per LULC changes for the 

river basins. It appears to be little change during the post-monsoon months such as 

September, October and November, and more in the pre-monsoon (summer) season 

(Fig. 5.28 a) for ARB and little change during monsoon months such as June, July, 

August, September, and more in the pre-monsoon season and post-monsoon season 

(Fig. 5.29 a) in VRB. Small changes during pre-monsoon months such as January, 

February, March and more in the monsoon and post-monsoon season (Fig. 5.30 a) are 

seen in GRB. However, it reveals that LULC changes have more significant impact on 

monthly, seasonal, and annual streamflow than on spatial distribution. In particular, in 

the pre-monsoon months such as January, February and March, streamflow is predicted 

to increase significantly except 2030 which reflects a decrease in flow for ARB and for 

VRB pre-monsoon months such as January, February and March, for future LULC such 

2050, 2075, and 2100, streamflow is predicted to increase significantly. For GRB the 

post-monsoon months such as August to December, for all LULCs streamflow is 

predicted to decrease significantly and in monsoon months it is predicted to increase 

(Fig 5.30 a). The GRB exhibited increase in streamflow during summer and monsoon, 

and a decline in winter which contributed an annual decline in the streamflow                

(Fig 5.30 b) 
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Fig. 5.28 Variation in streamflow owing to LULC change (a) mean monthly (b) 

mean seasonal and annual in the ARB. 

 

 

Fig. 5.29 Variation in streamflow owing to LULC change (a) mean monthly (b) 

mean seasonal and annual in the VRB. 
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Fig. 5.30 Variation in streamflow owing to LULC change (a) mean monthly (b) 

mean seasonal and annual in the GRB. 

     As indicated in the findings, the seasonal and annual streamflows more clearly 

highlighted the unique impacts of both past and future LULC changes. The overall trend 

revealed a drop in historical and a rise in future ARB in the winter. The decline was 

predicted in the summer and the monsoon for future period. But winter and summer 

runoff shows more impact than during the monsoon. The VRB indicated a decrease in 

winter and summer for historical and an increase in the future and a decline in the 

monsoon for future period. But winter and summer show more impacts in comparison 

to monsoon. The GRB portrayed a decrease in winter for historical and future and an 

increase in the summer and monsoon for all time. But winter shows more impacts in 

comparison to summer and monsoon. The rise in average annual basin-scale surface 

runoff from 1988 to 2100 may be attributed mainly to the growth of agricultural and 

urban areas and the shrinkage of forests. Increased agricultural and urban development 

is generally linked with an increase in high flow, low flow decrease, more significant 

flow variability inflow (Dixon and Earls 2012; Kim et al. 2013). As impervious surface 

cover increases with urban expansion, impervious surface limits precipitation 

infiltration and increases runoff (Franczyk and Chang, 2009; Dixon and Earls, 2012). 
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5.2.5 Impact of climate change on streamflow  

Simulations are performed to examine the effects of climate change on streamflow with 

LULC fixed for 2016 and the changing climate during the baseline period (1981 to 

2010) and future periods (2011-2099). GCM results for future periods are divided into 

three-time slices for both emission scenarios (RCP 4.5 and 8.5) : T1 (2011-2040), T2 

(2041-2070), and T3 (2071-2099). The SWAT was run using five downscaled, bias-

corrected GCM ensemble outputs (RCP 4.5 and 8.5) to quantify the change in 

streamflow. The simulation results were compared to simulated results from the 

baseline period (1981 to 2010). The simulation results are referred to as Qclim from 

here on out. 

     Fig. 5.31, Fig 5.32, and Fig 5.33 depict the actual mean precipitation of all five 

GCMs ensembled for T1, T2 and T3 of RCP scenarios for ARB, VRB and GRB 

respectively. Rainfall will be more in downstream areas and less in upstream areas in 

ARB. The rainfall varies between 2000 to 5000 mm among the sub-basins level in the 

ARB but showed a slight increase compared  to historical rainfall. More rainfall is 

received in the downstream of the river basin (Fig 5.31) in all scenarios for ARB. The 

amount of rainfall is increasing as it moves from T1 to T3 in RCP 4.5.  Similarly an 

increase in rainfall is observed in the case of RCP 8.5 (Fig 5.31). In VRB,  rainfall will 

be more in downstream areas and less in upstream regions and varies between mostly 

2500 to 5400 mm among the sub-basins (Fig 5.32). The northern region of the 

catchment receives more rainfall than southern region of the basin. Both RCP 4.5 and 

RCP 8.5 depicts similar trend in the rainfall for VRB (Fig 5.32). In the case of GRB, 

the rainfall varied between 3000 to 5000 mm and showed a slight increase compared to 

historical rainfall (Fig 5.33). In the case of GRB the maximum rainfall is received in 

the middle part of the river basin (Fig 5.33). As the time slices move from T1 to T3, the 

amount of rainfall is observed to be increase in the GRB. Using these rainfall 

projections and other climatological paramaters such as temperature, solar radiation 

etc., the SWAT model was run for various scenarios and the results are presented here. 
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Fig: 5.31 Actual rainfall distribution in ARB for different scenarios 

 

Fig: 5.32 Actual rainfall distribution in VRB for different scenarios 



81 
 

 

Fig: 5.33 Actual rainfall distribution in GRB for different scenarios 

     Fig. 5.34 depicts the simulated time series of runoff at the basin outlet for different 

scenarios and Fig. 5.35 portrays the intercomparison of  runoff. It can be observed an 

increase in flow during T1, T2 and T3 of RCP 4.5 scenarios for ARB (Fig. 5.34i), 

whereas the flow decline in T1 and T3 for RCP 8.5 scenario with an increase in T2 8.5 

scenario for ARB. In the case of VRB, annual discharge declines in all scenarios (Fig. 

5.34ii). RCP 4.5 and RCP 8.5 scenarios for GRB show an increase in flow during T1, 

T2, and T3 except a decline in T3 of RCP 8.5 (Fig. 5.34iii). 
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Fig. 5.34 Simulated runoff at the watershed outlet for various scenarios: (i) ARB, 

(ii) VRB, (iii) GRB 
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Fig. 5.35 Comparison of simulated runoff at the watershed outlet of RCP 

scenarios for 2010 to 2100 of (i) ARB, (ii) VRB, (iii) GRB. 

