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ABSTRACT

The existence of black holes were predicted by Einstein’s general relativity,

a remarkable theory that agrees with most observations at the solar system scale and

beyond. However, in general relativity, black holes have singularities at their centers,

as Hawking and Penrose’s famous theorems claimed. Regular black hole models, for

example, have been offered as a way to get around the central singularity. Regular black

holes have a de Sitter core at their center, which generates outward radial pressure to

prevent gravitational collapse and the formation of singularities. The exact nature of

astrophysical black holes, however, is unknown. As a result, it is critical to deduce

deformations to the classical Schwarzschild metric using regular black hole models as

motivation and to confirm astrophysical observations in a more generic and relevant

framework.

This thesis investigates the thermodynamic phase transition of regular Bardeen

AdS black holes with and without quintessence surrounded by it. The cosmological

constant Λ is given the status of thermodynamic variable pressure because of the in-

consistency between the Smarr relation and the first law of black hole thermodynamics

in AdS spacetime. The first law of black hole thermodynamics has been modified to

include a pressure-volume term. Black hole phase behavior is found to be analogous

to everyday physical phenomena in this extended phase space. The thermodynamics

of the black hole is analyzed in extended phase space. A first-order phase transition

analogous to the van der Waals system is evident from this study, which is affirmed

by the specific heat divergence at the critical points. A conventional heat engine is

constructed by considering the black hole as a working substance. The efficiency is

obtained via a thermodynamic cycle in the P− v plane, which receives and ejects heat.

The heat engine efficiency in regular Bardeen AdS black holes is improved by adding

a quintessence field. The analytical expression for heat engine efficiency is derived in

terms of the quintessence dark energy parameter. The study of Joule Thomson (JT)

expansion in the regular Bardeen AdS black holes in the quintessence background is

based on the analysis of inversion temperature and isenthalpic curves. The derivation

of the JT coefficient µ is used to plot the inversion and isenthalpic curves. The effect of



quintessence parameters a and ωq on the JT coefficient and inversion temperature, es-

pecially with the case of ωq =−1,−2/3 and−1/3 shows that quintessence dark energy

affects the inversion point (Ti,Pi).

Keywords: Black hole thermodynamics; Regular-Bardeen AdS black hole; Quintessence;

Holographic heat engine; Joule-Thomson expansion.
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Chapter 1

Introduction

This chapter provides a brief introduction to thermodynamics and its applications

to black holes with a detailed literature survey. In addition to that, the objectives of

the present research work and the thesis structure are also detailed in this section.

Gravity is one of the mysterious forces of nature. Our universe is surrounded

by weak, strong, electromagnetic, and gravitational forces. Out of these four fundamen-

tal natural interactions, gravity is the weakest. We can study all interactions using the

existing experimental and theoretical data knowledge. However, it has been a challenge

to understand the gravitational force completely. Albert Einstein proposed the Special

theory of relativity at the starting of the twentieth century, which considers spacetime

as a fundamental entity instead of considering space and time to be independent of

each other as in the Newtonian case. Special relativity describes an inertial observer;

however, the presence of gravity is not introduced. We can get an idea about gravity

by shifting to the general theory of relativity. Albert Einstein 1916 proposed the gen-

eral theory of relativity (GR). One of the fundamental concepts in GR is the principle of

equivalence, which explains that one cannot differentiate between the motion of a freely

falling body in a uniform gravitational field and the motion of the same body in a uni-

formly accelerated frame in small enough regions of spacetime. Mathematically, it also

tells us about the coupling of gravity with the energy-momentum tensor of the matter
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field. A metric tensor, which contains information about spacetime, is used to describe

the spacetime curvature. In GR, Einstein’s equation relates the spacetime curvature in

the presence of matter fields.

In GR information about the background geometry is encoded in the metric. A

metric tensor gµν measures the distance between two points in spacetime, which give

information about geometry. Einstein’s field equations connect the dynamics of the

metric tensor and the energy-momentum tensor of matter,

Rµν −
1
2

Rgµν =
8πG
c4 Tµν , (1.1)

where Tµν is the energy-momentum tensor of some matter field, Rµν is the Ricci tensor,

and R is the Ricci scalar, constructed from the metric tensor.

The existence of a black hole is considered one of the most remarkable predictions

of GR. Einstein’s equation will give different kinds of black hole solutions constructed

from specific actions through the least action principle (Carroll 2019). Black holes are

extremely dense objects confined within a bounded region of spacetime whose bound-

ary is given by a null surface known as the event horizon. This surface divides the

exterior region from the interior one because there do not exist any timelike or null

geodesics which can take us from the point in the interior to the point in the exterior

(Carroll 2019). It is a one-way surface because once an observer crosses the event

horizon, she will never be able to communicate any information to the outside world.

Significant efforts have been made to comprehend and understand what happens if any

given amount of matter with mass M, which is squeezed into a region of spacetime of

radius less than or equal to,

Rs =
2GM

c2 , (1.2)

where G is Newton’s gravitational constant, and c is the speed of light. According to

classical general relativity, no material particle or even light can escape to infinity from

the inside of a black hole’s event horizon, and there is a singularity inside it where

density becomes infinitely large, rendering classical physics useless.

2



Karl Schwarzschild obtained the first static spherically symmetric vacuum solu-

tion (Tµν = 0) using Einstein’s field equations (1.1) in 1916 (Schwarzschild 1916). In

(t,r,θ ,φ) coordinates, the Schwarzschild spacetime reads

ds2 =−
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ
2
2, (1.3)

where M is the black hole’s mass and dΩ2
2 = dθ 2 + sin2

θdφ 2 is the metric of a unit

2-sphere. According to Birkhoff’s theorem, Schwarzschild spacetime is the only spher-

ically symmetric vacuum solution outside a spherical matter distribution (Itin 2008).

The Schwarzschild spacetime is static because all metric components are independent

of the time coordinate t, and the line element ds2 is invariant by the transformation

t →−t, resulting in a timelike Killing vector ξ
µ

t (Itin 2008). Outside the black hole,

this vector is timelike, but it is null at the event horizon and spacelike inside the event

horizon. As a result, the Schwarzschild black hole’s event horizon is calculated as

(Poisson 2004)

gµνξ
µ

t ξ
ν
t = 1− 2M

r+
= 0, (1.4)

resulting in r+ = 2M.

The Killing horizon refers to a null surface where the Killing vector is also null.

The Killing horizon is the same as the event horizon in a stationary, asymptotically flat

spacetime. Singularities occur at r = 2M and r = 0 in the Schwarzschild spacetime. It

turns out that r = 2M is a coordinate singularity that arises due to incorrect coordinate

selection; it may be avoided by suitable coordinate transformations (Weyl 1917, Ein-

stein and Rosen 1935, Synge 1950, Finkelstein 1958, Fronsdal 1959, Kruskal 1960).

However, no coordinate change can remove the singularity at r = 0, suggesting the pres-

ence of a true singularity where all curvature invariants will blow out, which is referred

to as curvature or the physical singularity.

According to the cosmic censorship hypothesis (Penrose 1969), black holes contain

singularities always hidden by the event horizon. As a result, the formation of an event

horizon and the presence of a singularity are two general characteristics of black hole

spacetime. Regular black holes do not have a singularity at their center. Even though

3



obtaining a singularity-free solution is the domain of quantum gravity theory, a phe-

nomenological model may be constructed in classical gravity. Bardeen was the first

to derive such a regular solution (Bardeen 1968). Many researchers later found that

regular black holes can be an exact solution to gravity when coupled with a non-linear

electromagnetic source (Ayon-Beato and Garcia 1998, Ayon-Beato and Garcıa 1999,

Hayward 2006). This research aims to explore the thermodynamic behavior of regular

black holes.

This chapter is organized as follows. Section (1.1) presents a brief study of the

evidence for black holes. Then we discuss the thermodynamic phase transition (1.2)

and its application to black holes in (1.2.1), (1.2.2), and (1.2.3). Followed by this, we

introduce Bardeen black holes (1.2.4). The objectives of this research (1.3) and the

thesis organization (1.4) are included at the end of this chapter.

1.1 Evidence for Black Holes
Black holes cannot be seen directly but their presence can be estimated by analyzing

the motion of nearby objects. The presence of a black hole can be detected in three

ways: (i) mass estimates from objects circling or spiraling into the black hole, (ii)

gravitational lensing, and (iii) emitted radiation from a companion star. Classically

black holes do not produce radiation, and Hawking radiation is too weak to be observed

directly. The Uhuru satellite was launched into space in 1970, and it soon found X-ray

sources significantly stronger than our solar system . Webster and Murdin (Webster

and Murdin 1972) discovered Cygnus X-1, an apparent binary partner in the Cygnus

constellation consisting of a visible blue giant and a strong X-ray source .

The mass of a black hole can be determined by observing its effect on visible objects

surrounding in its neighbourhood and measuring their movement. A brown, spiraling

disc, for example, rotates inside the core of galaxy NGC 4261. It is nearly the size of

the solar system, yet it weighs 1.2× 109M�. A rotating disc with such a large mass

could indicate the presence of a rotating black hole at its center.

As predicted by Einstein’s general theory of relativity, light bends when it passes

through an apparent gravitational field. Eddington (Eddington 1920) was the first per-

son to observe the change in the apparent location of a star before and after a solar
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eclipse. The light from the star was bent due to the sun’s gravitational pull, as predicted

by Einstein in 1917. Using GR, Einstein derived gravitational lensing deflection, ie,

1.75 seconds of arc. Eddington measured a value close to that of the GR prediction

using data taken during a solar eclipse in 1920.

Figure 1.1: Gravitational Lensing

The night sky is populated by many binary systems, where one companion could

be a neutron star or red giant and the other is a black hole. When matter from the star

falls into its companion black hole, it is heated to a few million degrees Kelvin and then

accelerated. It emits intense X-rays, which may be detected with X-ray telescopes.

Recently, scientists have speculated that intermediate-mass black holes exist (Ab-

bott et al. 2019, Ebisuzaki et al. 2001) with mases between 102M� to 105M�, which is

larger than stellar black holes but smaller than supermassive black holes with masses

of 105M� to 109M�. These intermediate-mass constitute the missing link between

stellar-mass and supermassive black holes. The presence of intermediate-mass black

holes has been confirmed by numerous studies (Mezcua 2017). Ultra-luminous X-ray

sources have been suggested as potential candidates for intermediate-mass black holes

(Farrell et al. 2009). In the nuclei of dwarf galaxies and/or globular clusters, relatively

large intermediate-mass black holes may exist (Reines et al. 2013, Miller et al. 2015).

However, none of the intermediate-mass black hole hypotheses are considered definite

(Ebisawa et al. 2003, Strader et al. 2012). High velocity Compact Clouds (HVCC) are

a population of compact molecular clouds with extensive velocity widths that may sig-
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nify the presence of intermediate-mass black holes (Oka et al. 1999a,b). The existence

Figure 1.2: Sagittarius A∗

of black holes has recently been verified by observing their shadow templates. The

Event Horizon Telescope revealed the existence of the event horizon of a supermas-

sive black hole Messier 87∗ (M87∗) in collaboration with the European BlackHoleCam

group (Davoudiasl and Denton 2019) and also revealed Sagittarius A∗ in our galaxy (see

figure 1.2 1).

1.2 Black Hole Thermodynamics and Phase Transitions
One of the tremendous achievements of theoretical physics is the discovery of

the correspondence between ordinary thermodynamic laws and the laws of black hole

physics. This deep connection plays a vital role in guiding us towards a the theory of

quantum gravity. The seminal work of Hawking and Bekenstein was the origin of the

thermodynamics of black holes. They proposed a correspondence (Bekenstein 1972b,a,

Hawking 1975) between the area of the black hole and its entropy, and between surface

gravity at the horizon and temperature. Bardeen, Carter, and Hawking (Bardeen et al.

1973) showed that a black hole behaved as an object which follows the usual laws of

thermodynamics. The original form of the first law of black hole thermodynamics is

written by interpreting the mass of the black hole as internal energy. For an electrically

charged rotating black hole, we have,

dM = T dS+ΩdJ+ΦdQ, (1.5)

1https://cosmosmagazine.com/space/sagittarius-a-black-hole-image-nasa/
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where temperature T and entropy S are related to surface gravity κ and area of event

horizon A respectively. Ω and J are the angular velocities and the momentum associ-

ated with rotation; Q and Φ are the electric charge and potential. After the discovery

of these thermodynamic laws, many researchers thought this was just a mathematical

analogy because it was understood that black holes cannot radiate according to classi-

cal theory. This analogy began to be taken seriously only after the study of quantum

particle-antiparticle production and annihilation near the black hole horizon by Hawk-

ing in 1975 (Hawking 1975) led to his famous discovery that black holes radiate like a

black body at a temperature proportional to the surface gravity of the black hole horizon,

kBT =
h̄κ

2πc
, (1.6)

where κ is the surface gravity 2, kB is Boltzmann’s constant , c is the light speed , and h̄

is Planck’s constant.

To understand the thermodynamics of black holes, first, people considered asymp-

totically flat cases (Hut 1977, Davies 1977). However, black holes in asymptotically

flat space don’t have a description in terms of a thermodynamic ensemble because it is

an open system which does not have an equilibrium state. In the early nineties, peo-

ple tried to construct gravitational theories within a bounded and finite spatial region

of spacetime. Instead of asymptotically flat cases, one can consider an asymptotically

curved spacetime. One way to do so is by introducing the cosmological constant Λ in

the spacetime.

The cosmological constant is negative in the Anti-de Sitter (AdS) spacetime. Asymp-

totically AdS spacetime is like a confining box (see figure( 1.3) ). Hawking and Page

(Hawking and Page 1983) first studied the thermodynamic behavior of black holes in

an asymptotically AdS space. Their investigation found a phase transition between a

spacetime containing only thermal radiation and one containing an AdS black hole.

Phase transition of the AdS black hole in five dimensions has given more hints for the

concept of AdS/CFT correspondence. The thermodynamic properties of various AdS

black holes are investigated in the following literatures (Peca and Lemos 1999, Cai

2surface gravity = acceleration due to gravity
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Figure 1.3: Penrose diagram of anti-de Sitter Space

2002, Myung et al. 2008b, Cvetič et al. 2002, Myung 2008, Birmingham 1999, Cal-

darelli et al. 2000, Chamblin et al. 1999a,b, Banerjee et al. 2011a,b, Gubser and Mitra

2001, Dey et al. 2007, Konoplya and Zhidenko 2008).

The cosmological constant is positive in an asymptotically de Sitter space. In ad-

dition to the event horizon, a cosmological horizon exists that also emits particles in

this spacetime. Thermal equilibrium is possible only when the temperatures of both

horizons are equal. The detailed study of the stability of charged de Sitter black hole is

done by Carlip and Vaidya (Carlip and Vaidya 2003).

As shown by E. Witten, Hawking-Page phase transitions in the bulk of an AdS

spacetime corresponds to the confinement-deconfinement phase transition of quark-

gluon plasma in a gauge theory living on the boundary of that AdS spacetime (Witten

1998). The phase transition in the bulk spacetime is used to study specific field theories

on its boundary by gauge gravity duality.

The pressure and volume term were absent in the first law (1.5) in literatures; reme-

died for that, the negative cosmological constant was identified as the pressure term

with the volume of the spacetime being the corresponding conjugate variable (Kastor

et al. 2009, Dolan 2011c,b,a, Teitelboim 1985, Brown and Teitelboim 1988) 4,

P =− Λ

8π
. (1.7)

4Refer chapter 2 for more details
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dM = T dS+V dP+ΩdJ+ΦdQ. (1.8)

The first law’s extension with the pressure and volume term (1.8) leads to exciting

developments in black hole thermodynamics. It was noticed that the black hole mass

is more like the enthalpy H than internal energy U . With this identification, the phase

diagram of AdS black hole was seen to be exactly same as that of the van der Waals

liquid-gas transition (Chamblin et al. 1999b, Kubizňák and Mann 2012). There has

been rapid progress in probing van der Waals fluid-like behavior in various black holes.

An important feature of the black hole phase transition is that the four critical exponents

are the same as in the van der Waals transition and therefore these two systems belong

to the same universality class. It has led to a new avenue in theoretical high energy

physics called black hole chemistry. Several studies have been carried out in different

AdS black holes in the extended phase space, and the similarity as mentioned above

to vdW system is observed (Gunasekaran et al. 2012, Belhaj et al. 2012, Altamirano

et al. 2013, Zhao et al. 2013, Hendi and Vahidinia 2013, Chen et al. 2013b). These

first-order phase transitions obey Maxwell’s equal-area law and Clausius-Clapeyron

equations (Spallucci and Smailagic 2013, Belhaj et al. 2015, Zhang et al. 2014, Zhao

et al. 2015, Li et al. 2017).

1.2.1 Black Hole Heat Engine

A recent development in black hole thermodynamics is the holographic heat en-

gine. The holographic heat engines are traditional heat engines but termed so by Clif-

ford V. Johnson because conformal field theories can describe their operation on the

boundary (Johnson 2014, Chakraborty and Johnson 2018). A sufficient amount of me-

chanical work can be drawn from heat energy in AdS black holes through this engine.

In the first holographic heat engine constructed by Johnson for charged AdS black hole,

he calculated the conversion efficiency of heat into work. The idea of holographic

heat engine is realised in various other contexts, static dyonic and dynamic black hole

(Jafarzade and Sadeghi 2017), polytropic black hole (Setare and Adami 2015), Born-

Infield black holes (Johnson 2016b), f (R) black holes (Zhang and Liu 2016), Gauss-

Bonnet black holes (Johnson 2016c), higher dimensional theories (Belhaj et al. 2015,
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Wei and Liu 2019), massive black hole (Mo and Li 2018, Hendi et al. 2018), in confor-

mal gravity (Xu et al. 2017), in three dimensional charged BTZ black hole (Mo et al.

2017), in rotating black holes (Hennigar et al. 2017) and accelerating AdS black holes

(Zhang et al. 2018).

1.2.2 Joule Thomson Expansion of Black Holes

Figure 1.4: Joule Thomson Expansion

Okcu and Aydiner (Ökcü and Aydıner 2017) were the first to investigate the

scope of black hole thermodynamics in the domain of Joule Thomson (JT) expansion.