     The simulated Qclim (change in surface runoff due to CC) for the future period 

under both scenarios were compared to the corresponding values of all sub-basins from 

the baseline period (1981 to 2010), as given in Fig. 5.36 for ARB, Fig 5.37  for VRB 

and Fig 5.38 for GRB. It can be observed that change in annual Qclim for all the 

scenarios is moderate to extremely substantial for the future periods. In general, Qclim 

was predicted to increase in most subbasins while moving from T1 to T3 future mainly 

T1 to the main channel for ARB and GRB whereas in VRB it predicted to decrease in 

most subbasins while moving from T1 to T3 future mainly upstream.  

     In particular for ARB, the Qclim decreased from the baseline period by 19.09%, 

13.35%, and 6.37% in RCP 4.5 from T1, T2, and T3 period respectively.In the case of 

RCP 8.5 there is an decrease in Qclim by 16.46% for T1 and decrease by 9.29% and 

16.78% for T2 and T3 respectively (Fig. 5.36). For VRB, the Qclim increased from the 

baseline period by 12.7%, 9%, and 7.09% in RCP 4.5 from T1, T2, and T3 period 

respectively. Qclim increased from the baseline period by 10.01% and 5.81% in RCP 

8.5 in T1 and T2 time scale and decreased by 0.27% in T3 time scale (Fig. 5.37). In the 
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case of GRB (Fig. 5.38), the Qclim increased from the baseline period by 6.11%, 

23.24%, and 31.19% in RCP 4.5 from T1, T2, and T3 periods respectively. Under RCP 

8.5 there is an rise in Qclim by 10.32% for T1, 35.77% for T2 and 49.18% for T3 

respectively. In compared to the baseline period, Qclim's overall increases in all RCPs 

scenarios and all three-time slices suggested the necessity for involvement in water 

resource management. 

 

Fig. 5.36 Change in surface runoff for different scenarios in the ARB. 
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Fig. 5.37 Change in surface runoff for different scenarios in the VRB. 

 

 

Fig. 5.38 Change in surface runoff for different scenarios in the GRB. 
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     The increase in rainfall during the summer season induces the need for the study of 

seasonal variations of water resources in a basin for all future climate change studies. 

The seasonal flow reflects the effects of climate change more clearly than the other 

duration basis. The findings showed different seasonal climate patterns, with increased 

summer, monsoon and winter precipitation in future periods. The changes in monthly, 

seasonal, and annual streamflow are presented in Fig. 5.39 (ARB); Fig 5.40 (VRB); Fig 

5.41 (GRB), due to climate change for the future period. There appeared to be a 

decrease in streamflow in May, June, July, August and October and an increase in 

streamflow for the other months (Fig. 5.39 a) in all scenarios under both emission 

scenarios for ARB. Fig. 5.39 b represents seasonal change and confirms more clearly 

change in the streamflow owing to climate change in the future. In compared to the 

baseline period, it clearly shows an increasing tendency in winter, summer, and 

monsoon season and a declining trend in winter and monsoon season in all T1 time 

slices for all RCP 8.5 scenarios.. Sinha et al., (2020) reported that streamflow is 

generally more sensitive towards precipitation change and temperature change. The 

increasing annual Qclim could be due to increasing precipitation in ARB. Because of 

the climate in the study area, the southwest monsoon significantly may decline 

(Krishnakumar et al. 2009), which has features of an altered marine climate and 

experiences a wet monsoon and dry, warm summer. The above results showed different 

annual Qclim patterns in all RCP scenarios because precipitation was reduced in the 

future period as compared to the baseline period in ARB.  
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Fig. 5.39 Variation in streamflow owing to CC (a) mean monthly (b) mean 

seasonal and annual in the ARB. 

     The VRB portrayed a decrease in streamflow in June, July and an increase in 

streamflow for the other months (Fig. 5.40 a) in all scenarios under both emission 

scenarios except a decrease in August month during the T3 of RCP 8.5 emission 

scenario. Fig. 5.40 b clearly showing an increasing trend in winter, summer and 

monsoon season in all the time slices for both scenarios in comparison to the baseline 

period except a decrease in monsoon during T3 of RCP 8.5 emission scenario. The 

increasing annual Qclim could be due to increasing precipitation in VRB. The above 

results showed different annual Qclim patterns in all three-time slices because 

precipitation has increased in the future period as compared to the baseline period in 

VRB.  
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Fig. 5.40 Variation in streamflow owing to CC (a) mean monthly (b) mean 

seasonal and annual in the VRB. 

      A considerable increase in streamflow in January and February, with a slight 

increase from September to December (Fig. 5.41 a) in all scenarios is observed in GRB. 

A slight decline during March with negligible changes in the monsoon months can be 

observed.  Seasonal change shows an increasing trend in winter and monsoon seasons 

in all the time slices for both scenarios compared to the baseline period (Fig 5.41 b). 

There is a decline in the summer season of T1 future in the case of both RCP emission 

scenarios. The increasing annual Qclim could be due to increased precipitation in GRB. 

The above results showed different annual Qclim patterns in RCP 4.5 and 8.5 in all 

three-time slices because rainfall increased in the future period compared to the baseline 

period in GRB. Besides, Qclim in this region is closely related to ecosystem health. A 

new strategy for water resource management is required, one that considers future 

climate change and the risk of decreased streamflow. 
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Fig. 5.41 Variation in streamflow owing to CC (a) mean monthly (b) mean 

seasonal and annual in the GRB. 

5.2.6 Combined impacts of LULC and climate change on streamflow  

In the earlier sections, the impacts of LULC variation alone with constant climate 

parameters and then constant LULC and varying climate parameters are found. These 

two cases enable us to understand the impacts of LULC and climate on hydrology. 