They investigated Joule Thomson expansion of charged AdS and Kerr AdS black hole

and compared the result with the van-der Waals case. Joule-Thomson effect or throttling

process happens in gas when it is allowed to move from the high-pressure region to the

low-pressure region without any change in enthalpy (1.4). In the extended approach to

thermodynamics, where black hole mass is understood as the enthalpy, the mass should

remain constant during the process. This process is also called the isenthalpic process,

leading to heating or cooling in the final phase. The JT coefficient µ , which is the

gradient of temperature with pressure (µ = ∂T
∂P ) determines the temperature change in

the final phase. µ > 0 implies a cooling and µ < 0 heating. The point at which µ = 0,

denotes the position of inversion points (Ti,Pi). The inversion points distinguish the

heating and cooling phases, and the inversion curve is the locus of inversion points for

different isenthalpic curves.

Following the work of Okcu and Aydmer, there were many studies on JT expansion

in various black holes such as in Kerr-AdS black hole (Ökcü and Aydıner 2018), higher
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Figure 1.5: Schematic diagram of isenthalpic curve

dimensional AdS black hole (Ghaffarnejad et al. 2018), AdS black hole surrounded by

quintessence (Mo et al. 2018), black holes in f (R) gravity (Chabab et al. 2018), black

holes in Lovelock gravity (Mo and Li 2020), Kerr-Newman AdS black holes (Zhao et al.

2018), charged Gauss-Bonnet black hole (Lan 2018), global monopole AdS black hole

(Ahmed Rizwan et al. 2018). Recently, JT expansion is investigated in Einstein-Gauss-

Bonnet AdS black hole with cloud of strings (Ghaffarnejad and Yaraie 2018), nonlinear

electrodynamics AdS black hole (Kuang et al. 2018), AdS black holes with momen-

tum relaxation (Cisterna et al. 2019), Einstein-Maxwell-Gauss-Bonnet AdS black holes

(Haldar and Biswas 2018), regular Bardeen and Hayward AdS black hole (Li et al.

2020), non-linear charged AdS black hole in massive gravity (Hoang Nam 2019). Other

noticeable studies are in charged accelerating AdS black hole of f (R) gravity (Rostami

et al. 2019), neutral AdS black holes in massive gravity (Lan 2019), Gauss-Bonnet

massive black holes in the presence of external string cloud (Ranjbari et al. 2020), and

hyperscaling violating black holes (Sadeghi and Toorandaz 2020).

1.2.3 Thermodynamic Geometry

The importance of differential geometry as a mathematical language with physical

applications became clear after Albert Einstein’s theory of gravity based on these tools
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became a huge success. In the nineteenth century, Gibbs (Gibbs 1948) and Caratheodory

(Carathéodory 1909) were the first to apply differential geometry to classical thermody-

namics. Then Weinhold (Weinhold 1975) and later Ruppeiner (Ruppeiner 1979, 1983,

1995, 2008, Ruppeiner et al. 2012, Ruppeiner 2014) developed thermodynamic metric

to investigate phase transitions and microscopic interactions in thermodynamic systems.

Even though the discontinuity in the specific heat indicates the existence of a higher-

order phase transition (Myung 2008, Caldarelli et al. 2000), it is not the best method to

ultimately determine the nature of the phase transition. When we include statistical fluc-

tuations, it is possible to define a metric which gives distance between two neighboring

points in the state space. Doing so gives the state space, the structure of Riemannian

manifold (Janyszek and Mrugała 1989, Ferrara et al. 1997, Cai and Cho 1999, Åman

and Pidokrajt 2006, Sarkar et al. 2006, Shen et al. 2007, Åman et al. 2007, Myung et al.

2008a, Sahay et al. 2010, Niu et al. 2012, Weinhold 1975, Åman et al. 2003).

gR
i j =−∂i∂ jS(M,xα) (i, j = 1,2), (1.9)

here, entropy S is a function of mass M and any other thermodynamic extensive vari-

ables xα . The interaction between the states of the system is associated with Riemannian

curvature, which can be derived from metric components given above (Ruppeiner 1979,

1995, 2007, 2008, Ruppeiner et al. 2012, Ruppeiner 2014, Weinhold 1975). In ordinary

thermodynamics, scalar curvature becomes proportional to the correlation volume ξ d

of the thermodynamic system, where ξ is the correlation length and d is the spatial

dimensionality of the system. In black hole thermodynamics, Ruppeiner (Ruppeiner

2008) interpreted the Ricci scalar R for black hole as the average number of correlated

Plancks area on the event horizon . The divergence of Ricci scalar is associated with

the divergence of specific heat (Ruppeiner 2008).

1.2.4 Bardeen Black Hole

The weak cosmic censorship hypothesis insists on the presence of singularity, hid-

den from the far observer by a membrane called the event horizon (Hawking and Pen-

rose 1970, Hawking and Ellis 1973). All the spacetime solutions for Einstein’s equa-
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tions respect this conjecture. However, there are regular black hole spacetimes without

singularity at the origin and possessing an event horizon. A repulsive de-Sitter core

removes the singularity at the origin in regular black holes. For the first time, Bardeen,

inspired by the works of Sakharov (Sakharov 1966b) and Gliner (Gliner 1966) came

up with a regular black hole solution (Bardeen 1968). Following the idea of Bardeen,

later, several regular solutions for Einstein’s equations coupled to nonlinear electrody-

namic sources were found (Hayward 2006, Ayon-Beato and Garcia 1998, Ayón-Beato

and Garcıa 2000). The black hole thermodynamics in regular black holes are studied in

detail (Man and Cheng 2014, 2013, Estrada and Aros 2019, Nam 2018, Ali and Ghosh

2018, Kumar et al. 2019).

The Bardeen black hole is found to be the solution to Einstein’s gravity when it is

coupled to a non-linear electrodynamics source with a negative cosmological constant

Λ. We will look at an action,

S=
1

16π

∫
d4x
√
−g̃(R−2Λ−L(F)), (1.10)

in which R symbolises the Ricci scalar, and g̃ the determinant of the metric tensor g̃µν .

L(F) is the non-linear electrodynamics Lagrangian density, which is a function of field

strength F = FµνFµν with Fµν = ∂µAν − ∂νAµ . The Einstein and Maxwell equations

of motion,

Gµν +Λgµν = Tµν , ∇µ

(
∂L(F)

∂F
Fµν

)
= 0, ∇µ (∗Fνµ) = 0, (1.11)

are obtained by varying the action (eqn.1.10). Tµν = 2
(

∂L(F)
∂F

Fµλ Fλ
ν − 1

4gµνL(F)
)

is

the energy momentum tensor, while Gµν is the Einstein tensor. In the case of Bardeen

black holes, the Lagrangian density is,

L(F) =
12
α

( √
αF

1+
√

αF

) 5
2

, (1.12)

where α is a positive quantity with dimension [Length]2. For Maxwell’s field tensor,
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we use

Fµν = 2δ
θ

[µδ
φ

ν ]
Q(r)sinθ , (1.13)

as an ansatz.

However, according to Maxwell’s equations (eqn.1.11), dF = dQ(r)
dr dr∧dθ ∧dφ =

0, where Q(r) must be a constant Qm. The non-vanishing components of Maxwell’s

field tensor for a spherically symmetric solution are Ftr and Fθφ . We choose gauge

potential and Maxwell’s field tensor to be,

Aµ = Qm cosθδ
φ

µ , Fθφ =−Fφθ = Qm sinθ , (1.14)

where Qm is the magnetic monopole charge, because we want a magnetically charged

regular solution.

F =
2Q2

m
r4 , (1.15)

is the scalar function F derived from Fθφ . Lagrangian density L(F) can be rewritten as

a function of radial distance,

L(r) =
12
α

(
2αQ2

m
r2 +2αQ2

m

) 5
2

. (1.16)

With the metric function f (r) = 1− 2m(r)
r −

Λr2

3 , a static spherically symmetric solution

for Einstein’s equation can be written as

ds2 =− f (r)dt2 +
dr2

f (r)
+ r2(dθ

2 + sin2
θdφ

2). (1.17)

The Einstein’s equation is solved using the line element to fix the functional form of

m(r).

1
r2 ∂rm(r)−Λ =

1
4
L(r), (1.18)

1
r

∂
2
r m(r)−Λ =

(
1
4
L(r)− ∂L

∂F
Fθφ Fθφ

)
, (1.19)

are the Gtt and Grr components of Einstein’s equation.
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We obtain the mass function m(r) for a regular Bardeen AdS black hole as,

m(r) =
Λr3

6
+

Mr3

(β 2 + r2)
3
2
, (1.20)

where M is the black hole’s mass and β is the charge parameter associated to total

charge Qm,

Qm =
β 2
√

2α
, (1.21)

by integrating the aforementioned differential equations. As a result, the line element

for Bardeen AdS black hole is written with the metric function,

f (r) = 1− 2Mr2

(β 2 + r2)
3
2
− Λr2

3
. (1.22)

In recent times, the black holes with quintessence have attracted wide attention.

The quintessence is one of the most important candidates to explain the universe’s

accelerated expansion. The observational cosmological data supports the equation of

state pq = ωqρq, where quintessence state parameter varies as −1 < ωq < −1/3. The

energy density for quintessence has the form ρq = −a
2

3ωq

r3(ωq+1) , where a is normaliza-

tion factor related to quintessence. The spherically symmetric black hole solution with

quintessence was first obtained by Kiselev (Kiselev 2003). Since then, several attempts

to investigate the thermodynamics of black holes with quintessence were carried out

(Wei and Chu 2011, Li 2014, Thomas et al. 2012, Tharanath and Kuriakose 2013, Saleh

et al. 2018).

1.3 Objectives of the Present Research Work
The Bardeen model is the most significant regular black hole model, generating

much interest in regular black hole research to make strong-field gravity an exciting

subject. We may now overcome pathologies in general relativity, such as the existence

of spacetime singularity, using these models. As a result, studying the thermodynamics

of these regular black holes is essential. This thesis’s main objective is the study of

“Extended Phase Space Thermodynamics of Regular Bardeen Black Hole”. The work

specifically focuses on:
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• Study the phase transition of regular Bardeen AdS black holes by analyzing

Hawking temperature, mass, entropy, and heat capacity in the extended phase

space and investigate the influence of quintessence parameters in the phase tran-

sition.

• Study the heat engine constructed out of regular Bardeen AdS black holes and

investigate the effect of quintessence on the engine’s efficiency.

• Investigate the Joule Thomson expansion of regular Bardeen AdS black hole with

quintessence through the inversion temperature and isenthalpic curves.

• Investigate the phase transition and thermodynamic geometry of regular Bardeen

AdS black holes in higher dimensions.

1.4 Organization of the Thesis
The thesis is organized as follows:

Chapter 1 gives a brief introduction with history and evidence of the black holes.

Next, we discuss the thermodynamic phase transition and its application to black holes

and introduce Bardeen black holes. The objectives of this research and the thesis orga-

nization are included at the end of this chapter.

Chapter 2 gives a brief explanation of the laws of black hole thermodynamics. The

involvement of pressure term in the first law using Smarr relation and the extended

phase space thermodynamics of black holes are briefly discussed.

Chapter 3 shows the thermodynamics and phase transition of regular Bardeen AdS

black holes and explains the influence of quintessence parameters on thermodynamics.

Chapter 4 shows that the efficiency of a heat engine is increased by adding a

quintessence field, which is constructed of regular black holes. The heat engine’s effi-

ciency is calculated and compared to that of the conventional Carnot engine. The effect

of magnetic charge and quintessence parameter on efficiency is investigated in depth.

chapter 5 explains the Joule-Thomson Expansion of Regular Bardeen AdS Black

Hole Surrounded by Quintessence Field. Using the Joule-Thomson coefficient, the

inversion and isenthalpic curves are discussed.
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Chapter 6 shows the thermodynamics and also explains the thermodynamic geom-

etry of regular Bardeen black holes in higher dimensions.

Chapter 7 summarizes the essential findings of the present research work by high-

lighting the thesis’s remarkable results and conclusions.
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Chapter 2

Fundamentals of Black Hole

Thermodynamics

This chapter presents a brief introduction to the fundamentals and laws of black

hole thermodynamics, followed by their extension to anti-de Sitter spacetime. The

extended phase space thermodynamics is also briefly discussed.

2.1 Introduction

The relationship between thermodynamics, gravitation, and quantum theory has

attracted researchers’ attention over the last fifty years, owing to increasing evidence

that such a relationship exists. The evidence for this is found in the subject of black

hole thermodynamics, which describes the thermodynamic behavior of black holes.

Due to the black hole’s classical nature, which absorbs all types of matter but emits

nothing, this relationship is counter-intuitive (Bardeen et al. 1973). As a result of no

hair theorem, it should not have a entropy or temperature, and its only properties are

mass, angular momentum, and, if possible, charge. Bekenstein introduced the idea that

the area of a black hole corresponds to its entropy (Bekenstein 1972a), and Hawking

found that the black hole’s surface gravity corresponds to its temperature (Hawking
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1975). These findings led to a new way of thinking about black holes as black bodies.

The sub-discipline of black hole thermodynamics was born as a result.

Thermodynamics is a general and powerful approach in physics for understanding

a system’s physical properties and a wide range of phenomena. The vital part of ther-

modynamics is that it does not require knowledge of microscopic details to investigate

macroscopic physics. However the thermodynamic state of a system is ultimately de-

termine by the microscopic structure of the system. This characteristic is beneficial

when working with systems such as black holes, where the microscopic details are not

well understood. Black holes are thermodynamic systems and therefore like all ther-

modynamic systems, they have a rich class of phase transitions which can be used to

investigate their properties under the heading of “black hole chemistry”.

The phase transition and related phenomena in AdS spaces are an important aspect

of black hole thermodynamics. Following the identification of the cosmological con-

stant with the thermodynamic pressure (1.7) and the resulting modification of the first

law (1.8) (Kastor et al. 2009, Dolan 2011b), researchers have been increasingly inter-

ested in AdS black hole thermodynamics. The phase diagram of AdS black holes was

shown to be the same as that of a van der Waals like fluid and which could also exhibit

with the possibility of reentrant phase transitions (RPT) (Kubizňák and Mann 2012,

Gunasekaran et al. 2012, Kubizňák et al. 2017).

The goal of this chapter is to provide an overview of black hole chemistry. To

begin, we will go through the fundamentals of black hole thermodynamics. For asymp-

totically flat and asymptotically AdS black holes, the Smarr relation is stated. We will

describe the methods for obtaining the first law of black hole physics in AdS space-

time, motivated by the inclusion of the dynamical cosmological constant in black hole

thermodynamics.

2.2 Laws of Black Hole Thermodynamics
According to Hawking’s area theorem (Hawking 1972), the event horizon area

of a black hole never decreases. Bekenstein observed the resemblance between area

law and the second law of thermodynamics and he suggested (Bekenstein 1972a) that a

black hole should have an entropy that is proportional to the event horizon area. Follow-
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ing these proposals, Bardeen, Carter, and Hawking constructed the four laws of black

hole thermodynamics (Bardeen et al. 1973) under the assumption that the event hori-

zon of the black hole is a Killing horizon which is a null hypersurface generated by a

corresponding Killing vector field. The four laws are as follows:

Zeroth law: The surface gravity κ is constant over the event horizon of a station-

ary black hole.

First Law: When a system, like a black hole, shifts from one stationary state to

another, the first law states that the system’s mass changes,

δM =
κ

8πG
δA+ΩδJ+ΦδQ. (2.1)

Second law: The event horizon area of the black hole never decreases, i.e., δA≥

0.

Third law: It is impossible to reduce the surface gravity to zero in a finite number

of steps.

These laws show the connection between black hole mechanics and ordinary ther-

modynamics, with the first law of ordinary thermodynamics given as,

δE = T δS−PδV +∑
i

µiδNi +ΦδQ. (2.2)

Comparing (2.1) and (2.2) we see that it is possible to identify surface gravity with

temperature, and the event horizon area with black hole’s entropy in this analogy.

Hawking implemented Parker’s (Parker 1969) original formalism for calculating

particle production in curved spacetimes in 1974. He found that when the quantum

mechanical effects of scalar fields are taken into account, a black hole emits radiation

at a certain temperature (1.6).

The comparison of the T δS term in the first law of thermodynamics (2.2) with

the κδA term for black holes (2.1), which was later verified by Gibbons using the

Euclidean path integral approach (Gibbons and Hawking 1977), implies that entropy is
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proportional to area.

S =
Ac3

4h̄G
. (2.3)

The existence of h̄ in this expression highlights black holes’ quantum mechanical essence.

The parameters in (2.1) are connected by the Smarr relation (Smarr 1973), which reads

M = 2(T S+ΩJ)+ΦQ. (2.4)

There has been much discussion about a fundamental relationship between black

hole horizons and thermal ensembles because of the striking similarity between these

black hole thermodynamic laws and classical thermodynamics. However, it is worth

noting that the first law lacks the “work” term PdV that is common in classical thermo-

dynamics. The notion of thermodynamic pressure and volume is not readily apparent

in black hole spacetime.

2.3 Smarr Relations

The Smarr relation, or integral mass formula, was used to formulate the laws of black

hole thermodynamics. Smarr (Smarr 1973) observed that the first law of black hole

mechanics,

dM = TdA+ΩdJ+ΦdQ, (2.5)

applies to the Kerr black hole, where T is the effective surface tension. This expression

can also be expressed in integral form as,

M = 2T S+2ΩJ+ΦQ. (2.6)

In conventional thermodynamics, the Smarr formula is analogous to the Gibbs-Duhem

relation. The black hole mass M is a homogeneous function of (A,J,Q) and therefore

the integration of Eq. (2.5) to yield Eq. (2.6) is possible using Euler’s homogeneous

function theorem. This procedure is carried out in conventional thermodynamics by

considering energy to be a homogenous function of extensive thermodynamic variables.

It is also worth noting that the Smarr formula is not restricted to a particular black hole
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solution or spacetime dimension. Myers and Perry showed that this relationship exists

in higher dimensions as well (Myers and Perry 1986).