However, in the actual situation in the river basin, change is happening in LULC and 

climate. This occurs simultaneously, and both impacts are found in hydrological 

variables such as streamflow and ET. In this study, to carry out the analysis of both 

LULC and climate change, three different scenarios have been set up: (i) near (2011-

2040) – baseline (T1); (ii) mid (2041-2070) – baseline (T2); and (iii) far (2071-2100) – 

baseline (T3). The baseline as climate 1981-2010 by using 2016 LULC (near to present) 

and for the future period, it is near, mid and far scenarios are considered like the climate 

of 2011-2040 by using 2030 LULC (for the T1 scenario), climate 2041- 2070 by using 
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2050 LULC (for the T2 scenario), climate 2071-2100 by using 2075 LULC (for T3 

scenario) have been developed. The spatial distribution of rainfall considered is 

presented in the Fig. 5.42 for ARB and found very similar trend of historical rainfall at 

sub-basin scale. Still, it showed an increasing trend in all scenarios. It is seen that 

downstream rainfall will be more in comparison to the mid part of the basin and 

upstream.  

 

Fig. 5.42 Spatial distribution of rainfall of RCP emission scenarios for ARB. 

     Fig. 5.43 represents the spatial distribution of rainfall of VRB and found very similar 

trend of historical rainfall at the sub-basin scale with an increasing trend in all scenarios. 

It is seen that rainfall will be more in North West regions in the basin   than other areas.  
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Fig. 5.43 Spatial distribution of rainfall of RCP emission scenarios for VRB. 

     The spatial distribution of rainfall for GRB is presented in the Fig. 5.44 and found 

very similar trend of historical rainfall at the sub-basin scale. Still, it showed an 

increasing trend in all-time slices for both RCP scenarios. It is seen that in the middle 

part of the basin, rainfall will be more in comparison to downstream of the basin and 

upstream.  

 

Fig. 5.44 Spatial distribution of rainfall of RCP emission scenarios for GRB. 
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     The spatial distribution of ET is presented in Fig. 5.45 at the sub-basin scale for both 

RCPs scenarios for ARB. The Figure shows more ET in the coastal areas (downstream) 

and less in the upstream and southeast parts of the basin. Fig. 5.46 represents the spatial 

distribution of ET for VRB. The Figure shows more ET in the areas adjacent to the 

reservoir and less in the downstream areas. Whereas Fig. 5.47 exhibits more ET in the 

coastal areas (downstream) and less in the upstream and southeast parts of the basin for 

GRB.  

 

Fig. 5.45 Spatial distribution of actual ET for RCP emission scenarios in ARB. 
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Fig. 5.46 Spatial distribution of actual ET for RCP emission scenarios in VRB. 

 

Fig. 5.47 Spatial distribution of actual ET for RCP emission scenarios in GRB. 
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     Fig. 5.48 for ARB shows the regional patterns of change in surface runoff from 

baseline to future for RCP scenarios at the sub-basin scale. Results from the surface 

runoff suggest that the combined impacts showing a decreasing trend in T1, T2 and T3 

scenarios of RCP 4.5 by 18.91%, 13.32% and 6.28% respectively compared with 

baseline.  In the case of RCP 8.5, a decreasing trend was also predicted by 16.61% in 

the T1 and by 9.19%, 16.70% in the T2 and T3, respectively. This is because of the 

high variation in precipitation in the respective scenarios.  From Fig. 5.48, it can be 

seen that most sub-basins show a decreasing trend of surface runoff in the future 

compared with the baseline, whereas as the time period moves to the T3, the decreasing 

trend reduces ARB which resembles with the precipitation pattern. 

 

Fig. 5.48 Sub-basin level distribution of change in the surface runoff for the 

combined impact of LULC and CC in the ARB. 

     Fig. 5.49 represents the sub-basin level distributions of change in surface runoff 

from baseline condition to future for VRB. It is observed that the combined impacts 

show an increasing trend in all scenarios of RCP 4.5 by 12.65%, 8.2 9% and 6.82% 
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respectively. There is an increasing trend by 9.80% in the T1 and 5.24% in the T2 and 

decreasing by 0.90% in the T1 under RCP 8.5 emission scenarios. The surface runoff 

reduced at the sub-basins that receive less rainfall whereas more increased surface 

runoff is predicted in the sub-basin with more rainfall. Also, it is observed that as the 

time period moves to the T3 the decreasing trend increases in VRB which resembles 

the precipitation pattern. 

 

Fig. 5.49 Sub-basin level distribution of change in the surface runoff for the 

combined impact of LULC and CC in the VRB. 

     The spatial distributions of change in surface runoff from baseline condition to 

future, for GRB are shown in Fig. 5.50. Results replicate that the combined impacts 

show an increasing trend in T1, T2 and T3 scenarios of RCP 4.5 by 6.04%, 20.26%, 

and 28.49%, respectively, compared with baseline. In the case of RCP 8.5, an increasing 

trend was also predicted by 10.26% in the T1 and by 32.75% and 46.48% in the T2 and 

T3, respectively. This is because of the high variation in precipitation in the respective 

scenarios.  It is also noted that CC is more dominant than LULC change in all the 

scenarios for both RCPs for GRB. Regarding LULC, it is noticed from the analysis that 

streamflow is highly sensitive to barren and urban areas. From Fig. 5.50, it can be seen 

that most sub-basins show an increasing trend of surface runoff and more towards the 
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downstream part of the GRB, in which more urban expansion is seen. Although positive 

trends in streamflow may be perceived beneficial in terms of water scarcity, it is 

important to note the timing and availability concerning agriculture and allied sectors. 

The National Food Security Mission (Government of India) provides a detailed 

cropping calendar specific to each state in India to aid with optimal times for sowing 

and harvest as agriculture in India is highly dependent on monsoon rains. The variations 

in rainfall, streamflow, and water availability observed in this study could be expected 

to impact sowing and harvesting directly. Similar variations may also be expected in 

other rivers of the Western Ghats, which have a similar climatic profile as GRB, which 

are more intensively farmed. 

 

Fig. 5.50 Sub-basin level distribution of change in the surface runoff for the 

combined impact of LULC and CC in the GRB. 

     Fig. 5.51 shows the monthly, seasonally, and annual variation in streamflow in all 

scenarios for ARB. The results indicated that the monthly streamflow (Fig. 5.51 a) 

decreased from May to October and increased in September. The streamflow increases 
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in the rest of the months under all scenarios of RCP 4.5 and 8.5. The seasonal and 

annual variation of streamflow results gives a clear idea. It is clearly indicated that there 

is an increase in all seasons for all of the future periods (Fig. 5.51 b) except a decrease 

in winter for the T1 RCP 8.5 emission scenario. 