2.3.1 Smarr Formula for Asymptotically Flat Black Holes

Consider a stationary, axisymmetric black hole solution with a timelike Killing vector

tα and a rotational Killing vector φ α , in the spacetime. On the black hole’s event

horizon, the combination of Killing vectors,

ξ
α = tα +Ωφ

α , (2.7)

is a null vector, where Ω is the angular velocity of the horizon. Thus, the event horizon

is a Killing horizon and ξ α is tangent to the horizon’s null generators. Let us denote

κ as the surface gravity, which remains constant throughout the event horizon as a

consequence of zeroth law. On the horizon, κ is therefore described by the relation,

ξβ ξ
α;β = κξ

α . (2.8)

Consider a spatial slice Σ with future-directed normal nα that extends from the event

Figure 2.1: Foliation of spacetime. A spacetime (M,gµν) can be decomposed into two
space like hypersurfaces Σt and Σt+∆t . A height function tα = Nnα +Nα , where N is
the lapse function, nα is the unit timelike normal and Nα is the shift funcion.
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horizon to infinity (2.1). We integrate

I =
∫

Σ

dΣα∇β ∇
β

ξ
α , (2.9)

on this hypersurface Σ. The aforementioned integration is assessed in two ways. We

apply the relation ∇β ∇β ξ α =−Rα
β ξ β in the first approach, which arises from the fact

that ξ α is a Killing vector. Assuming the vacuum Einstein equations apply,

∫
Σ

dΣα∇β ∇
β

ξ
α =−

∫
Σ

dΣαRα
β ξ

β = 0. (2.10)

Stokes’ theorem is used in the second approach. Stokes’ theorem for an antisymmetric

tensor B is (Poisson 2004),

∫
Σ

dAα∇β Bαβ =
1
2

∮
∂Σ

dSαβ Bαβ . (2.11)

Two (D−2) dimensional surfaces, S∞ and H , are included in the integration over ∂Σ.

Figure 2.2: Spacelike hypersurface in black-hole spacetime. Spacelike hypersurface Σ

extending from the event horizon H to spatial infinity S.

Where dSαβ is the two-dimensional surface element, S∞ denotes the boundary of the

spatial slice Σ at spatial infinity, and H denotes at the event horizon. Combining (2.10)

and (2.11) we find,

0 =
∮
H

dSαβ ∇
α

ξ
β −

∮
S∞

dSαβ ∇
α

ξ
β , (2.12)
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By taking advantage of the fact that we are assuming a vacuum solution, we may de-

scribe the integration at spatial infinity in terms of total mass and angular momentum.

The Komar integrals, which in D dimensions read as (Poisson 2004)

M = − 1
16πGN

(D−2
D−3

)∮
S∞

dSαβ ∇αtβ , (2.13)

J = 1
16πGN

∮
S∞

dSαβ ∇αΦβ , (2.14)

where GN is the Newton’s constant in D dimensions, yield the total mass and angular

momentum of the spacetime. The integration at spatial infinity S∞ is reduced to the

following form using these Komar integrals:

∮
S∞

dSαβ ∇
α

ξ
β = 16π

[
ΩHJ−

(
D−3
D−2

)
M
]
. (2.15)

Now it’s time to assess the horizon integral. We use the fact that dSαβ = 2ξ[αNβ ]

√
σdD−2x,

where Nα is a normalised null vector on the event horizon with ξ αNα = −1 and σ is

the determinant of the induced metric on the event horizon. With these inputs, we have

∮
H

dSαβ ∇
α

ξ
β = 2

∮
H

√
σdD−2xξαNβ ∇

α
ξ

β (2.16)

= 2κ

∮
H

√
σdD−2xNβ ξ

β (2.17)

= −2κA. (2.18)

We used the relation ∇αξ β = −∇β ξ α to reduce the preceding equations since ξ α is

a Killing vector, which simplifies the contraction with the surface element. Then we

used the previous relation, ξα∇αξ β = κξ β , to get the surface gravity term κ . Finally,

the remaining integration is performed using the relation Nβ ξ β =−1, which yields the

event horizon’s area. We get,

(D−3)M = (D−2)
κA
8π

+(D−2)ΩHJ. (2.19)

by combining the integrations we evaluated over S∞ and H . The Smarr formula, which

we obtained using scaling arguments, can be identified by identifying the terms T = κ

2π
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and S = A
4 .

2.3.2 Smarr Formula for AdS Black Holes

Using the geometric method, we used the assumption of vacuum Einstein equations

with a vanishing cosmological constant to construct the Smarr formula for an asymp-

totically flat black hole. In this section we derive the Smarr formula for a spacetime

with a non-zero cosmological constant.

First we will illustrate how the difference originates, and then use the geometric

method to offer the right Smarr formula. We will use the four-dimensional Schwarzschild-

AdS black hole as an example, which has the metric

ds2 =− f (r)dt2 +
dr2

f (r)
+ r2dΩ

2. (2.20)

The metric function is

f (r) = 1− m
r
+

r2

`2 , (2.21)

where ` is the AdS length, which is equal to Λ = − 3
`2 in terms of the cosmological

constant. The temperature and entropy of the black hole are given by,

T =
κ

2π
=

1
4πrh

[
1+

3r2
h

`2

]
, S =

A
4
= πr2

h, (2.22)

where rh is the horizon radius.

The conserved quantity corresponding to the Killing vector6 tα = δ α
t is expected to

be the mass, but there is an issue with that assumption. To find the conserved charge,

we note that, the non vanishing components of the entity ∇αtβ for Killing vector tα are

given by (Kastor et al. 2009),

∇
ttr =−∇

rtt =− m
2r2 −

r
`2 , (2.23)

6If X is a Killing vector field and γ : (a,b)→M is a geodesic in a Riemannian manifold (M,g). Let
Y = γ̇ then d

dt YaXa = 0 . the function g(γ̇,X) is conserved along the geodesic.
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The usual definition of the Komar integral gives a diverging result,

M =− 1
8π

∮
S∞

dSαβ ∇
αtβ =

1
4π

lim
R0→∞

∮
SR0

R2
0

(
m

2R2
0
+

R0

`2

)
sinθdθdφ → ∞. (2.24)

Second term in the above equation goes as R3
0 and diverges. The cosmological constant,

which contributes an infinite quantity of energy, is responsible for the divergence. We

can get around this problem by terminating the integral at a finite region R0, subtracting

the m = 0 contribution, and extending the finite cutoff to infinity. This gives,

M =
m
2
. (2.25)

The mass, temperature, and entropy we acquired, however, do not satisfy the Smarr

formula (2.19) with ΩH = 0, which is

M−2T S =−
r3

h
`2 6= 0. (2.26)

This inconsistency in the Smarr formula in AdS spacetime necessitates a reconsidera-

tion of the cosmological constant term. We will use the geometric method to get the

modified Smarr formula.

The introduction of a Killing potential, as done by (Kastor 2008) is the main com-

ponent of the geometric approach in AdS spacetime, from which the extended Smarr

formula can be derived (Kastor et al. 2009). For simplicity, we start with a static black

hole solution. Because a Killing vector ξ α satisfies the relation ∇αξ α = 0, we can

represent the vector ξ α as

ξ
α = ∇β ω

βα , (2.27)

using the Poincare lemma 7, where the anti symmetric tensor ωαβ =ω [α β ] is the Killing

potential. Using the Killing vector identity ∇α∇αξ β = Rβγξ γ and the assumption of

vacuum Einstein equations Rαβ = 2Λ

(D−2)gαβ , we can show that the Komar integral re-

7This is more common in the language of forms. As a result of Killing’s equation, a Killing vector ξ α

satisfies ∇α ξ α = 0. In 1-form ξ = ξα dxα this is ∗d ∗ ξ = 0. Poincare’s lemma implies that ∗ξ may be
represented locally as ∗ξ = d ∗ω , where ω is a 2-form. This is equivalent to ξ = ∗d ∗ω or ξ β = ∇α ωαβ

in components.
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lation (Kastor et al. 2009),

∫
∂Σ

dSαβ

(
∇

α
ξ

β +
2

D−2
Λω

αβ

)
= 0, (2.28)

where the integration is done on the boundary of a hypersurface Σ. The integration is the

sum of two contributions, one from the sphere at infinity S∞ and the other from a cross-

section of the event horizon H , as in the initial calculations. The asymptotic behavior

of the AdS spacetime, which is investigated by Henneaux and Teitelboim (Henneaux

and Teitelboim 1985), is required to evaluate the integral at infinity. Ref. ((Ashtekar

and Magnon 1984, Ashtekar and Das 2000) also has a detailed discussion on this. For

a static black hole, the asymptotic behaviour is given by

ds2 =
[
− f0 +

ct
rD−3

]
dt2 + 1

f0

[
1−(D−1)(D−2)cr

2ΛrD−1

]
dr2 +

[
1+ 2Λ

(D−1)(D−2)
cθ

rD−1

]
r2dΩ2

D−2,

(2.29)

where

f0 = 1− 2Λ

(D−1)(D−2)
r2. (2.30)

We can show that ct = cr = m and cθ = 0 in the case of Einstein equations with negative

Λ and localised stress energy source with no angular momentum. The Schwarzschild

AdS black hole metric,

ds2 =− f (r)dt2 +
1

f (r)
dr2 + r2dΩD−2, (2.31)

is then reduced to the large r behaviour of the metric, with

f (r) = 1− m
rD−3 −

2Λr2

(D−1)(D−2)
. (2.32)

For pure AdS spacetime, the Killing potential

ω
rt
r→∞ =−ω

tr
r→∞ =

r
D−1

, (2.33)
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and

∇
r
ξ

t =−∇
t
ξ

r =
(D−3)m

2rD−2 − 2Λr
(D−1)(D−2)

, (2.34)

are the non-zero components of the Killing potential now. The integration at infinity

(2.14), as well as the term with Killing potential and the divergence term,

∫
S∞

dSαβ

(
∇

α
ξ

β +
2

D−2
Λω

αβ

)
=−16π

D−3
D−2

M, (2.35)

∫
H

dSαβ

[
∇

α
ξ

β +
2

D−2
Λω

αβ

]
=−2κA+

2Λ

D−2

[∫
H

dsαβ ω
αβ

]
, (2.36)

where the first term is derived as in the case of asymptotically flat spacetime, is obtained

by integrating on the cross section of the horizon. When all of the aforementioned

results are added together, we get the extended Smarr formula,

(D−3)M = (D−2)T S−2PV, (2.37)

where the pressure and volume terms are,

P =− Λ

8πGN
, (2.38)

and

V =−1
2

∫
H

dSαβ ω
αβ , (2.39)

respectively. The generalization of the earlier derivation to incorporate angular momen-

tum is simple (Cvetič et al. 2011).

2.3.3 Thermodynamics of Black Holes in AdS Space

In AdS spacetime, we derive the first law of black hole mechanics using the Hamiltonian

formalism (Mann 2015). It results from choosing an appropriate spacelike hypersurface

Σ and considering the Killing vector `a to be the generator of a Killing horizon. Let’s

start with the relationship gαβ =−nαnβ +hαβ , where nαnα =−1 and nαhαβ = 0.

H =−16πGNTαβ nαnβ , Hα =−16πGNTσβ nσ hβ

α , (2.40)
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are the contractions of the Einstein tensor with a unit normal. We get H = −2Λ and

Hα = 0 if the cosmological constant is the only source of stress energy. The total grav-

itational Hamiltonian is H =
√

h [N(H +Λ)+NαHα ] if we consider the evolution of

the system along the vector field ξ α = Nnα +Nα , where nαNα = 0. The lapse function

is N =−ξ .n, and the shift is Nα , which is tangential to Σ. The lapse function measures

the proper time, while the shift function measures changes in spatial coordinates.

NδH +Nα
δHα =−DαBα =−2NδN, (2.41)

is obtained by considering the perturbation hαβ → hαβ + sαβ , παβ → παβ + pαβ (παβ

is the conjugate momentum), and Λ→ Λ+δΛ, and performing a simple computation,

where

Bα = N
[
Dαs−Dβ sαβ

]
− sDαN + sαβ Dβ N + 1√

h
Nβ

[
πσρsσρhα

β
−2πασ sβσ −2pα

β

]
.

(2.42)

Since N =−nαξ α =−nα∇β ωβα =−Dβ (nαωβα), we have,

Dα

[
Bα +2ω

αβ nαβ δΛ

]
= 0 =⇒ I :=

∮
∂Σ

dAα

[
Bα +2ω

αβ nαβ δΛ

]
= 0. (2.43)

The Killing Potential is the antisymmetric tensor ωαβ . Two bounds are included in the

integration over ∂Σ: one at the black hole horizon and the other at infinity.

∮
Sα

dAαBα =−16πGNδN− lim
r→∞

(
2rD−1ΩD−2

D−1

)
δΛ, (2.44)

and ∮
Sα

dAα

(
2ω

αβ nβ δΛ

)
= lim

r→∞

(
2rD−1ΩD−2

D−1

)
δΛ, (2.45)

are obtained by evaluating the integral at infinity with appropriate inputs.

It’s worth noting that the term due to the Killing potential wipes out the divergence

caused by the change in Λ. At the horizon of a black hole, we get,

∮
h

dAαBα = 2κδA, (2.46)
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where A is the horizon area and κ is the surface gravity. We rewrite the term with

Killing potential as,

∮
h

dAα

(
2ω

αβ nβ δΛ

)
= 2

(∮
h

dAαω
αβ nβ

)
δΛ. (2.47)

The first law of black hole thermodynamics is,

δM =
κ

2π

δA
4

+V δP = T δS+V δP, (2.48)

which is obtained by combining the previous results. The pressure and volume terms

are identified as ,

P =− Λ

8πGN
and V =−

∮
h

dAαω
αβ nβ . (2.49)

This agrees with the Smarr relation M = 2(T S−PV ) that we found in the previous

section. We should consider the mass of the black hole as enthalpy rather than internal

energy in extended thermodynamics because the enthalpy H = E +PV satisfies δH =

T δS+V δP.

2.4 Extended Phase Space and Wald’s Formalism of the

First Law

The extended version of the first law (Kastor et al. 2009, Dolan 2011c,b,a) was obtained

when the cosmological constant (Λ) was taken as a variable in AdS spacetime, and the

canonical definition of P and V was provided, where the pressure P was identified as

−Λ/8π and its conjugate quantity was interpreted as the thermodynamic volume (V ).

Later, it was discovered (Kubizňák and Mann 2012, Kubizňák et al. 2017, Bhattacharya

et al. 2017, Majhi and Samanta 2017) that this identification is consistent throughout

black hole thermodynamics and that the phase space diagram (i.e., the P−V diagram),

the P− T diagram, the equations of state, and the behavior of the Gibbs free energy

– all are very similar to the van der Waals fluid system in ordinary thermodynamics.

Furthermore, the van der Waals criticality was discovered, which occurs when the two
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independent conditions coincide, i.e. (∂P/∂V )T,Yi = 0 = ∂ 2P/∂V 2)T,Yi . The technique

for finding the thermodynamic first law in the extended phase space using Wald’s ap-

proach is described below, with Λ as a variable.

The first law in extended phase space differs slightly from the first law in non-

extended phase space. Here the black hole’s mass M, is regarded as the system’s en-

thalpy rather than its internal energy. Furthermore, as we will see, defining thermody-

namic volume is not an easy task. The charge will not be included in the proof of the

first law for the sake of simplicity. Due to the diffeomorphism invariance in the present

instance, we must first properly identify the Noether current and potential to follow

Wald’s formalism. We will use the off-shell formulation to get the Noether current and

potential at the operational level.

The action of an AdS black hole with a cosmological constant is denoted by

A =
∫

d4x
√
−gL =

1
16π

∫ √
−g(R−2Λ). (2.50)

Take the variation of the total action to get the equation of motion and the boundary

term. It yields

δ (
√
−gL) =

1
16π

[√
−g(Gab +Λgab)δgab +

√
−g∇aδva−2

√
−gδΛ

]
, (2.51)

where Gab = Rab− 1
2Rgab is the well-known Einstein tensor, and δva = 2Pibad∇b (δgid)

with Pabcd = ∂R
∂Rabcd

= 1
2

(
gacgbd−gadgbc). We have taken into account the fact that Λ

is also a variable. The operation δ is replaced by the Lie-derivative £ξ , with £ξ gab =

−
(
∇aξ b +∇bξ a), for the diffeomorphism symmetry xa→ xa +ξ a.

£ξ

(√
−gL

)
=

√
−g

16π

[
−2∇a

(
Ga

bξ
b
)
+∇a£ξ va−2∇a (ξ

a
Λ)
]
, (2.52)

can be obtained by applying the Bianchi identity ∇aGa
b = 0, because Λ is a scalar, we

have used Λgab£ξ gab− 2£ξ Λ = −2Λ∇aξ a− 2ξ a∇aΛ = −2∇a (ξ
aΛ). Also, for the

diffeomorphism symmetry, the left hand side is given by £ξ (
√
−gL) =

√
−g∇a (ξ

a).
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Therefore, finally one obtains

√
−g∇a

[
Lξ

a +
1

16π

(
2Ga

bξ
b +2Λξ

a−£ξ va
)]

= 0, (2.53)

from which the explicit statement, £ξ va = ∇b∇aξ b +�ξ a−2∇a∇bξ b can be obtained.

As a result,

Ja = Lξ
a +

1
16π

(
2Ga

bξ
b +2Λξ

a−£ξ va
)
, (2.54)

is the conserved Noether current for the diffeomorphism symmetry.

The following equation (2.54) provides Ja =∇bJab = 1
16π

∇b
[
∇aξ b−∇bξ a], result-

ing in the anti-symmetric Noether potential as,

Jab =
1

16π

[
∇

a
ξ

b−∇
b
ξ

a
]
, (2.55)

using the results 2Ga
bξ b +Rξ a = 2Ra

jξ
j = 2

[
∇a∇aξ b−∇a∇bξ b] and the previously

indicated expression of £ξ va.

Although Λ affects the Noether current Ja, the Noether potential is unaffected. It

is also worth noting that the expression of the Noether potential remains unchanged

whether Λ is treated as a pure constant or not at all in theory. We will prove later that

the black hole system’s entropy and energy are proportional to the Noether potential.

As a result, it may be stated that those quantities are not subject to any changes due to

Λ. It is also worth noting that we never used Einstein’s equations of motion to arrive at

the expression mentioned above. As a result, it is an off-shell result.