 

 

Fig. 5.51 Percentage change in streamflow due to LULC and climate change (a) 

mean monthly (b) mean seasonal and annual in the ARB. 

     The monthly, seasonally, and annual variation in streamflow for VRB is presented 

in fig 5.52. The results indicated that the monthly streamflow (Fig. 5.52 a) decreased 

during June and July. The streamflow increases in the rest of the months under all 

scenarios of RCP 4.5 and 8.5. It is observed that there is an increase in all seasons for 

all of the future periods (Fig. 5.52 b) except for a decrease in the monsoon season of 

the RCP 8.5 emission scenario. 
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Fig. 5.52 Change in streamflow due to LULC and CC (a) mean monthly (b) 

mean seasonal and annual in the VRB. 

     For GRB, Fig. 5.53 shows the monthly, seasonally, and annual variation in 

streamflow. The monthly streamflow (Fig. 5.53 a) increased from September to 

February, decreasing in March. The streamflow has no significant variations in the rest 

of the months under all scenarios of RCP 4.5 and 8.5. There is an increase in flow in all 

seasons for all future periods under both emission scenarios except a decrease in 

summer in T1 under both RCP 4.5 and RCP 8.5 (Fig.5.53 b). 
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Fig. 5.53 Change in streamflow due to LULC and CC (a) mean monthly (b) 

mean seasonal and annual in the GRB. 
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CHAPTER 6 

BASIN‑SCALE WATER AVAILABILITY AND VULNERABILITY 

ASSESSMENT  

6.1 METHODOLOGY 

A scenario analysis approach was conducted to assess water scarcity in the 

Aghanashini, Varahi, and Gurupura river basins. Three climate window periods 

representing near-future (T1) (2006-2040), mid-future (T2) (2041-2070), and far-future 

(T3) (2071-2100) were framed for the scenario analysis of water scarcity. The 

freshwater scarcity was then quantified within each window period in terms of blue and 

green water. The sum of surface water and groundwater was estimated as Blue Water 

Flow (BWF). BWF translates to surface runoff, lateral, and return flows in terms of a 

basin scale. Naturally infiltrated water is considered the green water in the basin. Green 

water constitutes two components, namely Green Water Storage (GWS), which 

accounts for the available soil moisture, and Green Water Flow (GWF), which accounts 

for the actual evapotranspiration (Swain et al 2020). 

     Water scarcity is the inadequacy of enough water availability in a given river basin 

to fulfil water consumption needs in the region. However, granular data on sectoral 

water demands are not readily available for river basins. Thus, the water-scarce 

vulnerability assessment for the above river basins was carried out using baseline water 

demands which is the relative change in streamflow (Q) and water availability (WA) 

under Representative Concentration Pathway 4.5 (RCP 4.5) and RCP 8.5 scenarios. 

Water availability at the basin scale does not necessarily follow streamflow patterns as 

it is an integrated interaction between streamflow and basin storage components. The 

changes to streamflow and water availability in this study are computed, taking into 

account an ideal balance between water demand and water availability (Swain et al. 

2020).  

ΔQ = Qa − Qb 

Qb
                                          (6.1) 



102 
 

ΔWA = WAa  − WAb  

WAb

                                                              (6.2) 

where Q = relative change in streamflow; Qa and Qb = average streamflows for the 

assessment and baseline periods, respectively; WA = relative change in water 

availability, and WAa and WAb = average water availabilities for the assessment and 

baseline periods, respectively.  

     Based on ΔWA and ΔQ, four vulnerable sectors were identified as suggested by 

Garrote et al. (2018). The criteria for potential zoning of water scarcity risk assessment 

are outlined below:  

Zone-1 (Z1) = (Q ˃ 0, WA ˃ 0) = Low risk                                     (6.3)   

Zone-2 (Z2) = (Q ˂ 0, WA ˃ 0) = Moderate risk                            (6.4) 

Zone-3 (Z3) = (Q ˃ 0, WA ˂ 0) = High risk                                     (6.5) 

Zone-4 (Z4) = (Q ˂ 0, WA ˂ 0) = Extreme risk                               (6.6) 

6.2 RESULTS AND DISCUSSION 

6.2.1 Basin‑scale water availability and vulnerability assessment 

The Blue Water Flow (BWF), Green Water Flow (GWF), and Green Water Storage 

(GWS) under combined LU and CC were estimated at the basin scale and are given in 

Table 6.1. Using these estimates of BWF, GWF, and GWS, the water scarcity in the 

river basins was calculated as suggested by Swain et al. (2020). From Table 6.1, it may 

be observed from RCP 4.5 to RCP 8.5 scenarios that the BWF is almost the same for 

the T1 in the ARB with an increase in T2 and a decline in T3. Whereas in the case of 

VRB, BWF increased only in the case of the T1, with a decline in the T2 and T3 for 

both emission scenarios. However, in the GRB, an increase in BWF was observed for 

all climate windows across RCP 4.5 to RCP 8.5. The GWF and GWS increased for all 

the basins in all the climatic windows except for a slight decline in GWS in the T1 in 

the ARB and GWF in the T1 in VRB. 
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Table 6.1 Basin-scale estimates of precipitation, Blue Water Flow (BWF), Green 

Water Flow (GWF), and Green Water Storage (GWS) 

Variable Climate 

window 

ARB VRB GRB 

RCP 4.5 

(mm) 

RCP 8.5 

(mm) 

RCP 4.5 

(mm) 

RCP 8.5 

(mm) 

RCP 4.5 

(mm) 

RCP 8.5 

(mm) Precipitation T1 2994.4 2995.9 4467.5 4566.9 

 

3887.5 4004.1 

T2 3309.2 3465.9 4465.1 

 

4374.3 

 

4329.9 4739.8 

T3 3614.7 3359.8 4481.3 

 

4098.7 

 

4591.9 5205.8 

Blue Water 
Flow (BWF) 

T1 2444.65 2441.15 2397.71 

 

2489.84 

 

2298.83 2322.82 

T2 2732.05 2866 2442.97 

 

2312.34 

 

2656.73 2928.13 

T3 3034.5 2749.11 2434.82 

 

2016.45 

 

2882.64 3311.53 

Green Water 

Flow (GWF) 

T1 377.9 385.3 598.7 

 

587.9 

 

492 551.9 

T2 385.4 397.3 594.7 

 

609.60 

 

504.9 516 

T3 385.9 405.6 610.9 

 

618.00 

 

511.1 525.4 

Green Water 

Storage 

(GWS) 

T1 178.2 175.83 1471.35 

 

1489.27 

 

1196.39 1229.96 

T2 198.29 209.21 1427.61 

 

1452.52 

 

1271.32 1404.16 

T3 200.77 211.56 1435.78 

 

1464.40 

 

1302.22 1480.32 

 

     The GWF was found to be more than the GWS in the ARB, implying water loss as 

evapotranspiration in the basin and decreased soil moisture. On the other hand, GWS 

was higher than GWF in the VRB and GRB, which may be attributed to lesser 

evapotranspiration resulting from decreased forest cover and an increase in urbanized 

areas. Large vegetated areas lead to the soil's more excellent water storage capability 

and thereby enhance the infiltration and groundwater recharge (Guevara- Escobar et 

al., 2007; Marhaento et al., 2018).
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     Fig. 6.1 represents the relative change in streamflow and water availability for the 

three basins. ΔQ and ΔWA lesser than zero correspond to extremely vulnerable, and 

greater than zero corresponds to the less vulnerable sector. Similarly, ΔQ less than zero 

and ΔWA greater than zero refer to moderate vulnerability. A high vulnerable zone is 

referred to if ΔQ is greater than zero and ΔWA is less than zero (Garrote et al. 2018). 

ARB was classified as extremely vulnerable in the T1 climate window and less 

vulnerable over T2 and T3 windows. 

     Additionally, increasing temperature could result in increased evaporation, and 

lowering of soil moisture may lead to extreme events such as drought (Mukherjee et 

al., 2018; Whan et al., 2015). In the case of VRB, the relative changes to ΔQ and ΔWA 

were higher than zero and, therefore, classified under the low vulnerable category. 

However, for RCP 8.5 the VRB falls under moderate risk. 

     In the case of GRB, the increase in the BWF was attributed to the increase in 

urbanized areas and is also in accordance with previous studies (Giri et al., 2018). The 

relative changes to ΔQ and ΔWA were higher than zero, and therefore, the GRB was 

classified under the low vulnerable category as per the vulnerability classification. 

 

Fig. 6.1 Changes in water scarcity for the three climate windows 
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6.3 Keen observervation for the River Basin 

The basin is classified into three primary zones based on observations, findings, and 

the level of LULC and CC impacts on surface runoff. The first zone is an upper region 

(upstream), the second zone is the middle region, and the third zone is the basins lower 

(downstream) region. The adaptation measures for each basin is described below: 

6.3.1 Keen observation for Aghanashini River Basin 

 Fig. 6.2 represents different zone for water resource management in the ARB. For 

ARB, major changes are in forest areas and plantations in the first and second zone, 

while in the third (lower) zone considerable amount of wetlands has been noticed.  

 

Fig. 6.2 River boundary, sub-basins, and different zone for water resource 

management in the ARB. 

     Based on the analysis of LULC impacts, it is found that very minute variation over 

the spatial variation. In contrast, the monthly and seasonal analysis observed a 

noticeable change in surface runoff. The Aghanashini river basin, characterized by its 

rich mudflats/tidal flats caused an increase in wetlands from 1.47% to 5.87% from 2016 

to 2075. These mudflats are formed owing to organic matter/nutrients being transported 

from the forested region upstream of the basin. A decrease in forests generally tends to 

increase wetlands in small/medium undammed basins such as the Aghanashini. 
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However, it is essential to note that earlier studies on the wetlands of the Aghanashini 

river report more than 120 species of birds contribute to the productivity of mudflats 

through nutrient cycling in the form of potash and nitrogen source (Bhat et al. 2014; 

Boominathan et al. 2014, 2008). A decrease in forested areas and conversion of forests 

to plantation land in the ARB, as shown in the present study, could be inferred as a 

potential threat to these mudflats. These might be because of deforestation and high 

vegetative runoff that are known to be associated with higher transport of nutrient-rich 

sediments leading to eutrophication in aquatic environments. These changes also 

influence freshwater scarcity which causes nutrient-rich water that is not very fit for 

human and livestock consumption. It was found that the maximum change in 

streamflow was found from 1988 to 2003 (0.02%) historical and from 2016 to 2100 

(0.01%) for the future. It is observed that change in annual surface runoff due to CC for 

all the time slices is moderate to highly significant for future CC scenarios. The Qclim 

decreased from the baseline period by 19.09%, 13.35%, and 6.37% in RCP 4.5 from 

the T1, T2, and T3 periods. In the case of RCP 8.5 there is a decrease in Qclim by 

16.46% for T1 and a decrease by 9.29% and 16.78% for T2 and T3, respectively.  

     Also found that a decrease in streamflow in May, June, July, August, and October 

and an increase in streamflow for the other months in all scenarios. Seasonal change 

shows a rising trend in winter, summer, and monsoon and a decreasing trend in winter 

and monsoon season in all the T1 time slices compared to the baseline period. 

Therefore, it is essential to plan and recommend spatial variation and monthly, seasonal, 

and annual variation for future water resource management in ARB. 

     Combined impacts of LULC and climate change on surface runoff suggest a 

decreasing trend in T1, T2 and T3 scenarios of RCP 4.5 by 18.91%, 13.32%, and 6.28%, 

respectively, compared with baseline. In the case of RCP 8.5, a decreasing trend was 

also predicted by 16.61% in the T1 and by 9.19% and 16.70% in the T2 and T3, 

respectively. This is because of the high variation in precipitation in the respective 

scenarios (Table 6.2). The results indicated that the monthly streamflow decreased from 

May to October with an increase in September. The streamflow increases in the rest of 

the months under all scenarios of RCP 4.5 and 8.5.  
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6.3.2 Keen observation for the Varahi River Basin 

Fig. 6.3 represents different zone for water resource management in the VRB. In the 

first and second zone, major changes are in forest and barren areas, while third (lower) 

zone, considerable conversion of barren land into the agricultural area has been noticed.  

 

Fig. 6.3 River boundary, sub-basins, and different zone for water resource 

management in the VRB. 