On-shell, Ga
bξ b = −Λξ a is found from the equation of motion Gab + Λgab = 0,

resulting in the on-shell Noether current (from 2.54) being,

Ja = Lξ
a−

£ξ va

16π
, (2.56)

implying

δ
(√
−gJa)= δ

(√
−gL

)
ξ

a +
√
−gLδξ

a−
δ
(√
−g£ξ va)
16π

, (2.57)
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where δ represents arbitrary field variation that has no effect on the vector ξ a. So,

δξ a = 0 but δξa 6= 0, we get,

δ
(√
−gJa)= ξ a

16π

[√
−g
(
Gi j +Λgi j

)
δgi j +

√
−g∇iδvi−2

√
−gδΛ

]
−

δ
(√
−g£ξ va)
16π

,

(2.58)

using (2.51). Let us calculate the aforementioned variation on-shell, which yields,

δ
(√
−gJa)= √−gξ a

16π

[
∇iδvi−2δΛ

]
−

δ
(√
−g£ξ va)
16π

. (2.59)

With A[aBb] = 1
2

(
AaBb−AbBa), one can get £ξ (

√
−gδva) = −2

√
−g∇b

(
ξ [aδvb]

)
+

√
−gξ a∇bδvb.

δ
(√
−gJa)= 1

16π

[
£ξ

(√
−gδva)−δ

(√
−g£ξ va)+2

√
−g∇b

(
ξ
[a

δvb]
)
−2
√
−gξ

a
δΛ

]
,

(2.60)

is obtained by applying this relation in (2.59).

Now, let’s define

ω
a =− 1

16π
Lξ

(√
−gδva)+ 1

16π
δ
(√
−g£ξ va) . (2.61)

The significance of ωa will be explained later in our discussions. As a result of this

convention, one obtains

δ
(√
−gJa)=−ω

a +
2
√
−g

16π

[
∇b

(
ξ
[a

δvb]
)
−ξ

a
δΛ

]
(2.62)

implying,

ω
a =−δ

(√
−gJa)+ 2

√
−g

16π

[
∇b

(
ξ
[a

δvb]
)
−ξ

a
δΛ

]
. (2.63)

Let us turn to classical mechanics for help in properly understanding everything. δL(q, q̇)=[(
∂L
∂q

)
−dt

(
∂L
∂ q̇

)]
δq+dt [pδq] can be obtained using classical calculations, where the

first term is the equation of motion, which disappears on-shell, and the last term is the

temporal derivative of the boundary term, which we will designate as v. Let us take the
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conventions,

v(δq) = pδq, (2.64)

v(q̇) = pq̇ (2.65)

The variation of the Hamiltonian can be explained as follows using this convention:

δH(q, p) = δ [p(dtq)]−dt [p(δq)] = δ [v(q̇)]−dt [v(δq)] . (2.66)

Let us now attempt to comprehend the physical meaning of the term ωa . However, first,

in order to compare ωa to the classical term, consider the one-to-one correspondence

as follows.

In classical mechanics, the metric tensor gab corresponds to q. δQ corresponds to

the arbitrary variation of the metric tensor δgab, and q̇ corresponds to the Lie-derivative

of the metric tensor £ξ gab. It is possible to write using this format.

√
−g£ξ va ≡ v(q̇) (2.67)
√
−gδva ≡ v(δq). (2.68)

So, if one compares (2.61) and (2.66) using the above-mentioned convention (2.68), one

finds that (aside from the normalisation factor 1
16π

) ωa corresponds to δH , where H

is the Hamiltonian density. As a result, the total Hamiltonian’s variation is represented

as,

δH[ξ ] = δ

∫
c
dΣa

ωa
√
−g

=−
∫

c
dΣa∇b(Jab)+

2
16π

∫
c
dΣa

[
∇b

(
ξ
[a

δvb]
)
−ξ

a
δΛ

]
,

(2.69)

the Cauchy surface is denoted by c. Ja = ∇bJab in (2.63) , where Jab is the anti-

symmetric Noether potential, is used to obtain the final step. With h as the determinant

of 3-metric and na as the normal to the surface, dΣa = na
√

hd3y is the infinitesimal

surface area of a three-dimensional hypersurface. Let us now substitute the pressure for
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the cosmological constant Λ. (2.69) can be written as,

δH[ξ ] =−1
2

δ

∫
£

dΣabJab +
1
2

δ

∫
∂c∞

dΣabJab− 1
16π

∫
∂c∞

dΣabξ
[a

δvb]+δP
∫

c
dΣaξ

a,

(2.70)

after translating the volume integral to the surface integral, the new surface integrations

will be performed on a bifurcation surface H and at the 2-dimensional boundary of

c at asymptotic infinity (i.e., ∂c∞ ). Taking ξ a as a timelike Killing vector, one must

have ξ a = 0 on H . As a result, the word containing ξ [aδvb] makes no contribution.

δH[ξ ] = 0 in this case, while H[ξ ] might not be zero. Then, on the right-hand side,

identify the first term as− κ

2π
δS from Wald’s prescription, with κ as the surface gravity.

As a whole, the second and third terms contribute as δM−ΩHδJ (see (Wald 1993) for

rigorous discussion).

Let us now concentrate on the final term,
∫

c dΣaξ a of (2.70). The above integral can

also be expressed as
∫
H

√
hd3ynaξ a−

∫
∞

√
hd3ynaξ a, with the first term calculated at

the horizon and the second term evaluated at the asymptotic boundary. The first integral

yields a finite result, whereas the second term yields a divergent result. The regularisa-

tion process must be used to eliminate the divergence. There are usually two prescrip-

tions in the literature. One method includes a counter term in action whose contribution

eliminates the divergence. The background subtraction method is another option. The

background contribution eliminates the divergence in this situation, resulting in a finite

volume. The additional term can be justified because one can always introduce a total

derivative term along with the actual Lagrangian as long as the governing dynamics

remain unchanged or because the Noether potential (Jab) is not uniquely determined

(one can include any arbitrary anti-symmetric tensor with it as long as the divergence

of that arbitrary term vanishes). As a result, one can include a term in the Lagrangian or

Noether potential to eliminate the noted divergence at infinity. As a result, the covariant

definition of volume V is

V =−
∫
H

√
hd3ynaξ

a +
∫

∞

√
hd3y [naξ

a− (naξ
a)BG] , (2.71)

we interpret the last component of (2.70) as V δP since the term with (naξ a)BG is con-
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sidered the ”background contribution” to eliminate the divergence. The thermodynamic

volume is the name given to this volume in the literature. When one calculates (2.71)

with the horizon radius rh in the Reissner–Nordström AdS (RNAdS) black hole , one

gets V = 4πr3
h/3. The consmological constant that determines the pressure P=−Λ/8π .

In (Kastor et al. 2009, Couch et al. 2017), similar prescriptions were implemented. As

a result of (2.70), the required result,

δM = T δS+V δP+ΩHδJ, (2.72)

is obtained. T = κ

2π
is the temperature of a black hole, as can be deduced from this.

As a result, the first law for the AdS black hole with varying cosmological constant is

established in this study. For the sake of simplicity in the computations, we have not

included any hair in this theory. As previously stated, the addition of hair provides a

well-known contribution, and the final expression when all hairs are considered is,

dM = T dS+V dP+ΣiXidYi, (2.73)

where X = {Ω,φ} and Y = {J,Q} with Ω, φ , J, and Q represent the angular velocity,

electric potential, angular momentum, and electric charge (which contains all charges

owing to symmetry and the hair in the system), respectively. When we compare the

above equation (2.73) to the thermodynamic law dH = T dS+V dP+µdN (where H is

the enthalpy, µ is the chemical potential, and N is the number of particles in the ther-

modynamic system), we can see that the mass of the black hole is identified as the black

hole system’s enthalpy, rather than the internal energy. In non-extended phase space,

on the other hand, the mass of the black hole is identified with the system’s internal

energy, as we saw earlier. Remember that in ordinary thermodynamics, the enthalpy is

the amount of energy required to construct the system (i.e., the internal energy) and the

amount required to establish the system’s pressure and volume. As a result, the signifi-

cance of black hole mass in the description of black hole thermodynamics in extended

phase space is modified.

The fact that the Noether potential is independent of the cosmological constant has
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earlier been studied in (Hollands et al. 2005). However, in that instance, Λ is treated as

a proper constant; therefore, it is not included in the potential. However, in our case, we

used the metric tensor and the variation of the cosmological constant to deduce the first

law of the AdS black holes in the extended phase space. We have proved that, while the

Noether current is affected by the cosmological constant, the potential is unaffected,

even in the off-shell situation. In this regard, it is worth noting that the expressions

of entropy and mass-energy in the extended phase space are identical to those in the

non-extended phase space because the Noether-potential expression is the same in both

circumstances.

2.5 Thermodynamics with Variable Λ

When looking at the first law (1.5), one cannot help but be intrigued by the

pressure-volume expression PδV . The presence of such a term is unexpected. con-

cept was misunderstood because there was no mention of pressure or volume correlated

with a black hole. A new concept was suggested a few years ago. It was seen from

the form of the corrected Smarr equation, the negative cosmological constant Λ may

be identified with the thermodynamic pressure. Our Universe, cosmological constant

is positive (Riess et al. 1998, Perlmutter et al. 1999). Positive Λ complicates the study

of black hole thermodynamics for two reasons: First, in de Sitter space, there is no

asymptotic regime that allows for the unambiguous determination of the ADM mass of

a black hole embedded in a positive Λ space; second, Λ > 0 denotes negative pressure

and, as a result, thermodynamic instability (Lukács and Martinás 1984). The first issue

arises because a de Sitter black hole has two event horizons, a black hole horizon and

a cosmological horizon, and the radial coordinate is time-like beyond the cosmological

horizon for large enough values of r. The second issue is more easily understood be-

cause negative pressure systems are thermodynamically unstable. Although black holes

are unstable even for Λ = 0 because their heat capacity (CP) is negative, we may still

discuss metastable circumstances in which a temperature can be determined for a pe-

riod of time far shorter than the timescale of thermal instability. In metastable settings,

negative pressures can be beneficial (Landau and Lifshitz 2013). In contrast, there is

no cosmological horizon for negative Λ, and the pressure is positive everywhere the
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thermodynamics is well defined.

The negative cosmological constant in a d dimensional space with AdS radius `

reads,

Λ =−(d−1)(d−2)
2`2 < 0. (2.74)

Furthermore, (Kastor et al. 2009) proposed that the mass of a black hole embedded

in anti-de Sitter space-time be interpreted as the enthalpy rather than the more conven-

tional internal energy,

M = H(S,P) =U(S,V )+PV. (2.75)

The PV term in this equation represents the contribution to the black hole’s mass-

energy due to the negative energy density of the vacuum, ε = −P, which is related

to a negative cosmological constant. The total energy of a black hole with volume

V is U = M−PV because it includes energy εV = −PV . This interpretation forces

us to address the question of how to define the volume of a black hole. The black

hole volume is the volume that is excluded from empty AdS when the black hole is

introduced, according to (Kastor et al. 2009). We will call this the “geometric volume”.

Another definition of the black hole volume is the Legendre transform (2.75),

V :=
∂H
∂P

, (2.76)

which we will refer to as the “thermodynamic volume”.

The concept of considering Λ as a dynamical variable was first proposed by Teit-

elboim and Brown (Teitelboim 1985, Brown and Teitelboim 1988). P−V term was

introduced into the first law of black hole mechanics by (Creighton and Mann 1995).

Many aspects of which were discussed later in (Caldarelli et al. 2000, Padmanabhan

2002). The generalized first law of black hole mechanics becomes,

dM = T dS+V dP+ΩdJ+ΦdQ. (2.77)

Pressure is related to the cosmological constant Λ and volume is its conjugate quantity

(Kubizňák et al. 2017); it follows from the first law; this is true only when we consider
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AdS black holes and satisfies the Smarr’s relation (Kastor et al. 2009). The geometric

volume of a spherically symmetric black hole turns out to be the spherical volume with

radius as event horizon radius (Altamirano et al. 2014). For black holes which deviate

from a spherically symmetric spacetime as in the case of a rotating AdS black hole

which is axially symmetric, interpreting the pressure and volume of a black hole is

not easy. Dolan (Dolan 2012) showed that thermodynamic volume for a non-rotating

black hole is identical to the geometric volume, it hold for non-rotating black holes in

all dimensions (Padmanabhan 2002, Tian and Wu 2011, Dolan 2011c). Volume and

entropy cannot be considered independent thermodynamic variables since S determines

V uniquely, and they can’t be changed separately, making V redundant. However, this

equality no longer holds for rotating Kerr-AdS black holes. V and S can and should be

regarded as independent variables for a rotating black hole.

The main motivation for studying the phase transition of black holes is to reveal the

phase structure of black holes and thermodynamic variables’ behavior. The stability of

the black holes can be analyzed by studying the order of phase transition and critical

behavior. The conditions characterize the critical point,

∂P
∂v

= 0 ,
∂ 2P
∂v2 = 0, (2.78)

where v is the specific volume. One of the essential physical quantities to study the

stability in thermodynamics is heat capacity. It is customary to define heat capacity in

two different ways for a given system, i.e., at constant volume and constant pressure.

CV = T
(

∂S
∂T

)
V
, CP = T

(
∂S
∂T

)
P
. (2.79)

The phase transition seen in charged black holes is similar to the Van der Waals

system (Chamblin et al. 1999a, Kubizňák and Mann 2012). Consider the metric of a

charged AdS black hole in four dimensions,

ds2 =− f (r)dt2 +
1

f (r)
dr2 + r2dΩ

2, (2.80)

where,

40



f (r) = 1− 2M
r

+
Q2

r2 +
r2

`2 (2.81)

Black hole event horizon at f (rh) = 0. The corresponding thermodynamic quantities

are (Kubizňák and Mann 2012, Dolan 2011b),

Temperature,

T =
1

4πrh
+

3rh

4π`2 −
Q2

4πr3
h
. (2.82)

The equation of state becomes,

P =
T

2rh
− 1

8πr2
h
+

Q2

8πr4
h
. (2.83)

Between the small black hole and the large black hole phases, the black hole undergoes

a transition. The critical point is obtained from (2.78) leads to,

Pc =
1

96πQ2 , Tc =

√
6

18πQ
, vc = 2

√
6Q, (2.84)

Examining the critical values (2.84) reveals a surprising relationship Pcvc
Tc

= 3
8 , which

is identical to the Van der Waals fluid and is a universal number anticipated for any

RN-AdS black hole with arbitrary charge.

2.6 Conclusions and Discussions

One of the most exotic objects in physics is black holes, which behave like ther-

modynamical systems. Pressure and volume are not discussed in traditional treatments

of the first law of black hole thermodynamics. However following works of (Kastor

et al. 2009, Dolan 2011b, Kubizňák and Mann 2012) cosmological constant is inter-

preted as thermodynamic pressure and viewed as a thermodynamic variable in an ex-

tended phase space. The mass of the black hole is associated with enthalpy in this

method rather than being considered internal energy. As a result, a comprehensive

dictionary of black hole thermodynamic quantities emerges, including a definition of

thermodynamic volume for a given black hole spacetime.

In the first part of this chapter, we briefly explained the laws of black hole thermo-
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dynamics. We derived the Smarr relation for asymptotically flat black holes using the

geometrical method based on Komar integrals. The following sections have demon-

strated the failure of these approaches in asymptotically AdS black holes. Due to the

failure of the Smarr relation for AdS black holes, an extended form of thermodynamics

was developed, with the cosmological constant interpreted as the thermodynamic pres-

sure P. The modified Komar integrals yield the Smarr relation involving the PV term in

the extended space. AdS black holes in this extended phase space exhibits d a van der

Waals fluid-like phase diagram (Kubizňák and Mann 2012).
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Chapter 3

Thermodynamics of Regular Bardeen

Black Hole

This chapter explains the details of the calculation of thermodynamics and phase

transition of regular Bardeen AdS black holes in the extended phase space without

and with quintessence. This analysis reveals a first-order phase transition similar

to the van der Waal system, which is confirmed by the specific heat divergence at

the critical points.

3.1 Introduction
The effort to incorporate quantum mechanical nature into a black hole, which had

a purely classical origin in general relativity, led to the development of black hole ther-

modynamics. Hawking and Bekenstein took the initial step by introducing temperature

and entropy for a black hole related to surface gravity and black hole area, respectively

(Hawking 1975, Bekenstein 1972b). The four laws of black hole thermodynamics,

which are analogous to classical thermodynamics, were soon proposed (Bardeen et al.

1973). The importance of AdS black holes in black hole thermodynamics was real-

ized in the early stages of these developments because thermodynamically stable black

holes can only exist in AdS space. The AdS space boundary behaves as the walls of
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a thermal cavity. The common PdV term is missing from the first law of black hole

thermodynamics in the elementary approach. The role of the cosmological constant in

Einstein’s equations, where it gives the pressure term, provides a hint for solving this

problem. The dynamical cosmological constant introduces the pressure term to black

hole thermodynamics, which has other significant implications, such as the consistency

of the Smarr relation with the first law (Kastor et al. 2009). The thermodynamic volume

is taken to be the conjugate quantity in this approach.

The general theory of relativity allows for black hole spacetimes with singularities,

where the classical theory is no longer predictive and no concept of classical space-

time appears to be viable. On the other hand, singularities are an artifact of general

relativity because their presence indicates a failure or incompleteness of the theory.

Quantum gravity is thought to play a role at short distances in preventing the limit-

less expansion of spacetime curvature scalars and other physical quantities. Initially,

Sakharov (Sakharov 1966a) proposed that to avoid such singular nature at close dis-

tances to the singularity, one must offer a de-Sitter core with p =−ρ as the superdense

matter equation of state. Later, Gliner (Gliner 1966) viewed p =−ρ as a non-zero den-

sity vacuum that may provide a good explanation of gravitational collapse in its final

stages. Quantum fluctuations dominate during gravitational collapse, putting an upper

bound on the value of the spacetime curvature and forming a de-Sitter core around the

center, which inhibits matter from moving towards the center, preventing a singular-

ity from forming in the spacetime. Bardeen (Bardeen 1968) developed the first model

of regular black holes based on Sakharov and Gliner’s ideas. Ayon-Beato and Garcia

(Ayón-Beato and Garcıa 2000) later proposed some regular black holes that may be

interpreted as exact solutions coupled to nonlinear electrodynamics with a magnetic

monopole charge. Regular black hole models are significant because they provide a

valuable test-bed for investigating minimal, localized departures from classical black

hole geometry (Carballo-Rubio et al. 2018). Other regular black hole models have also

been obtained using both magnetic and electric sources (Ayon-Beato and Garcia 1998,

Ayon-Beato and Garcıa 1999, Ayón-Beato and Garcıa 2000, Ayón-Beato and Garcia

2005, Hayward 2006, Dymnikova 1992, 2004, Ahluwalia-Khalilova and Dymnikova

44



2003, Dymnikova and Galaktionov 2005, Bronnikov 2001a,b, Bronnikov et al. 2003b,

Bronnikov and Fabris 2006, Bronnikov et al. 2003a, Bronnikov and Dymnikova 2007,

Bronnikov and Fabris 2006) . The rotating regular black holes (Bambi and Modesto

2013, Toshmatov et al. 2014, Ghosh 2015, Tinchev 2019) were created to investigate

their horizon structure, particle acceleration, particle collision, and energy extraction

using the Penrose process (Ghosh and Amir 2015, Amir et al. 2016, Ghosh et al. 2014,

2020).