     Based on the analysis of LULC impacts, it is found that water scarcity may happen 

due to high rainwater runoff, loss of forest cover, reclamation, expansion of the 

agricultural field, etc. It was observed that due to LULC change, even under the normal 

rainfall conditions, the lowland area of the basin may experience severe floods and 

meteorological drought due to high runoff more often than in the earlier times in the 

future period. The maximum change in streamflow was found from 1988 to 1995 

(0.28%) in historical and from 2050 to 2075 (0.16%) in the future. Compared to the 

present LULC, the average streamflow will be increased by 0.09% by LULC 2030. 

However, the average annual streamflow increased by 0.318% from the current LULC 

(2016) to the projected LULC (2100) in the VRB. In particular, the Qclim increased 

from the baseline period by 12.7%, 9.0%, and 7.09% in RCP 4.5 from the T1, T2, and 

T3 periods respectively. Qclim increased from the baseline period by 10.01% and 

5.81% in RCP 8.5 on the T1 and T2 time scale and decreased by 0.27% on a T3 time 

scale. Regarding impact of CC, a decrease in streamflow was observed in June and July. 
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There is an increase in streamflow for the other months in all scenarios except a 

reduction in August month during the T3 of the RCP 8.5 emission scenario. Seasonal 

change shows an increasing trend in winter, summer, and monsoon seasons in all the 

time slices compared to the baseline period, except for a decrease in monsoon during 

the T3 of the RCP 8.5 emission scenario. 

     Combined impacts of LULC and CC on surface runoff suggest an increasing trend 

in all scenarios of RCP 4.5 by 12.65%, 8.29%, and 6.82%, respectively. There is an 

increasing trend of 9.80% in the T1 and 5.24% in the T2, and decreasing of 0.90% in 

the T3 under RCP 8.5 emission scenarios. This is because of the variation in 

precipitation in the respective scenarios (Table 6.2). The results indicated a monthly 

streamflow decrease during June and July under RCP scenarios. The streamflow 

increases in the rest of the months under all scenarios of RCP 4.5 and 8.5. The seasonal 

and annual variation of streamflow gives a more precise idea. It indicates streamflow 

increase in all seasons for all future periods except a decrease in the monsoon season 

of the RCP 8.5 emission scenario. 

6.3.3 Keen observation for the Gurupura River Basin 

Fig. 6.4 represents different zone for water resource management in the GRB. In the 

first and second zone, significant changes are in forest areas, while third (lower) zone 

considerable amount of agricultural land conversion to the urban area has been noticed. 

Based on the analysis of LULC impacts, it is found that water scarcity may happen due 

to high rainwater runoff, loss of forest cover, reclamation, expansion of the vegetative 

field, etc. Due to LULC change, even under the normal rainfall conditions, the cities in 

the lowland area of the basin may experience severe floods and meteorological drought 

due to high runoff more often than the earlier times future period. Based on the analysis 

of LULC impacts, slight variation over the spatial variation is found. 

     In contrast, the monthly and seasonal analysis observed a noticeable change in 

surface runoff. The maximum shift in streamflow was found from 1988 to 2003 (0.08%) 

in historical and from 2016 to 2050 (0.03%) in the future. The Qclim increased from 

the baseline period by 6.11%, 23.24%, and 31.19% in RCP 4.5 from T1, T2, and T3 
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periods respectively. In the case of RCP 8.5 there is an increase in Qclim by 10.32% 

for T1, 35.77% for T2, and 49.18% for T3, respectively. Regarding impact of CC, there 

is an increase in streamflow in January and February, with a slight increase from 

September to December in all scenarios. A slight decline during March with minor 

changes in the monsoon months can be observed. Seasonal change shows an increasing 

trend in winter and monsoon seasons compared to the baseline period in all the time 

slices.  

 

Fig. 6.4 River boundary, sub-basins, and different water resource management 

zones in the GRB. 

     Combined impacts of LULC and climate change on surface runoff suggest an 

increasing trend in T1, T2 and T3 scenarios of RCP 4.5 by 6.04%, 20.26%, and 28.49%, 

respectively, compared with baseline. In the case of RCP 8.5, an increasing trend was 

also predicted by 10.26% in the T1 and by 32.75% and 46.48% in the T2 and T3, 

respectively. This is because of the high variation in precipitation in the respective 

scenarios (Table 6.2). The results indicated that the monthly streamflow (Fig. 53 a) 

increased from September to February and decreased in March. The streamflow has no 

significant variations in the rest of the months under all scenarios of RCP 4.5 and 8.5. 

The seasonal and annual variation of streamflow results gives a more precise idea. 
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Table 6.2 Change in rainfall and surface runoff due to LULC and climate change 

for RCP 4.5 and 8.5. 

River Basin Scenarios  Scenarios Time slice Change in 

Rainfall (%) 

Change in 

Surface Runoff 

(%) 

 

 

Aghanashini 

River Basin 

 

RCP 4.5 

T1 2011-2040 -19.09 -18.91 

T2 2041-2070 -11.96 -13.32 

T3 2071-2100 -4.78 -6.28 

 

RCP 8.5 

T1 2011-2040 -17.95 -16.61 

T2 2041-2070 -7.96 -9.19 

T3 2071-2100 -12.16 -16.70 

 

 

Varahi River 

Basin 

 T1 2011-2040 4.95 12.65 

RCP 4.5 T2 2041-2070 6.07 8.29 

 T3 2071-2100 7.83 6.82 

 

RCP 8.5 

T1 2011-2040 4.42 9.80 

T2 2041-2070 10.16 5.24 

T3 2071-2100 11.03 -0.90 

 

 

Gurupura 

River Basin 

 T1 2011-2040 -3.57 6.04 

RCP 4.5 T2 2041-2070 7.74 20.26 

 T3 2071-2100 10.67 28.49 

 T1 2011-2040 0.42 10.26 

RCP 8.5 T2 2041-2070 19.31 32.75 

  T3 2071-2100 27.08 46.48 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

This research aimed to determine the effects of LULC and CC on rivers that originate 

in the Western Ghats and flows through the west coast of Karnataka. Three river basins, 

namely Aghanashini, Varahi, and Gurupura, were chosen to represent the rivers on the 

west coast of Karnataka. The SWAT hydrological model was used to estimate the 

hydrology of river basins based on climatic variables, and the Dyna CLUE model was 

used to predict future land-use scenarios. Also, the study investigated the capability of 

four datasets of rainfall viz., IMD rainfall, TRMM, CHIRPS-0.25, and CHIRPS-0.05, 

in simulating streamflow under different calibration scenarios in a typical medium-

sized river basin (Gurupura river) among the study area. The water scarcity analysis 

was carried out for these three river basins under the combined effect of long-term 

changes to land use and climate for vulnerability zonation. 