In order to study the thermal and stability features of dS/AdS spaces, regular black

hole solutions have been extended. The horizon and extended phase space thermo-

dynamics of regular dS/AdS black holes have been investigated (Ahluwalia-Khalilova

and Dymnikova 2003, Dymnikova 2002, Fan 2017). Similarly, the phase transitions and

heat engine efficiency for regular Bardeen AdS black holes. Another regular black hole

solution coupled to nonlinear electrodynamics in an asymptotically dS space was de-

rived (Matyjasek and Tryniecki 2009). Motivated by the recent progress, here we study

the thermodynamics of the Bardeen black hole surrounded by quintessence. In the first

part of this chapter, we discuss Bardeen black hole and its internal structure. Then cal-

culate the thermodynamics and phase transition of regular Bardeen AdS black holes in

the extended phase space; then, we investigate the effect of quintessence parameters on

it in the next section.

3.2 The Bardeen Solution
Several motivations exist for attempting to develop consistent solutions to Einstein’s

equations that explain regular spacetimes. The existence of various singularity theo-

rems (Penrose 1965, Hawking 1965, Geroch 1966, Hawking and Penrose 1970, Clarke

1975, Borde 1994, De Sitter 1918), which apply both to cosmology and gravitational

collapse, limits the possibilities. The essential question is whether or not it is possible

to violate some of the singularity theorems’ hypotheses without obtaining unphysical

models. The literature has progressed significantly in this direction, particularly in cos-

mology and gravitational collapse. Of course, solutions without horizons provide a

natural framework in which singularity theorems cannot be used, and regular solutions

can be found. On the other hand, it appears natural that horizons arise in various phys-
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ically reasonable situations. As a result, it is important to know whether singularities

may be avoided in the presence of horizons. Regular black holes are solutions in which

this is true. A wide range of these solutions has been studied (Elizalde and Hildebrandt

2002, Bronnikov and Dymnikova 2007). Bardeen’s solution (Bardeen 1968, Borde

Figure 3.1: Penrose diagram of regular black hole

1994) is a solution of Einstein equations in the presence of an electromagnetic field that

is parametrized by mass m and charge β , similar to the well-known Reissner-Nordström

solution (Reissner 1916, Nordström 1918). The line element can also be expressed in

the same way, in the static and spherically symmetric form , with the metric function
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f (r) equal to

f (r) = 1− 2mr2

(r2 +β 2)
3/2 = 1−

(
m
β

) 2
(

r
β

)2

((
r
β

)2
+1
)3/2 , (3.1)

and r ≥ 0. It is easy to observe that i) there are m/β ratio values for which f (r) has

no zeroes (and is therefore always positive), ii) values for which it has two zeroes, and

a situation in between, where iii) the function is always non-negative but disappears

at only one point along with its first derivative. This function, like the curvature ten-

sors and scalar of the solution it represents, is well defined everywhere; for small r,

it behaves like the de Sitter metric, whereas for large r, it asymptotically acts like the

Schwarzschild metric (Ansoldi 2008). In scenario ii), the black hole interior does not

terminate in a singularity but instead crosses an interior Cauchy horizon and evolves

into a region that resembles de Sitter, eventually ending with a regular origin at r = 0.

However it acts as a counterexample, this solution imposes a strong constraint on pos-

sible generalizations of current singularity theorems. Even though this was discovered

many years ago, it has interesting properties, and its causal and geometrical structures

have been investigated in depth (Borde 1994, 1997). The research revealed that a rea-

sonably generic method for singularity avoidance in classical general relativity might

involve a topological change. Let us look at the values of the parameters for which the

Bardeen solution has both an event and a Cauchy horizon. We can see that its global

structure resembles the maximum extension (Graves and Brill 1960, Carter 1966) of

Reissner-Nordström (Schwarzschild 1916, Nordström 1918) spacetime but with a regu-

lar origin (See figure (3.1) 5 (Ansoldi 2008)). According to Borde (Borde 1994, 1997),

the singularity avoidance may be explained by the fact that in regions where spacelike

slices in the Reissner-Nordström solution would have the topology R× S1, the same

spacelike slices in the Bardeen solution have the topology S3. There are corresponding

regions of the extended manifold where spacelike slices of both the Reissner-Nordström

and the Bardeen solutions have the topology R×S1, the avoidance of singularity has

5Spherical black holes with regular center: a review of existing models including a recent realization
with Gaussian sources
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been linked in (Borde 1994, 1997) to the topology change that appears in the struc-

ture of the spacelike slices, which change from open to closed; this allows singularity

avoidance because in the closed case (Ansoldi 2008).

3.2.1 Black Hole Interiors

The Bardeen solution is the first concrete scenario that implements the early physical

idea of Sakharov (Sakharov 1966a) and Gliner (Gliner 1966), replacing the singular-

ity with a regular de Sitter core. Given the early appearance of the Schwarzschild

(Schwarzschild 1916) and de Sitter (De Sitter 1918) solutions and the global nature

of these spacetimes, it is natural that the idea to replace the black hole interior of

Schwarzschild spacetime with the interior (i.e., before the cosmological horizon) re-

gion of de Sitter spacetime (Gonzalez-Diaz 1981) together with charged generalizations

(Wenda and Shitong 1985, Shen and Zhu 1985). This intuitive idea can be supported,

in fact, by the valuable formalism of Israel junction conditions (Israel 1966, Barrabes

and Israel 1991). Even though the simpler idea of performing the junction at a null

surface (Wenda and Zhu 1988) fails due to stability issues (Grøn and Soleng 1989)

and the appearance of a pressure discontinuity at the null junction (Grøn 1985, Pois-

son and Israel 1988). It is possible to replace part of the black hole interior with de

Sitter spacetime by interposing a layer of non-inflationary material (Grøn 1985). The

scenario in which this layer is spacelike (Frolov et al. 1989, 1990), resulting in the so-

called Schwarzschild–de Sitter model, is exciting. The curvature becomes unbounded

as one approaches a singularity is a natural motivation for these investigations. On the

other hand, a consistent framework for singularity avoidance should prevent this di-

vergence, so it is natural to assume an upper bound for the curvature (Markov 1982,

1984, Markov and Mukhanov 1984), which was naturally taken at the Planck size in

these early studies. It can be demonstrated that the Schwarzschild metric’s black hole

area may be linked to de Sitter space through a spacelike junction, with the transition

being on the order of Planck time (Frolov et al. 1989, 1990). The procedure can be

carried out not only between eternal, static spacetimes but also when considering the

black hole as a result of gravitational collapse. Furthermore, the de Sitter space can

decay into a Friedman universe, giving rise to the exciting notion that gravitational col-
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lapse could result in the creation of a new universe. Focusing a little further on the

technical elements of this early suggestion, (Ansoldi 2008) points out that, due to the

spacelike character of the junction, the resultant spacetime has Cauchy horizons and is

therefore not universally hyperbolic. Also note that the spacelike hypersurface where

the Kasner-like contraction of the Schwarzschild collapse is transformed into deflation

of de Sitter spacetime is followed by another hypersurface where the transition to an

inflationary space occurs. The new universe generated within the black hole is truly

closed since this last surface is topologically a three-sphere S3. It is also worth noting

that this model may be proven (Balbinot and Poisson 1990) to be stable in the following

sense: The T t
t component of the stress-energy tensor can be interpreted as tension along

the axis of a three-cylinder of constant time r = constant inside the black hole region.

This is especially true along the surface where the junction is made, as it can be seen

that there are values of the parameters for which fluctuations of the Schwarzschild mass

M and/or the de Sitter cosmological constant Λ and/or other internal parameters, such

as surface pressures, do not cause the three-cylinder to collapse to zero radii, but instead

cause spatial oscillations of its radius with a longitudinal dependence (Ansoldi 2008).

In a current context, it is also worth recalling a subsequent expansion of this early con-

cept (Barrabes and Frolov 1996), which discussed the idea of creating many de Sitter

universes with null boundaries inside the black hole region, a picture that’s very similar

to that of an eternally inflating universe.

Other types of matching may be accomplished without the presence of a surface

layer: in (Markov and Mukhanov 1984), the mass function is presented in two explicit

instances, where the junctions are performed at the horizon of Schwarzschild spacetime,

which represents the solutions’ exterior asymptotically flat area. Complete manifold

extensions are also explored, and they cannot be produced using analytical continuation,

which is impossible across the horizon (Mars and Senovilla 1993). It is also possible to

execute the junction away from the horizon without changing the general features of the

result, as detailed in (Markov and Mukhanov 1984). However, the spacetime manifold

that may be extended to completeness is not analytical; therefore, its extension is not

unique. It is also possible to obtain more complex models with comparable features
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(Ansoldi 2008).

3.3 Thermodynamics of Regular Bardeen AdS Black Hole

The action for regular black hole solution coupled with nonlinear electrodynamics

in AdS space read as (Fan and Wang 2016),

S =
∫

d4x
√
−g
(

1
16π

R+
3

8πl2 −
1

4π
L(F)

)
, (3.2)

where R is the Einstein scalar, l the AdS radius and L(F) is from nonlinear electrody-

namics source.

L(F) =
3M
β 3

( √
4β 2F

1+
√

4β 2F

) 5
2

, (3.3)

where F = FµνFµν , Fµν is the strength of the electromagnetic field and β is the mag-

netic monopole charge associated with it.

The solution of the action will give regular Bardeen AdS black hole metric has the

form (Fan 2017, Fan and Wang 2016),

ds2 =− f (r)dt2 +
dr2

f (r)
+ r2dθ

2 + r2 sin2
θdφ

2, (3.4)

where f (r) = 1− 2M(r)
r − Λr2

3 and M(r) = Mr3

(r2+β 2)3/2 . Here M is the black hole mass,

Λ is the cosmological constant given by − 3
`2 . The cosmological constant is treated as

thermodynamic pressure in extended phase space (1.7).

The event horizon of the Black hole is articulated by f (rh) = 0, which gives the

black hole mass,

M =

(
β 2 + r2

h

)3/2 (8πPr2
h +3

)
6r2

h
. (3.5)

Now the first law of thermodynamics equation (1.5) can be rewritten as (Tzikas 2019),

dM = T dS+V dP+Ψdβ , (3.6)
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where Ψ is the potential conjugate to the magnetic charge β . Temperature T can be

obtained from surface gravity κ as,

T =
κ

2π
=

1
4π

f ′(r)|r=rh =
−2β 2 +8πPr4

h + r2
h

4πrh
(
β 2 + r2

h

) . (3.7)

When Λ = 0, then (3.5) and (3.7) reduces to the mass and temperature of the Bardeen

regular black hole (Akbar et al. 2012). The thermodynamic volume V and the entropy

S can be derived from the first law ( 3.6) as,

V =
∂M
∂P

∣∣∣∣
V,β

=
4
3

πr3
h

(
β 2

r2
h
+1
)3/2

, (3.8)

S =
∫ dM

T
= πr2

h

(1− 2β 2

r2
h

)√
β 2

r2
h
+1+

3β 2 log
(√

β 2 + r2
h + rh

)
r2

h

 . (3.9)

The thermodynamic quantities depends on charge β explicitly. In the large r limit the

entropy of Bardeen-AdS black hole is πr2
h. Rearranging the equation ( 3.7) we get

P =
4πrhT

(
β 2 + r2

h

)
+2β 2− r2

h

8πr4
h

. (3.10)

Consider v = 2rh as specific volume, we obtain the equation of state P(T,v,β ),

P =
2πT v

(
4β 2 + v2)+8β 2− v2

2πv4 . (3.11)

The P− v isotherm and T −S curves using the equations (3.7) and (3.11) as shown

in figure (3.2). The behavior of the P− v diagram resembles that of van der Waals gas.

The isotherm corresponding to T = TC called critical isotherm has an inflection point

below which a critical behavior is displayed. The corresponding pressure and volume

at that point are called critical pressure (PC) and critical volume (vC), respectively. The

isotherms above critical isotherm (for T > TC) gradually approach equilateral hyper-

bolas, which corresponds to the ideal gas case. On the other hand, the lower set of

isotherms (for T < TC) have a positive slope region (∂P/∂v > 0), which is thermody-

namically unstable. The critical behavior is also apparent in the T −S plot.
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Figure 3.2: P−v diagram for regular AdS black hole for different values of temperature
with β = 0.1 (figure (3.2a)). In figure (3.2b) T − S plot for different values of β is
shown.

The critical point is characterized by the conditions,

∂P
∂v

= 0 ,
∂ 2P
∂v2 = 0. (3.12)

The critical parameters hence obtained are,

vc =
√

2
(√

273+15
)
β , Tc =−

(√
273−17

)√1
2

(√
273+15

)
24πβ

, (3.13)

Pc =
√

273+27
12(
√

273+15)
2
πβ 2

. (3.14)

We can compute Pcvc
Tc

ratio ,
Pcvc

Tc
= 0.367, (3.15)

which almost matches with that of the van der Waals gas, which is 3/8 (Kubizňák and

Mann 2012).

One of the important physical quantities in thermodynamics is heat capacity. It

is customary to define heat capacity in two different ways for a given system, i.e., at

constant volume and at constant pressure. It is straight forward to show the following

result,

CV = T
(

∂S
∂T

)
V
= 0. (3.16)
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In the large r limit, the heat capacity at constant pressure is calculated as

CP = T
(

∂S
∂T

)
P
=

2S(πβ 2+S)(−2πβ 2+8PS2+S)
2π2β 4+πβ 2S(24PS+7)+S2(8PS−1) . (3.17)

0.2 0.4 0.6 0.8 1.0
S

-150

-100

-50

50

100

150

Cp

SBH

IBH

LBH

(a)
0.0 0.2 0.4 0.6 0.8 1.0

S

10

20

30

40

50

60

Cp

(b)
0.2 0.4 0.6 0.8 1.0

S

0.5

1.0

1.5

2.0

2.5

3.0

Cp

(c)

Figure 3.3: Specific heat versus entropy diagram for regular AdS black hole with β =
0.1, for P < Pc in figure (3.3a), for P = Pc in figure (3.3b) and for P > Pc in figure (3.3c).

The first-order phase transition for the black hole is confirmed from the CP−S plot

(figure (3.3)). The critical behavior is seen only below certain pressure (Pc). There

exist three distinct regions, and hence two divergence points for P < PC. The positive

specific heat for the small black hole region (SBH) and large black hole region (LBH)

means that those black holes are thermodynamically stable. Having negative specific

heat, the intermediate black hole region (IBH) represents an unstable system. Therefore

the actual phase transition takes place between SBH and LBH. The unstable region

disappears at pressure P = PC resulting in a single divergence point.

3.4 Thermodynamics of Regular Bardeen AdS Black Hole

with Quintessence
Presence of quintessence throughout the universe makes it important to probe its

effects on the black holes. Quintessence is one of the dark energy candidates, which

leads to the accelerated expansion of our universe (Kiselev 2003, Tsujikawa 2013).

Kiselev was the first to study the effects of quintessence on a black hole (Kiselev 2003).

Since then, there were many studies in black holes surrounded by quintessence, to men-

tion a few, in the contexts of gauge gravity duality (Chen et al. 2013a) and quasi-normal

modes (Chen and Jing 2005). Phase transitions in Reissner-Nordström and regular

black holes with this exotic field were also studied (Wei and Chu 2011, Thomas et al.
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2012, Li 2014, Fan 2017, Saleh et al. 2018, Rodrigue et al. 2018). By using Kislev’s

phenomenological model, one can construct a regular Bardeen black hole surrounded

by quintessence. According to this model, the quintessence comes from a fluid with the

energy-momentum tensor,

T r
r = T t

t = ρq,

T θ
θ = T φ

φ
=−1

2
ρq
(
3ωq +1

)
,

and ρq =−
a
2

3ωq

r3(ωq+1)
,

ωq and a are the state parameter and the normalization constant related to quintessence

energy density ρq. Solving the Einstein equations, one can obtain the metric for a

regular Bardeen AdS black hole with quintessence (Saleh et al. 2018, Fan 2017, Li

2014, Kiselev 2003) (for details see Appendix A),

ds2 =− f (r)dt2 +
dr2

f (r)
+ r2dθ

2 + r2 sin2
θdφ

2, (3.18)

where

f (r) =
(

1− 2M(r)
r

+
r2

l2 −
a

r3ωq+1

)
. (3.19)

AG Tzikas (Tzikas 2019) studied the phase transition in Bardeen AdS black hole. In

this section, we investigate the thermodynamic phase transition of regular Bardeen AdS

black hole with quintessence.

The mass M corresponding to the above metric (3.18),

M =
1
6

rh
−3(1+ωq)(β 2 + r2

h)
3/2[−3a+ r1+3ωq

h (3+8Pπr2
h)]. (3.20)

First law of black hole thermodynamics must be modified to include quintessence

as follows (Rodrigue et al. 2018),

dM = T dS+Ψdβ +V dP+Ada. (3.21)
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Where Ψ is the potential conjugate to the magnetic charge β and A is a quantity

conjugate to quintessence parameter a.

A=

(
∂M
∂a

)
S,β ,P

=− 1

2r3ωq
h

. (3.22)

The quintessence parameters A and a are introduced similar to the pressure-volume

term to make the first law consistent with the Smarr relation,

M = 2T S+Ψβ −2PV +(3ωq +1)Aa. (3.23)

The quintessence parameter a being a thermodynamic variable contributes to the in-

ternal energy of black holes and hence to the thermodynamics. The appearance of a

and its conjugate variable A in first law and Smarr relation justifies our motivation to

study its effect in phase transition. It is also worth recalling that these modifications

due to quintessence is parallel to the extension by identifying cosmological constant as

thermodynamic pressure. These two identifications play a crucial role in the critical

phenomena of AdS black holes.

From Hawking temperature (3.24), we can derive the equation of state (equation

(3.26)).