     The findings of the investigations are presented in this chapter. For clarity, the 

findings are provided in the order in which they were framed. The recommendations/ 

adaptation measures to cope with future climate change in the river basins are 

highlighted. The limitations of the current study and the need for more research are also 

discussed.  

7.1 EVALUATION OF SATELLITE PRECIPITATION PRODUCTS IN   

SIMULATING STREAMFLOW 

This work is aimed to investigate the capability of four datasets of rainfall viz., IMD 

rainfall, TRMM, CHIRPS-0.25, and CHIRPS-0.05, in simulating streamflow under 

different calibration scenarios in a typical medium sized river basin (Gurupura river) in 

the West coast of India. Soil and Water Assessment Tool (SWAT) was used for 

simulating streamflow and validating them against the flows generated by driving India 

Meteorological Department (IMD) rainfall dataset. Distinct testing scenarios for 
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simulating streamflow were made to check the suitability of these satellite precipitation 

data, and the following outcomes were obtained from this study: 

 From categorical and continuous statistical results, TRMM detected better 

rainfall than CHIRPS with respect to IMD rainfall data.  

 All rainfall datasets are forced into the SWAT hydrological model and 

calibrated separately to obtain the optimized parameters. The performance 

rating was found to be in the following order IMD, TRMM, CHIRPS-0.05, and 

CHIRPS-0.25.  

 As the spatial resolution of the CHIRPS dataset increases, the model's 

performance in simulating the streamflow also increases.  

 The performance indicators R2, NSE, and PBIAS, were in the range 0.56 to 

0.86, 0.54 to 0.86, and -14.98 to 10.71, respectively, which shows that all 

datasets are in the acceptable range for the streamflow generation.  

 It could be inferred from the hydrological simulations that calibrated sensitive 

parameters of the gauge, or IMD dataset should not be used to calibrate the 

model with other satellite precipitation products; instead, each satellite dataset 

should be calibrated separately.  

 It was evident that precipitation is one of the main components in the 

hydrological model which has a significant effect on streamflow simulations 

because the runoff simulations were greatly affected with the change in 

precipitation dataset by maintaining other datasets (Topography, Soil, Land use 

and other climatic parameters) constant for different simulations. 

7.2 RIVER BASIN RESPONSE ON EFFECTS OF LAND USE AND CLIMATE 

CHANGE  

This study aimed to investigate the impacts of past and future LULC and climate change 

on streamflow in the three west-flowing rivers of the Western Ghats, representing 

different levels of anthropogenic influence that spread over the northern (Aghanashini), 
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middle (Varahi), and southern portion (Gurupura) of the west coast Karnataka. The 

SWAT model was calibrated and executed for hydrological modeling of the river 

basins. The detection and analysis of LU were carried out using Landsat satellite 

imagery. Future LU maps were predicted using the Dyna-CLUE model, and future 

climate projections were derived from an average of five Global Circulation Models 

(GCMs). LULC changes impact streamflow by keeping the climatology constant to 

understand the hydrological effects of man-made LULC variations. The climate change 

analysis was carried out for three different time horizons: near-future (T1) (2006–

2040), mid-future (T2) (2041–2070), and far-future (T3) (2071–2100) under RCP 4.5 

and RCP 8.5 scenarios keeping LULC constant. To carry out the combined impact of 

LULC and CC, the T1, T2 and T3 scenarios are considered like the climate of 2011-

2040 by using 2030 LULC (for the T1 scenario), climate 2041- 2070 by using 2050 

LULC (for the T2 scenario), climate 2071-2100 by using 2075 LULC (for the T3 

scenario) and the following outcomes may be inferred from this study: 

 In ARB and VRB, the transition matrix of land use changes indicates that forest 

land converts to the plantation. It is observed that the expansion of agriculture, 

urban, and deforestation is highly sensitive to streamflow. 

 In GRB, the transition matrix of land use changes indicates that forest land 

converts to plantation and agriculture into urban and barren lands. 

 Out of five GCMs, it is observed that CNRM and MPI_LR are giving good 

results in comparison to other GCMs for ARB. But for VRB, CNRM and 

MPI_LR are providing good results. In the case of GRB, MPI_MR and MPI_LR 

are giving better performance. 

 Compared to the present LULC (2016), the average streamflow will be 

decreased by 0.017% by LULC 2030 and 0.01% by 2100 for ARB. In VRB and 

GRB, the average streamflow will be increased by 0.09%, 0.06 % by LULC 

2030, and 0.318%, 0.14% by 2100.  

 It could be observed that the impact on streamflow due to only LULC is 

significantly less when compared with climate change impact. However, 

deforestation and the conversion of other LULC into an unorganized plantation/ 

agriculture with urban expansion increase streamflow.  
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 Due to LULC change, the surface runoff will decrease in 2030, 2050, 2075, and 

2100 by 0.017%, 0.018%, 0.02%, and 0.01% in ARB, 0.1%, 0.13%, 0.30%, and 

0.32% in VRB and 0.06%, 0.09%, 0.12%, and 0.14% in GRB in comparison to 

baseline (2016) land use.  

 For climate change, only the impact ensemble of surface runoff decreased from 

the baseline period by 19.09%, 13.35%, and 6.37% in RCP 4.5 from the T1, T2, 

and T3 periods respectively. In the case of RCP 8.5, there is a decrease in Qclim 

by 16.46% for T1 and a decrease by 9.29% and 16.78% for T2 and T3, 

respectively, for ARB. 

 Ensemble of surface runoff increased from the baseline period by 12.7%, 9.0%, 

and 7.09% from T1, T2, and T3 periods respectively, under RCP 4.5 and Qclim 

increased from the baseline period by 10.01% and 5.81% in RCP 8.5 in T1 and 

T2 time scale and decreased by 0.27% in the T3 time scale for VRB. 