T =
rh
−3ωq−2 (3a

(
β 2(ωq +1)+ rh

2ωq
)
+ rh

3ωq+1 (−2β 2 +8πPrh
4 + r2))

4π (β 2 + rh
2)

. (3.24)

P =
rh
−3ωq−5 (rh

3ωq+1 (β 2(4πrhT +2)+ rh
2(4πrhT −1)

)
−3a

(
β 2(ωq +1)+ rh

2ωq
))

8π

(3.25)

=
v−3ωq−5 (v3ωq+1 (8β 2(πT v+1)+ v2(2πT v−1)

)
−3a23ωq+1 (4β 2(ωq +1)+ v2ωq

))
2π

.

(3.26)

where v = 2rh is specific volume. When ωq = 0 and a = 0, then (3.24) and (3.25) re-

duces to (3.7) and (3.10). Using the above equations the P− v and T − S curves are

plotted in figure (3.4a) and (3.4b). Below a critical temperature TC, P− v isotherm
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Figure 3.4: To the left we have P− v diagram for regular AdS black hole surrounded
by quintessence (a = 0.07, β = 0.1, ωq =−2/3) for different values of temperature. In
the right side T −S plot for different values of β is shown.

has three branches corresponding to small, intermediate, and large black holes. This

behavior is quite similar to liquid/gas transition van der Waals fluids. Around the crit-

ical points, two plots clearly display critical phenomena. The conditions are used to

determine the critical points are ,

∂P
∂v

= 0 ,
∂ 2P
∂v2 = 0. (3.27)

The quintessence parameter’s inclusion increases the ratio, which implies a change

in the microscopic interaction and phase structure.
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Figure 3.5: Effect of quintessence parameter ωq on P− v isotherms (figure 3.5a) and
T −S diagram (figure 3.5b).

We can see how the existence of quintessence influences the phase transition by

looking at the critical values of temperature, pressure, and volume. Since the analytic
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expression is difficult to obtain, the critical quantities are obtained numerically for the

state parameter ωq = −1,−2/3,−1/3 (table 3.1). Effect of quintessence in the P− v

isotherms and T − S plots are shown in figure (3.5). Increase in the value of ωq from

−1 to 0, leads to decrease in the PcVc
Tc

ratio, which approaches to 3/8.

Table 3.1: Critical points are found using equation (3.27) with quintessence state pa-
rameter ωq =−1,−2/3,−1/3 for a = 0.07 and β = 0.1. The ratio Pcvc

Tc
is calulated for

each case.

ωq Pc vc Tc
Pcvc
Tc

-1 0.124537 0.794011 0.251314 0.3973468
−2/3 0.118448 0.788029 0.242862 0.384335
−1/3 0.108049 0.794011 0.233722 0.367069

A phase transition is described in statistical mechanics by divergences in second

moments such as specific heat, compressibility, and susceptibility. As a result, we con-

centrate on the heat capacity of the system to know more about phase transition. The

thermodynamic stability of black holes is indicated by the sign of heat capacity, which

is positive for stable and negative for unstable. The heat capacity at constant pressure is

given by,

CP =T
(

∂S
∂T

)
P

=
2S(πβ 2+S)

(
3aπ

3ωq
2 + 1

2 (πβ 2(ωq+1)+Sωq)+S
3ωq

2 + 1
2 (−2πβ 2+8PS2+S)

)
S

3ωq
2 + 1

2 (2π2β 4+πβ 2S(24PS+7)+S2(8PS−1))−3aπ

3ωq
2 + 1

2 (π2β 4(3ω2
q+5ωq+2)+C+D)

.

where C = πβ 2S
(
6ω2

q +7ωq +4
)

and D = S2ωq(3ωq +2)

CP− S plot is obtained from this equation, which shows critical behavior (figure 3.6)

below certain pressure (Pc). These plots show that below the critical pressure P < Pc,

there are two singular points, which reduce to one when P = Pc, and above P > Pc, these

divergence disappears. In figure (3.6a), there are three distinct regions separated by two

singular points. The SBH and LBH regions with positive specific heat, and the IBH

with negative specific heat. As the positive specific heat regions are thermodynamically

stable, a phase transition occurs between the small black hole and large black hole. This
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Figure 3.6: Specific heat versus entropy diagram for regular AdS black hole surrounded
by quintessence (a = 0.07, β = 0.1 , ωq = −2

3 ). (3.6a) for P = Pc, (3.6b) for P < Pc,
(3.6c) for P > Pc.

result is analogous to Reissner-Nordström AdS black holes surrounded by quintessence

(Thomas et al. 2012).

3.5 Conclusions and Discussions
The Thermodynamics of a regular Bardeen AdS black hole with and without the effect

of quintessence have been investigated in this chapter. When Λ = 0 case, the ther-

modynamic quantities match with regular Bardeen blackhole (Akbar et al. 2012). We

observed a critical behavior from the P–v and T –S plots in the thermodynamic analy-

sis, similar to van der Waals gas (Kubizňák and Mann 2012). For ωq =−1,−2/3, and

−1/3, we obtain critical values for pressure, volume, and temperature. The Pcvc
Tc

ratio

decreases significantly as ωq increases from −1 to −1/3. The critical point is found to

be dependent on the quintessence parameters a and ωq. A discontinuity in the specific

heat illustrates a phase transition in the system.
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Chapter 4

Regular Bardeen AdS Black Hole as

Heat Engine

In this chapter, a traditional heat engine is designed with the black hole as the

working substance. The efficiency is achieved through a thermodynamic cycle in

the P - V plane that receives and expels heat. The efficiency of the heat engine is

increased by the addition of a quintessence field. In terms of the quintessence dark

energy parameter, an analytical expression for heat engine efficiency is derived.

4.1 Introduction

In human history, the discovery of the heat engine was a turning point. Even

though primitive models existed as early as the first century, Nicolas Sadi Carnot was

the first to idealize them in 1824. A heat engine transfers heat from a heat source (hot

reservoir) to mechanical work, and the remaining heat is rejected to a lower-temperature

heat sink (cold reservoir). A working substance in the engine is moved from a higher to

a lower temperature state. A working substance can be any substance with a non-zero

heat capacity, commonly a gas or liquid. It generates work while transferring heat to

the colder sink. During the process, the working substance undergoes a cycle, such as
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the Stirling, Otto, or Diesel cycles. These heat engines can be found in autos, thermal

power plants, and even natural heat engines.

(a) (b)

Figure 4.1: The left figure is the schematic diagram of heat engine and right is Carnot
engine cycle

A heat engine is constructed as a closed path in the P−V plane, that absorbs

QH amount of heat, and exhaust QC amount of heat (figure 4.1a). From the first law,

the total mechanical work is W = QH −QC. The efficiency of heat engine is given by

(Zemansky 1968)

η =
W
QH

. (4.1)

The maximum possible efficiency for a heat engine is estimated from a Carnot engine,

which is a theoretical thermodynamic cycle. The efficiency of Carnot engine is (Ze-

mansky 1968)

ηc = 1− QC

QH
= 1− TC

TH
, (4.2)

where TC and TH are the lower and higher temperatures of the reservoir. This upper

limit on efficiency is due to second law.

Now construct a heat engine in the context of static black hole which has a simple

heat cycle (figure 4.1b) with a pair of isotherms at high temperature TH and low tem-

perature TC. During isothermal expansion, QH amount of heat is being absorbed, and it
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will exhaust QC amount of heat during isothermal compression. We can connect these

two temperatures by either isochoric paths as in Stirling cycle or adiabatic paths as in

Carnot cycle, which is reversible. Entropy and volume for a static black hole are de-

pendent on each other. So adiabats and isochores are alike, implies Carnot engine and

Stirling engine are identical.

In figure (4.1b) along the isotherm 1→ 2, the amount of heat absorbed

QH = TH ∆S1→2 = TH

(
3

4π

) 2
3

π

(
V

2
3

2 −V
2
3

1

)
. (4.3)

Along the isotherm 3→ 4, the amount of heat rejected

QC = TC ∆S3→4 = TC

(
3

4π

) 2
3

π

(
V

2
3

3 −V
2
3

4

)
. (4.4)

Choose isochores to connect those isotherms, i.e., V2 =V3 and V1 =V4. Then equations

(4.3) and (4.4) leads to

η = 1− QC

QH
= 1− TC

TH
. (4.5)

which is same as the efficiency of the Carnot engine (Liu and Meng 2017).

It is natural to construct a heat engine out of black holes because they are a ther-

mal system that exhibits van der Waals fluid analogies. Clifford V. Johnson has just

designed a remarkable engine called the holographic heat engine (Johnson 2014). The

importance of the heat engine in the holographic picture of spacetime has given rise to

the name “holographic”. In the dual field theory, a renormalization flow is triggered

by heat cycles in bulk. The holographic heat engine hence bridges the gap between

extended thermodynamics and holography. These events can only occur in systems

with large degrees of freedom when thermal effects take priority over quantum ef-

fects. This concept gained much attention, and the idea of holographic heat engines

was subsequently extended to several black holes (Johnson 2014, 2016a,b,c, Jafarzade

and Sadeghi 2017, Setare and Adami 2015, Chakraborty and Johnson 2018, Zhang and

Liu 2016, Wei and Liu 2019, Mo et al. 2017, Hendi et al. 2018, Xu et al. 2017, Hennigar

et al. 2017, Zhang et al. 2018). Motivated by these studies in this chapter, we construct
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a heat engine by taking regular Bardeen AdS black hole as a working substance and

showing the quintessence’s effect on efficiency.

The first part of this chapter discusses the heat engine model in the regular Bardeen

AdS black hole with no singularity at the origin. The quintessence field’s effect on

efficiency also investigate in the next section.

4.2 Regular Black Hole as a Heat Engine

Figure 4.2: Heat engine cycle

Following the idea of Clifford V. Johnson (Johnson 2014), for calculating the

efficiency of the heat engine constructed by taking regular Bardeen AdS black hole as

working substance, consider figure (4.2), the new engine consists two isobars and two

isochores/adiabats. For simplicity, consider a rectangular cycle (1→ 2→ 3→ 4→ 1)

in the P−V plane. The area of the rectangle gives the work done, which reads

W =
∮

PdV. (4.6)
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The total workdone during one complete cycle,

Wtot =W1→2 +W3→4 = P1(V2−V1)+P4(V4−V3) (4.7)

=
4(P1−P4)

((
πβ 2 +S2

)3/2−
(
πβ 2 +S1

)3/2
)

3
√

π
. (4.8)

Since the heat capacity at constant volume is CV = 0, no heat exchange occurs in the

isochoric phase. Therefore calculate only heat absorbed QH during the process 1→ 2.

Cp is given by (2.79) (Dolan 2011c). The heat absorbed (Johnson 2014),

QH =
∫ T2

T1

CP(P1,T )dT =
∫ S2

S1

CP

(
∂T
∂S

)
dS =

∫ S2

S1

T dS = M2−M1, (4.9)

=

(
πβ 2 +S2

)3/2
(8P1S2 +3)

6
√

πS2
−
(
πβ 2 +S1

)3/2
(8P1S1 +3)

6
√

πS1
.

(4.10)

Therefore efficiency of the engine,

η =
W
QH

=
8(P1−P4)

((
πβ 2 +S2

)3/2−
(
πβ 2 +S1

)3/2
)

(πβ 2+S2)
3/2

(8P1S2+3)
S2

− (πβ 2+S1)
3/2

(8P1S1+3)
S1

. (4.11)

The efficiency η can be compared with that of Carnot engine, ηC, which is the maxi-

mum possible efficiency. Take the higher temperature TH as T2 and lower temperature

TC as T4 in equation (4.2). Then efficiency of Carnot engine is

ηC = 1−
√

S2
(
πβ 2 +S2

)(
−2πβ 2 +8P4S2

1 +S1
)

√
S1 (πβ 2 +S1)

(
−2πβ 2 +8P1S2

2 +S2
) . (4.12)
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Figure 4.3: The variation of efficiency η of the engine with regular Bardeen black hole
as the working substance and the ratio η/ηc with different variables. In figure (4.3a)
and (4.3b) the entropy dependence is shown with different values of β . Here we take
P1 = 4,P4 = 1 and S1 = 1. In the second set of figures (4.3c) and (4.3d) the variation
with pressure is studied with different values of β . In this case we take P4 = 1,S2 = 4
and S1 = 1. In the last set figure (4.3e) and (4.3f) the behavior against charge β with
different values of P1 is displayed. Here we take S2 = 20,P4 = 1 and S1 = 10. The
parameters P1, P4, S1 and S4 are chosen accordingly for the proper display of the nature
of the plots.
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The efficiency η and the ratio η/ηC are plotted against entropy S2 using the equa-

tions (4.11) and (4.12). As we can see in figure (4.3a) the heat engine efficiency

monotonously increases with S2 (corresponding volume V2) for all values of β , which

implies that the increase in volume difference between small black hole (V1) and large

blackhole (V2) increases the efficiency. However this trend does not continue forever

as the efficiency reaches saturation values after certain value of S2. The dependence on

charge β also visible from the same figure; the rates of increment are different for differ-

ent β values. The plot η/ηC versus S2 in figure (4.3b) is consistent with second law, as

it is bounded below 1. With the increase in charge β the ratio decreases. We also inves-

tigate the dependence of efficiency η on pressure P1, the pressure at the source, which

is shown in figure (4.3c) and (4.3d). Those two figures clearly show that the efficiency

of the engine will approach the maximum possible value as the pressure approaches

infinity. Before concluding this section we also mention that the monopole charge β

has a positive effect on efficiency, i.e., higher the charge higher is the efficiency (figure

(4.3e), (4.3f)).

4.3 Influence of Quintessence on Efficiency of Heat En-

gine

Following the work of Hang Liu and Meng, we study the effect of dark energy

on thermodynamics and heat engine efficiency of regular black holes (Liu and Meng

2017). Quintessence is one of the dark energy candidates (Kiselev 2003, Tsujikawa

2013). The real scalar field acts as a cosmic source having equation of state pq = ωqρq

(−1 < ωq <−1/3). The density of quintessence field is given by,

ρq =−
a
2

3ωq

r3(ωq+1)
. (4.13)

When we include quintessence term in the metric of regular Bardeen AdS black hole,

f (r) is modified to

f (r) = 1− 2Mr2

(β 2 + r2)
3/2 −

a
r3ωq+1 −

Λr2

3
. (4.14)
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Where a is the normalization constant or strength parameter related to quintessence

density and ωq is the state parameter. (Liu and Meng 2017) studied the effect of dark

energy on the heat engine efficiency of charged AdS black holes. It would be interest-

ing to study whether and how quintessence affects the heat engine efficiency of regular

Bardeen AdS black holes. Now we proceed as in the earlier sections to obtain an ex-

pression for the efficiency of the engine. Using the defining condition of event horizon,

f (rh) = 0, one can calculate the black hole mass as,

M =−1
6
(
β

2 + r2
h
)3/2

r−3(ωq+1)
(

3a+
(
−8πPr2

h−3
)

r3ωq+1
h

)
. (4.15)

We can write the expression for temperature as,

T =
r−3ωq−2

h

(
3a
(
β 2(ωq +1)+ r2

hωq
)
+ r3ωq+1

h

(
−2β 2 +8πPr4

h + r2
h

))
4π
(
β 2 + r2

h

) . (4.16)

The heat capacity at constant pressure is,

CP =
2S(πβ 2+S)

(
3aπ

3ωq+1
2 (πβ 2(ωq+1)+Sωq)+S

3ωq+1
2 (−2πβ 2+8PS2+S)

)
S

3ωq+1
2 f1(S)−3aπ

3ωq+1
2 f2(S)

, (4.17)

where,

f1(S) =
(
2π

2
β

4 +πβ
2S(24PS+7)+S2(8PS−1)

)
, (4.18)

f2(S) =
(
π

2
β

4 (3ω
2
q +5ωq +2

)
+πβ

2S
(
6ω

2
q +7ωq +4

)
+S2

ωq(3ωq +2)
)
. (4.19)
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Then we compute the heat QH along the process 1→ 2 (the earlier arguments on no

heat transfer for isochoric processes still holds),

QH =
∫ T2

T1

CP(P1,T )dT = M2−M1, (4.20)

=
1

6
√

π

{(
πβ

2 +S1
)3/2

S
− 3

2 (ωq+1)
1

[
3aπ

3ωq+1
2 − (8P1S1 +3)S

3ωq+1
2

1

]
+
(
πβ

2 +S2
)3/2

S
− 3

2 (ωq+1)
2

[
(8P1S2 +3)S

3ωq+1
2

2 −3aπ
3ωq+1

2

]}
.

(4.21)

Having all the required quantities, the heat engine efficiency is expressed interms of

quintessence parameters a and ωq as,

η =
8(P1−P4)

((
πβ 2 +S2

)3/2−
(
πβ 2 +S1

)3/2
)

f (S1)+ f (S2)
. (4.22)

where

f (S) =
(
πβ

2 +S
) 3

2 S−
3
2 (ωq+1)

[
3aπ

3ωq
2 + 1

2 − (8P1S+3)S
3ωq

2 + 1
2

]
.

The efficiency of the Carnot engine is also obtained as earlier,

ηC = 1−
(
πβ 2 +S2

)
S
− 3ωq

2 −1
1 S

3ωq
2 +1

2 g(S1,P4)

(πβ 2 +S1)g(S2,P1)
, (4.23)

where,

g(S,P) =
(

3aπ
3ωq

2 + 1
2
(
πβ

2(ωq +1)+Sωq
)
+S

3ωq
2 + 1

2
(
−2πβ

2 +8PS2 +S
))

.

The heat engine efficiency depends on pressure P, entropy S, monopole charge β

and quintessence parameters a and ωq. The above expressions reduce to the previous

case when quintessence parameters a = 0 and ωq = 0. There is a significant increment

in the efficiency against S2 when we increase the quintessence strength a with other

parameters being fixed (figure 4.4a). This change is visible in the ratio plot also (figure

4.4b). The plot for efficiency versus S2 for different values of ωq show similar functional
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behavior in figure (4.4c) and (4.4d). But there is a difference in the physical effect,

higher values of ωq lead to smaller efficiency. With ωq =−1, black hole shows higher

efficiency than ωq = −1/3 case, where efficiency takes a constant value of 0.75. This

is not surprising result because the quintessence density (ρq) decreases with increase

in ωq (4.13). Then we study the role of pressure P1 on η and η/ηC with different

values of quintessence strength a shown in figure (4.4e) and (4.4f), where the functional

appearance remains same. The efficiency and its ratio improves with higher pressures

and with quintessence. But it is noticed that there is a faster convergence to limiting

value 1 in the quintessence case.

For all three values of ωq efficiency increases exponentially, when it is plotted

against quintessence constant a (figure 4.5a). The scenario remains same for the ra-

tio plot, with an exception at ωq = −1/3, which has a slight decaying nature initially

(figure 4.5b). We note that in these two plots the efficiency shoots over unity which is a

clear violation of second law of thermodynamics. To avoid this unphysical situation we

must be careful enough to choose quintessence parameters. In figure (4.5c) and (4.5d),

we present the effect of ωq on η and η/ηC for different values of a. In the light of

earlier point, quintessence density (ρq) decreases with increasing ωq, the efficiency is

higher for smaller values of ωq. This inference is drawn by considering the physically

meaningful range −1 < ωq <−1/3.

The effect of quintessence on the efficiency of regular black hole heat engine is

summarised in the table 4.1.

a ωq η a ωq η

1 -1/3 0.800 3 -1/3 0.804

1 -2/3 0.809 3 -2/3 0.833

1 -1 0.817 3 -1 0.859

Table 4.1: Deviation in heat engine efficiency η , with variation of quintessence equa-
tion of state parameter ωq and strength parameter a.
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Figure 4.4: The effect of quintessence on the efficiency η of the engine and on the ratio
η/ηc with different variables. In the first set of figures (4.4a) and (4.4b) the variation
with entropy is displayed with different values of a. Here we take P1 = 4,P4 = 1 S1 = 1,
ωq = −1 and β = 0.1. In the second set of figures (4.4c) and (4.4d) the variation with
entropy for different values of ωq is shown. In this case we take P1 = 4,P4 = 1 S1 = 1,
a = 1 and β = 0.1. In the last set (4.4e) and (4.4f) dependence on pressure for different
values of a is observed with P4 = 1 S1 = 1, S2 = 4, ωq =−1 and β = 0.1. Here also the
fixed parameters are chosen appropriately for the proper observation of the effect.
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Figure 4.5: The effect of quintessence on the efficiency η of the engine and on the ratio
η/ηc with different variables. In the figures (4.5a) and (4.5b) the dependence on a is
studied with different values of ωq. Here we take P1 = 4,P4 = 1 S1 = 1, S2 = 4 and
β = 0.1. In the second set of figures (4.5c) and (4.5d) behavior against state parameter
ωq with different values of a is shown. In this case we take P1 = 4,P4 = 1 S1 = 1, S2 = 4
and β = 0.1.

4.4 Conclusions and Discussions
Regular black holes are of great interest in physics as they do not possess singu-

larity. In this work, we demonstrated that the regular Bardeen AdS black hole can be

used as an engine to extract enegy. The efficiency of the engine is improved by im-

mersing the black hole system in a quintessential field, which has the motivations from

cosmology where quintessence can be interpreted as a candidate for dark energy.

We constructed a heat engine by taking the regular Bardeen black hole as working

substance. A cycle in P−V plane is assigned for the black hole with two isotherms and
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isochores. The efficiency of the engine is calculated by using the work done and heat ab-

sorbed during the cycle. As it is customary to compare the efficiency of any engine with

Carnot engine, we have compared our results with the corresponding Carnot efficiency.

Detailed analysis of the dependence of efficiency η on S2 (entropy of LBH phase), P1

(pressure in SBH phase) and β (monopole charge) are done. Among the several ob-

servations, we emphasize that the increase in entropy difference between SBH phase

(S1) and LBH phase (S2) increases the efficiency of the engine. We have made a suc-

cessful attempt to improve the efficiency of engine by adding a quintessence field. The

heat engine efficiency depends on the quintessence parameters ωq and a. We have pre-

sented detailed discussion on the improvement of engine efficiency with quintessence

parameters. The quintessence parameter a increases the efficiency and ωq decreases

the efficiency η . We observed a drop in the efficiency η in the quintessence range

−1 < ωq < −1/3. This happens because quintessence matter density (ρq) decreases

with increase in ωq value. It is worth mentioning that accelerated expansion of uni-

verse takes place in this quintessence range of ωq. And in this range, the presence of

quintessence matter around the black hole improves the efficiency of heat engine. The

effect of intensity of quintessential matter field on the heat engine efficiency of regular

black hole underlines the importance of quintessence in black hole thermodynamics.
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Chapter 5

Joule-Thomson Expansion of Regular

Bardeen AdS Black Hole Surrounded

by Quintessence Field

In this chapter, investigate the JT expansion in regular Bardeen AdS black holes

in the quintessence background through the analysis of inversion temperature and

isenthalpic curves and plot the inversion and isenthalpic curves with it. The im-

pact of the quintessence parameters a and ωq on the JT coefficient and inversion

temperature is discussed.

5.1 Introduction

Joule Thomson expansion in thermodynamics is an irreversible process that ex-

plains gas temperature change when passing through a porous plug from the high-

pressure region to low pressure region. Enthalpy of the system remains constant during

this expansion. The set of values (T,P) throughout the process with constant enthalpy

constraint defines the isenthalpic curve. The expression for Joule Thomson coefficient
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(slope of the isenthalpic curve) is given by,

µ j =

(
∂T
∂P

)
H
. (5.1)

The sign of this coefficient tells about the cooling and heating phases. During the ex-

pansion, pressure always decreases. The coefficient of Joule Thomson expansion can

also be written as (for details see Appendix C),

µ j =

(
∂T
∂P

)
M
=

1
CP

[
T
(

∂V
∂T

)
P
−V

]
. (5.2)

From this, one can get the inversion temperature by setting qµ j = 0,

Ti =V
(

∂T
∂V

)
P
. (5.3)

This is at the maxima of the isenthalpic curve, with the corresponding inversion pres-

sure. The point defined by inversion temperature and inversion pressure is called the

inversion point (Zemansky 1968).

In an extended phase space with a PdV term in the first law of black hole ther-

modynamics, treating the cosmological constant as pressure P and its corresponding

thermodynamic volume V completes the resemblance between AdS black holes and

the Van der Waals fluid. Many studies are going on in this field about various ther-

modynamic phenomena. The Joule - Thomson expansion of black holes is one of the

thermodynamic phenomena that has gotten much attention recently. Okcu and Aydmer

(Ökcü and Aydıner 2017) were the first to investigate the Joule- Thomson expansion of

black holes in AdS space-time. Following this a number of investigations for various

classes of black holes in various theories of gravity (Ökcü and Aydıner 2018, Chabab

et al. 2018, Ahmed Rizwan et al. 2018, Rostami et al. 2019, Hoang Nam 2019, Li et al.

2020, Mo and Li 2020, Sadeghi and Toorandaz 2020, Lan 2019, Haldar and Biswas

2018, Cisterna et al. 2019, Lan 2018, Mo et al. 2018, Ghaffarnejad et al. 2018) have

been performed. Motivated by these results, in this chapter, we study the Joule Thom-

son expansion of regular Bardeen AdS black hole surrounded by quintessence.
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5.2 Joule Thomson expansion of the Black Hole
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Figure 5.1: Inversion curve for different values of β .

Similar to the case of a van der Waals system, the JT expansion is also stud-

ied in AdS black hole with the same definitions of the isenthalpic curve and inversion

temperature (Ökcü and Aydıner 2017). This connection is evident from the similarity

between the van der Waals system and the black hole in extended phase space. The

pressure P and temperature T of the regular Bardeen AdS black hole with quintessence

in terms of M and rh are,

P(M,rh) =

3
(

arh
−3wq−1 + 2Mrh

2

(β 2+rh
2)

3/2 −1
)

8πrh
2 , (5.4)

and

T (M,rh) =

3a(wq +1)rh
−3wq + 6Mrh

5

(β 2+rh
2)

5/2 −2rh

4πrh
2 . (5.5)

Using the above equations (5.4) and (5.5), we plot the isenthalpic curves for the regular

Bardeen black hole.

To obtain the JT coefficient for the black hole under consideration, we rewrite Eq.
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Figure 5.2: Inversion curve for different values of quintessence parameters ωq and a.

(5.1) as follows,

µ j =

(
∂T
∂P

)
M
=

(
∂T
∂ rh

)
M

/(
∂P
∂ rh

)
M
. (5.6)

Using Eqs. (5.4) and (5.5) we get,

µ j =
2rh
[
3aA+ rh

3wq+1B
]

3(β 2 + rh
2)C

, (5.7)

where,

A =
[
β

4 (3w2
q +5wq +2

)
+ rh

4wq(3wq +5)+β
2rh

2 (6w2
q +10wq +7

)]
,

B =
[
−2β

4 +16πPrh
6 + rh

4 (4−24πβ
2P
)
−13β

2rh
2
]
,

C =
[
3a
(
β

2(wq +1)+ rh
2wq
)
+ rh

3wq+1 (−2β
2 +8πPrh

4 + rh
2)] .

And by setting µ j = 0, the inversion temperature is,

Ti =
rh
−3wq−4[rh

3wq+1X−3aY ]
12π(β 2+rh

2)
, (5.8)
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where,

X =
[
2β

4 +β
2rh

2 (24πPrh
2 +7

)
+ rh

4 (8πPrh
2−1

)]
,

Y =
[
β

4 (3w2
q +5wq +2

)
+β

2rh
2 (6w2

q +7wq +4
)
+ rh

4wq(3wq +2)
]
.

Setting µ j = 0 in equation (5.7) we solve for rh. From that choosing an appropriate root

and substituting in equation (3.24) we plot the inversion curve in the T −P plane, which

is shown in the figure (5.1) and (5.2).
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Figure 5.3: Isenthalpic curves for different values of mass. The varition with respect to
ωq for a fixed a = 1/4.

We have studied the inversion curves for different values of monopole charge β in
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Figure 5.4: Isenthalpic curves for different values of mass. The varition with respect to
ωq for a fixed a = 1.

figure (5.1). In all the six plots, the position of inversion point (Ti,Pi) shifts to higher

values with an increase in charge β . The effect of quintessence parameters ωq and

a are explicitly depicted in figure (5.2). In the figures (5.2a), (5.2b) and (5.2c), we

plotted inversion curves with different quintessence state parameters, which show that

increase of wq from −1 to −1/3 increases the inversion temperature. They also show

that the separation between the inversion curves for different values of ωq depends on

a. In the second set in figure (5.2) (the curves (5.2d), and (5.2f)), we have plotted the

inversion curves by varying the quintessence normalization constant a. These plots

show a minor decrease in the inversion points with increase in a. In summary, the slope

of the inversion curve increases sharply for an increase in charge β . But the same is not
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observed for the change in quintessence parameters wq and a. The slope of the inversion

curve remains the same in this case.

The isenthalpic (constant mass) curves are also studied for the JT expansion. We

plot the isenthalpic curves on the T −P plane for fixed values of enthalpy (mass). The

intersection point of the inversion curve and isenthalpic curve (µ = 0) separates the

cooling and heating phases. Moreover, that happens at maxima of isenthalpic. The

figure (5.3) and (5.4) show that the inversion point and isenthalpic curve depend signifi-

cantly on the mass (enthalpy) of the black hole. With the increase of mass, the inversion

temperature Ti and pressure Pi increases.

We show the effect of quintessence parameters (ωq and a) and charge β in six-set

of figures (set 1: figure (5.3a) - (5.3c), set 2: figure (5.3d) - (5.3f), set 3: figure (5.3g)

- (5.3i), set 4: figure (5.4a) - (5.4c), set 5: figure (5.4d) - (5.4f), set 6: figure (5.4g)

- (5.4i)). In all four sets, we observe that the height of the isenthalpic curve and the

value of inversion temperature reduces with an increase in charge β . Comparing set

1 with 2 and 3 also 4 with 5 and 6, we see that, for an increase in quintessence state

parameter wq from−1 to−1/3, there is a slight increase in the constant enthalpy curves

and the inversion temperature. The effect of quintessence normalization factor a can be

seen by comparing figure (5.3) with (5.4). An increase in the value a also increases

the height of isenthalpic curves and the inversion temperature. A notable point here

is that the isenthalpic curve for a = 1, ωq = −1/3 case shows a deviation in shape

from a usual semicircle to a more concave form. This results in the shift of inversion

pressure to lower values. These results are consistent with the earlier findings that the

thermodynamics of a black hole is affected by the quintessence field. The JT expansion

is an inherent feature of van der Waals fluid. Furthermore, therefore the changes in

thermodynamic properties and JT expansion are correlated.

5.3 Conclusions and Discussions
In this work, we have studied the JT expansion of regular Bardeen AdS black

holes surrounded by quintessence field. The key feature that leads to JT expansion in

the black hole is the identification of cosmological constant as pressure which enables

us to redefine the black hole mass as enthalpy. We have calculated an exact expression
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for the JT coefficient (µ), which depends on the quintessence parameters ωq and a. We

investigated the JT expansion intuitively by using the inversion and isenthalpic curves in

the T −P plane. The inversion curve divides the isenthalpic curves in the T −P plane

into two regions. The upper region leads to cooling, and the lower region results in

heating in the JT expansion’s final state. Nevertheless, the slope of the inversion curve

always remains positive.

We have studied the isenthalpic curves and the inversion curves for different val-

ues of enthalpy (mass), charge β , and quintessence parameters (a, wq), separately. The

constant enthalpy curves show that the inversion temperature Ti increases for the larger

enthalpy and reduces with an increase in the charge β . It is observed that the slope of

inversion curves increases with the charge β . However, the quintessence dark energy af-

fects the inversion and isenthalpic curves significantly, which is an exciting result from

our study. Both the quintessence parameters influence the JT expansion in the same

manner. An increase in the value of both ωq and a increases the height of isenthalpic

curves and the inversion temperature.

This result is interesting because the thermodynamics of black holes with quintessence

depends on their quintessence parameters. The dependence of JT expansion on these

parameters is intriguing as the quintessence plays the role of dark energy in many cos-

mological models.
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Chapter 6

Regular Bardeen AdS Black Hole in

Higher Dimension

In this chapter we computed the thermodynamics of regular Bardeen black hole in

higher dimensions and also investigate the thermodynamic geomtry.

6.1 Introduction
The Bardeen model is the most relevant regular black hole model, generating a

significant increase in the study of regular black holes (Ayón-Beato and Garcıa 2000,

Ayon-Beato and Garcıa 1999, Ayón-Beato and Garcia 2005). The Bardeen solution

is extended to noncommutative inspired geometry (Sharif and Javed 2011) and the

Bardeen de Sitter black holes (Fernando 2017). Moreno and Sarbach (Moreno and

Sarbach 2003) studied the stability of the Bardeen black hole, which has gotten much

interest recently. The Keplerian disk orbiting around the Bardeen black holes was ad-

dressed in (Schee and Stuchlı́k 2016). Several writers (Fernando and Correa 2012,

Flachi and Lemos 2013, Ulhoa 2014) have investigated the quasinormal modes of the

Bardeen black holes. (Singh and Singh 2017) looked at the anti-evaporation effect of

Bardeen de Sitter black holes. Man and Cheng (Man and Cheng 2014) looked at the

thermodynamic quantities of Bardeen black holes. Zhou et al. (Zhou et al. 2012) in-
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vestigated the velocity of a test particle in the spacetime of Bardeen black holes. There

was also a study about revolving Bardeen black holes (Ghosh and Amir 2015, Bambi

and Modesto 2013).

Ideas such as cosmology in brane-world scenarios, string theory, and the AdS/CFT

correspondence (Maldacena 1999, Klein 1926) have motivated the research of black

hole solutions and their various features in dimensions higher than four. The most suc-

cessful quantum gravity theory is string theory, which requires more than four dimen-

sions to describe gravity. String phenomenology (Arkani-Hamed et al. 2001), which

describes how the study of string theory may explain and, as a result, anticipate real-

world scenarios, may motivate the research for black hole solutions in higher dimen-

sions. As a result, understanding string theory in general, and the gauge/gravity du-

ality relationship in particular, will need extensive research into black holes in extra

dimensions. These observations lead us to conclude that, while the research of higher-

dimensional black holes is unlikely to be avoided in a real-world setting, its impact

on other fields of physics may be significant. For a higher dimensional black hole,

the first successful statistical counting of black hole entropy was done (Strominger and

Vafa 1996). In situations with large extra dimensions and TeV-scale gravity, the for-

mation of higher-dimensional black holes at the LHC becomes a possibility (Aharony

et al. 2000, Cavaglia 2003). The AdS/CFT describes the connection between the dy-

namics of d dimensional black holes and quantum field theories in (d−1) dimensional

spacetimes. These considerations might conclude that gravity in higher dimensions is

more challenging than gravity in four dimensions. Higher-dimensional black holes,

particularly five-dimensional black holes, have recently gained much attention and in-

vestigation (Emparan and Reall 2002, Myers and Perry 1986, Randall and Sundrum

1999, Reall 2003). The uniqueness theorem fails because there are more degrees of

freedom in more than four dimensions (Hollands and Yazadjiev 2008). Non-trivial

topologies are permissible in five dimensions, as shown by black ring solutions (Em-

paran and Reall 2002). Black holes in higher dimensions have several rotating planes

independent of one another. Black holes have more complicated horizon structures in

higher dimensions, and gravity is richer than in four dimensions. There is growing ev-
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idence that the physics of higher-dimensional black holes vary significantly from those

of four-dimensional black holes. As a result, as seen by the growing number of recent

works, there is tremendous interest in understanding black holes in higher dimensions.

Meyers-Perry (Myers and Perry 1986) discovered Schwarzschild, Reissner-Nordström,

and Kerr solutions in asymptotically flat higher dimensional spacetimes, which were

later extended by Dianyan (Dianyan 1988) to find charged-dS black holes, and later

by Liu and Sabra (Liu and Sabra 2004) to find d dimensional charged black holes in

(A)dS spaces. The Baados-Teitelboim-Zanelli black holes (Ghosh 2012, Hendi 2011),

as well as the radiating black holes (Ghosh and Dawood 2008, Ali and Ghosh 2018),

have been expanded to higher dimensions. The gravitational collapse of various fluids

(Ghosh and Deshkar 2003, Ghosh and Banerjee 2003, Dadhich et al. 2005, DeBenedic-

tis and Das 2003) is another example from higher-dimensional spacetime. Finding the

Bardeen solution in higher-dimensional spacetimes is also interesting. It is crucial to

think about the d dimensional analog of Bardeen-de Sitter black holes and their ther-

modynamic properties. (Ali and Ghosh 2018) studied the thermodynamics of Bardeen

de Sitter black hole in higher dimensions, and (Kumar et al. 2019) investigated the d

dimensional Bardeen AdS black holes in Einstein Gauss Bonet theory. Motivated by

these studies, in the first section, we calculate the thermodynamics of the d dimensional

regular Bardeen AdS black hole, and in the next section, we study its thermodynamic

geometry.