 In GRB, surface runoff increased from the baseline period by 6.11%, 23.24%, 

31.19%, and an increase by 10.32%, 35.77%, and 49.18% in RCP 4.5 and RCP 

8.5 from T1, T2, and T3 period respectively.  

 Combined impacts of LULC and CC on surface runoff for ARB suggest a 

decreasing trend in T1, T2 and T3 scenarios of RCP 4.5 by 18.91%, 13.32%, 

and 6.28%, respectively, compared with baseline. The RCP 8.5 also predicted a 

decreasing trend of 16.61% in the T1 and 9.19% and 16.70% in the T2 and T3, 

respectively. 

 An increasing trend in all scenarios of RCP 4.5 by 12.65%, 8.29%, and 6.82%, 

respectively, was observed under the combined impact on VRB. There is an 

increasing trend of 9.80% in the T1 and 5.24% in the T2 and decreasing by 

0.90% in T1 under RCP 8.5 emission scenarios in VRB. 

 Combined impacts suggest an increasing trend in T1, T2 and T3 scenarios of 

RCP 4.5 by 6.04%, 20.26%, and 28.49%, respectively, compared with baseline. 

In the case of RCP 8.5, an increasing trend was also predicted by 10.26% in the 

T1 and by 32.75% to 46.48% in the T2 and T3, respectively, in GRB. 
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 Understanding how future climate and LULC changes affect streamflow is 

critical for long-term water resource planning and management. In the future, 

ARB's annual streamflow is predicted to worsen. 

 In ARB, monthly streamflow decreased from May to October under both RCP 

scenarios, with a rise in September. The streamflow increases in the rest of the 

months under all scenarios of RCP 4.5 and 8.5. The seasonal and annual 

variation of streamflow results gives a more precise idea. It indicated that 

increase in streamflow in all seasons for all future periods except a decrease in 

winter for the T1 RCP 8.5 emission scenario.    

 Monthly streamflow decreases during June and July and increases in the rest of 

the months under all scenarios of RCP 4.5 and 8.5 for VRB. For VRB, 

streamflow increases in all seasons for all future periods except a decrease in 

the monsoon season of the RCP 8.5 emission scenario. 

 In GRB, monthly streamflow increased from September to February and 

decreased in March. The streamflow has no significant variations in the rest of 

the months and observed an increase in flow in all seasons for all future periods. 

 From the overall analysis it is found that climate change has more impact on 

streamflow than LULC change in the river basins. 

7.3 BASIN‑SCALE WATER AVAILABILITY AND VULNERABILITY 

ASSESSMENT  

This study aimed to investigate water scarcity in the above three river basins due to the 

combined impacts of LU and CC under three climate window periods representing 

near-future (T1) (2006-2040), mid-future (T2) (2041-2070), and far-future (T3) (2071-

2100). The freshwater scarcity was then quantified within each window period in terms 

of blue and green water. The sum of surface water and groundwater was estimated as 

Blue Water Flow (BWF). Naturally infiltrated water is considered the green water in 

the basin. Green water constitutes two components: Green Water Storage (GWS), 

which accounts for the available soil moisture, and Green Water Flow (GWF), which 

accounts for the actual evapotranspiration. The water-scarce vulnerability assessment 

for the above river basins was carried out using baseline water demands which are the 
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relative change in streamflow (ΔQ) and water availability (ΔWA) under Representative 

Concentration Pathway 4.5 (RCP 4.5) and RCP 8.5 scenarios and four vulnerable 

sectors were identified. The following results may be drawn from this study: 

 It may be observed from RCP 4.5 to RCP 8.5 scenarios that the BWF is 

almost the same for the T1 in the ARB with an increase in T2 and a decline 

in T3.  

 In the case of VRB, BWF increased only in the case of the T1, with a decline 

in the T2 and T3 for both emission scenarios.   

 In GRB, an increase in BWF was observed for all climate windows across 

RCP 4.5 to RCP 8.5.  

 The GWF and GWS increased for both the basins in all the climatic 

windows except for a slight decline in GWS in the T1 in the ARB and GWF 

in the T1 in VRB.  

 The GWF was more than the GWS in the ARB, implying water loss as 

evapotranspiration in the basin and decreased soil moisture. 

 GWS was higher than GWF in the VRB and GRB, which may be attributed 

to lesser evapotranspiration resulting from decreased forest cover and an 

increase in urbanized areas.  

 ARB was classified as extremely vulnerable in the T1 climate window and 

less vulnerable over T2 and T3 windows. 

 In the case of VRB, the relative changes to ΔQ and ΔWA were higher than 

zero and, therefore, classified under the low vulnerable category. However, 

for RCP 8.5, the VRB falls under moderate risk. 

 In the case of GRB, the increase in the BWF was attributed to the increase 

in urbanized areas. The relative changes to ΔQ and ΔWA were higher than 

zero, and therefore, the Gurupura river basin was classified under the low 

vulnerable category as per the vulnerability classification. 
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7.4 LIMITATIONS OF THE STUDY 

1. SWAT models were calibrated using data from a single river gauge for each 

river. If a more extensive database had been available, the SWAT model could 

have been calibrated at multiple locations (multi-gauges). 

2. During the SWAT model's calibration and validation, it was observed that the 

model was unable to simulate extreme streamflow occurrences at particular 

period. 

3. This research aims to shed information on the typical behaviour of rivers under 

changing land use and climatic circumstances rather than extreme events. 

Furthermore, the study of uncertainty was not the primary goal. 

4. One of the study's flaws was the lack of examination of groundwater recharge 

under changing climate conditions. 

7.5 SCOPE FOR FUTURE RESEARCH 

1. Reduced streamflow might potentially increase water pollution; hence changes 

in water quality could be considered in climate change scenarios. 

2. Extreme rainfall events can be investigated for their hydrological and ecological 

implications. 

3. The extreme events under LULC and CC scenarios may be investigated. 

4. Nutrient transport and crop management studies could make the model more 

general. 

5. CMIP6 data, which describes shared socioeconomic pathways (SSPs) instead 

of CMIP5, could generate better results as the model deviation is reduced. 
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