6.2 Thermodynamics of Regular Bardeen Black Hole in

Higher Dimensions

The metric of the regular Bardeen black hole in higher dimension is given by (Ali

and Ghosh 2018),

ds2 =− f (r)dt2 +
1

f (r)
dr2 + r2dΩ

2
d−2, (6.1)

with

f (r) = 1− mr2

(rd−2 +β d−2)
d−1
d−2 Ωd−2

− 2Λr2

(d−1)(d−2)
, (6.2)
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and (Myers and Perry 1986)

m =
16πM

(d−2)Ωd−2
, Ωd−2 =

2π
d−1

2

Γ(d−1
2 )

. (6.3)

In the above expressions, M represents the black hole mass. The black hole mass is

M =
Ωd−2

(
β d−2 + rh

d−2) d−1
d−2
(
d2−3d−2Λrh

2 +2
)

16π(d−1)rh
2 . (6.4)

When β → 0, (6.2) reduces to the d dimensional Schwarzschild-Tangherlini black hole

(Tangherlini 1963). The relation between pressure and cosmological constant in higher

dimension is given by (Kastor et al. 2009),

P =− Λ

8π
=

(d−1)(d−2)
16π`2 . (6.5)

The temperature of a black hole can be calculated as follows:

T =
β 2rh

d (d2−5d +16πPrh
2 +6

)
−2(d−2)rh

2β d

4π(d−2)rh
(
rh

2β d +β 2rh
d
) . (6.6)

Rearranging the above expression, we obtain the equation of state,

P =
(d−2)rh

−d−2 (2rh
2β d(2πrhT +1)−β 2rh

d(d−4πrhT −3)
)

16πβ 2 . (6.7)

Entropy in the large rh limit is

S =
Ωd−2rd−2

h
4

. (6.8)

When d = 4 and Λ = 0, (6.6) reduces to the temperature of the Bardeen black hole

(Akbar et al. 2012)

T =
1

4πrh

(
r2

h−2β 2

r2
h +β 2

)
. (6.9)
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Now we focus on another important thermodynamic variable, the heat capacity. The

heat capacity at constant pressure is calculated as,

CP =
8(d−2)S2(Ωd−2β d+4β 2S)

(
1
4 β 2

(
d2+2

4(d−1)
d−2 Pπ

(
S

Ωd−2

) 2
d−2−5d+6

)
− (d−2)Ωd−2βd

8S

)

β 4S2

(
−8d2+2

7d−10
d−2 Pπ

(
S

Ωd−2

) 2
d−2 +40d−48

)
+8(d−2)SΩd−2β d+2+d(d−2)Ω2

d−2β 2d

. (6.10)

The behavior of this heat capacity in different spacetime dimensions is shown in figure

(6.1). The divergence of CP is seen in all cases that correspond to phase transitions.
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Figure 6.1: Specific heat versus Entropy diagram for regular AdS black hole in different
dimensions with β = 0.1.

6.3 Thermodynamics Geometry of Regular Bardeen Black

Hole in Higher Dimensions
G. Ruppeiner (Ruppeiner 1979, 1983, 1995, 2007, 2008) proposed an alternative tech-

nique, popularly known as thermodynamic state space geometry, to explain conven-

tional thermodynamic systems as well as black holes, inspired by the beauty of Rieman-

nian geometry. In this section, encouraged by the success of this concept in explaining

the thermodynamic phases of various black hole systems (Ferrara et al. 1997, Cai and

Cho 1999, Åman and Pidokrajt 2006, Sarkar et al. 2006, Åman et al. 2007, Myung et al.
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2008a, Niu et al. 2012, Weinhold 1975, Åman et al. 2003, Sahay et al. 2010), we aim to

use it to examine the phase transition phenomena in regular Bardeen AdS black holes

in higher dimensions.

The method of thermodynamic geometry is an interesting technique to approach

black hole phase transition. Ruppeiner geometry is a geometric formalism in which

the Hessian of the entropy function is considered as a metric tensor on the state space.

The corresponding thermodynamic scalar curvature gives the knowledge of underlying

microscopic interactions of the system. Near the critical points, the curvature scalar

shows a divergence behavior. The Ruppeiner geometry is conformally related to another

thermodynamic geometry, namely the Weinhold geometry. In Ruppeiner geometry, the

equilibrium thermodynamic state space is defined by a metric which is a function of

entropy instead of the mass as in the Weinhold case. The Ruppeiner metric is given by

(for more details see Appendix E ) (Ruppeiner 1979, 1995),

gR
i j =−

∂ 2S(xi)

∂xi∂x j , (6.11)

where xi = xi(M,β ) are the extensive variables. Similarly the Weinhold metric compo-

nents are defined as (Weinhold 1975),

gW
i j =

∂ 2M(xi)

∂xi∂x j , (6.12)

with xi = xi(S,β ). However the Weinhold geometry and Ruppeiner geometry are related

to each other as follows due to their conformal relation (Janyszek and Mrugała 1989,

Ferrara et al. 1997),

dS2
R =

dS2
W

T
. (6.13)

For calculating metric components we express the blackhole mass and temperature in-

terms of entropy,

M =

4−
2

d−2−2
Ωd−2

(
S

Ωd−2

)− 2
d−2

ed−2+

(
4

1
d−2

(
S

Ωd−2

) 1
d−2

)d−2
 d−1

d−2(
d2+π2

4(d−1)
d−2 P

(
S

Ωd−2

) 2
d−2−3d+2

)
π(d−1) ,

(6.14)
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Figure 6.2: Curvature divergence plots for Ruppeiner metric for regular AdS black hole
in different dimensions with β = 0.1.

T =

4
1

2−d−1
(

S
Ωd−2

) 1
2−d

e2

(
4

1
d−2

(
S

Ωd−2

) 1
d−2

)d(
d2+π4

2
d−2+2P

(
S

Ωd−2

) 2
d−2−5d+6

)
−2

d+2
d−2 (d−2)ed

(
S

Ωd−2

) 2
d−2


π(d−2)

4
2

d−2 ed
(

S
Ωd−2

) 2
d−2 +e2

(
4

1
d−2

(
S

Ωd−2

) 1
d−2

)d
 .

(6.15)

Plugging this expression into equation (6.12) and then using equation (6.13) we

obtain the metric components, and we compute the curvature scalar RR using the metric

components gR
i j. The result is used to plot curvature scalar versus entropy diagram to

study phase transition (figure 6.2). For all spacetime dimensions, the curvature scalar

shows the same functional behavior.

6.4 Results and Discussions
In this chapter, we investigated the thermodynamic phase transition in regular

Bardeen AdS black holes in higher dimensions and also studied its thermodynamic ge-

ometry. It is observed that there exist phase transitions in any arbitrary dimensions in

the case of regular Bardeen AdS black hole. The divergence in specific heat and cur-

vature scalar confirms critical behavior. However, the result, in this case, is physically

more relevant since the scalar curvature is related to the microscopic structure of the

black hole.
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Chapter 7

Summary and Future Work

“No one undertakes research in physics with the intention of winning a prize. It is

the joy of discovering something no one knew before.”- Stephen Hawking

7.1 Summary
This Chapter summarises all of the topics and results discussed throughout the

thesis. We investigated the thermodynamic phase transition and its applications, such

as heat engine, Joule Thomson expansion, and thermodynamic geometry of regular

Bardeen AdS black holes in the extended phase space. Black hole thermodynamics

is surprisingly normal in the sense that they resemble the thermodynamics of ordinary

matter systems. Because it connects gravity in curved spacetime with quantum physics,

it is believed that black hole thermodynamics will give a possible route to quantum grav-

ity. In the perspective of AdS/CFT correspondence, the thermodynamics of black holes

in AdS spacetime have played a vital role. The study of black hole thermodynamics and

its applications has become a vibrant field in theoretical physics. Physicists use black

hole thermodynamics to uncover the deep relation between gravitation, quantum theory,

and statistical physics. When the cosmological constant is treated as the pressure in the

extended phase space, the thermodynamics of black holes in AdS spacetime become

consistent with the Smarr relation. In general relativity, the existence of singularities
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is a fascinating issue. Regular black holes are singularity-free. Bardeen proposed one

of the first regular black hole models. The thermodynamics and applications of regular

Bardeen AdS black holes in extended phase space with and without quintessence have

been investigated in this thesis. In Chapter 1, we reviewed a brief history of black

holes, their observational evidence, and their thermodynamic properties.

Chapter 2 briefly explained the laws of black hole thermodynamics and thermody-

namic phase transition in extended phase space. Chapter 3 studied the thermodynamic

phase transition of regular Bardeen AdS black holes in the extended phase space with

and without quintessence. It shows that the critical behavior is similar to the P− v and

T − S plots of a van der Waals gas. The quintessence parameters a and ωq depend on

the thermodynamics of the black hole.

Chapter 4 investigated the efficiency of the heat engine, which is constructed by

taking a regular Bardeen black hole as a working substance. The engine’s efficiency

is determined by using the work done and heat absorbed during the cycle. A compre-

hensive investigation of the dependence of efficiency (η) was performed on entropy

(S2), pressure (P1) and charge (β ) . Among many observations, we emphasize that the

increase in entropy difference between a small black hole (S1) and a large black hole

(S2) increases the efficiency. Also, the greater difference in pressure increases the effi-

ciency of the engine. In all these studies, the efficiency remains bounded below unity,

consistent with the second law. We have made a successful attempt to improve the

efficiency of the engine by adding a quintessence field. This finding may deepen our

understanding of the thermodynamics of asymptotic AdS black holes.

Chapter 5 investigated the Joule-Thomson expansion of regular Bardeen AdS black

hole surrounded by a quintessence field and shows that an exact expression for the JT

coefficient (µ) depends on the quintessence parameters ωq and a. In the T −P plane,

the inversion curve divides the isenthalpic curves into two regions. The upper region of

the JT expansion causes cooling, while the lower region causes heating in its final state.

However, the slope of the inversion curve always remains positive. The study of isen-

thalpic curves and the inversion curves for various values of enthalpy (mass), charge

β , and quintessence parameters (a, ωq), independently show that the inversion temper-
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ature Ti increases for the greater enthalpy and reduces with increase in the charge β .

The slope of inversion curves appears to increase as the charge β increases. However,

the quintessence dark energy greatly influences the inversion and isenthalpic curves.

Each of the quintessence parameters similarly affects the JT expansion. An increase in

the value of both ωq and a increases the height of isenthalpic curves and the inversion

temperature.

In chapter 6, we studied the thermodynamic phase transition in higher dimensions

which shows that the critical behavior of the regular Bardeen black hole exists in any

arbitrary dimensions.

This thesis’s outcome is promising when one considers the quintessence as a viable

model for dark energy. We expect that our study in such a manner will shed light on the

thermodynamics of quintessential AdS black holes.

7.2 Future Prospects
• To study the microstructure of regular Bardeen black hole.

• To study the phase structure and quasi-normal modes of regular Bardeen black

hole.

• To investigate the fractional-order phase transition in different black holes.

• To study the thermodynamic phase transition in Rastall gravity and its applica-

tions.
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Appendix A

The Metric for Bardeen Black Hole

Surrounded by Quintessence

We start with a static spherically symmetric metric ansatz in four dimensions such that

ds2 =−
(

1− 2m(r)
r

)
dt2 +

dr2(
1− 2m(r)

r

) + r2 (dθ
2 + sin2

θdφ
2) . (A.1)

The field equation can be written as,

Gµν +Λgµν = T (q)
µν +T (ND)

µν . (A.2)

where Gµν = Rµν − 1
2gµνR, and gµν are the Eintstein field tensor and the metric ten-

sor, respectively. Rµν and R are, respectively, the Ricci tensor and Ricci scalar. And

T (q)
µν , and T (ND)

µν are, respectively, the energy-momentum tensors for quintessence field

and the nonlinear electrodynamics. The independent components of the field equations

are written as,

2m′(r)
r2 −Λ = T t

t
(q)

+T t
t
(ND)

, (A.3)

m′′(r)
r
−Λ = T θ

θ

(q)
+T θ

θ

(ND)
, (A.4)
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where

T t
t
(q)

= T r
r
(q) = ρq =

3aωq

r3(ωq+1)
, (A.5)

T t
t
(ND)

= T r
r
(ND) = 2L(r) =

6Mβ 2

(r2 +β 2)
5/2 , (A.6)

T θ
θ

(q)
= T φ

φ

(q)
= −1

2
ρq
(
3ωq +1

)
=−a

2
3ωq

(
3ωq +1

)
r3(ωq+1)

, (A.7)

T θ
θ

(ND)
= T φ

φ

(ND)
= 2

(
L(r)− ∂L

∂ r

(
∂F

∂ r

)−1

Fθφ Fθφ

)
=

3Mβ 2 (3r2−2β 2)
(r2 +β 2)

7/2 .(A.8)

Substituting for T r
r
(q) and T r

r
(ND), we have

2m′(r)
r2 −Λ =

3aωq

r3(ωq+1)
+

6Mβ 2

(r2 +β 2)
5/2 , (A.9)

i.e, m′(r) =
Λ r2

2
+

a
2

3ωq

r(3ωq+1)
+

3Mβ 2 r2

(r2 +β 2)
5/2 . (A.10)

(A.11)

Integrating the above equation, we get

m(r) =
∫ r

0
dr

Λ r2

2
+
∫ r

0
dr

a
2

3ωq

r(3ωq+1)
+
∫ r

0
dr

3Mβ 2 r2

(r2 +β 2)
5/2 , (A.12)

=
Λ r3

6
+

a
2

1
r3ωq

+
Mr3

(r2 +β 2)
3/2 . (A.13)

(A.14)

Therefore, the metric function reads,

f (r) = 1− 2m(r)
r

= 1− 2M r2

(r2 +β 2)
3/2 −

a

r(3ωq+1)
− Λ r2

3
, (A.15)

or f (r) = 1− 2Mr2

(r2 +β 2)
3/2 −

a

r(3ωq+1)
+

r2

l2 , with Λ =− 3
l2 . (A.16)

(A.17)

This way, we can get the required solution for regular Bardeen black hole with quintessence.
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Appendix B

Singularity

A spacetime singularity is a “place” where the metric’s curvature “blows up” due

to other “pathological behavior”. We may easily argue that a point in spacetime has a

singularity if a physical quantity is infinite or otherwise undefined. The manifold and

metric structure of spacetime must be solved in GR. The most obvious approach in GR

suggests that a spacetime consists of a manifold M and a metric gab defined everywhere

on M.

Let O⊂M be open and M be a manifold. A congruence in O is a set of curves that

passes through each p∈O with exactly one curve from this set. As a result, the tangents

to a congruence produce a vector field O. If the related vector field is smooth, the

congruence is said to be smooth. Consider a smooth congruence of timelike geodesics

as an example. Assume geodesics are parameterized by proper time τ and that the

tangent vector field, ξ a, is normalized to unit length, ξ aξa =−1.

The vector field Bab, which is specified by Bab = ∇bξa, will then be solely spatial,

i.e.,

Babξ
a = Babξ

b = 0. (B.1)

Let ηa be the orthogonal deviation vector from γ0 for a smooth one-parameter sub-

group γs(τ) of geodesics in the congruence. We have,

£ξ η
a = 0, (B.2)
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and thus

ξ
b
∇bη

a = η
b
∇bξ

a = Ba
bη

b. (B.3)

As a result, Ba
b measures the failure of ηa to be transported parallely. According

to an observer on the geodesic γ0, the linear map Ba
b would extend and rotate the close

geodesics surrounding him.

The spatial metric hab is defined as,

hab = gab +ξaξb. (B.4)

As a result, ha
b = gachcb is the projection operator onto the subspace of the tangent space

orthogonal to ξ a. Thus, Bab is decomposed as

Bab =
1
3

θhab +σab +ωab, (B.5)

with expansion θ = Babhab, shear σab = B(ab)− 1
3θhab, and twist ωab = B[ab]. σab and

ωab are solely spatial in nature, with σabξ b = ωabξ b = 0. θ measures the average ex-

pansion of the infinitesimally adjacent surrounding geodesics along any geodesic in the

congruence; according to equation B.3, ωab, as the antisymmetric part of the linear map

Bab, measures their rotation, while σab measures their shear; that is, an initial sphere

in the tangent space that is Lie transported along ξ a will distort toward an ellipsoid

with principal axes given by the eigenvector of σa
b , and rate given by the eigenvalue of

σa
b . The geodesic equation clearly produces equations for the rate of change of θ , σab,

and ωab along each geodesic in the congruence. However, creating these equations are

simple. We have,

ξ
c
∇cBab = ξ c∇c∇bξa = ξ c∇b∇cξa +Rd

cbaξ cξd (B.6)

= ∇b (ξ
c∇cξa)− (∇bξ c)(∇cξa)+Rd

cbaξ cξd (B.7)

= −Bc
bBac +Rd

cbaξ cξd (B.8)

We get

ξ
c
∇cθ =

dθ

dτ
=−1

3
θ

2−σabσ
ab +ωabω

ab−Rcdξ
c
ξ

d,
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(B.9)

by taking the trace of the equation. This is known as Raychaudhuri’s equation, and

it is the crucial equation in proving the singularity theorem.
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Appendix C

Joule Thomson Effect

Joule Thomson expansion in thermodynamics, is an irreversible mechanism that de-

scribes how the temperature of a gas changes as it passes through a porous plug from

a high-pressure to a low-pressure area. The enthalpy of the system remains constant

during this expansion. The isenthalpic curve is defined by the set of values (T,P) that

occur throughout the process with a constant enthalpy condition. The Joule Thomson

coefficient (slope of the isenthalpic curve) is calculated as follows:

µ j =

(
∂T
∂P

)
H
. (C.1)

At the isenthalpic curve’s maximum, the Joule–Thomson coefficient is zero. The in-

version curve is the location of such points. The region of cooling is the interior of

the inversion curve, where the gradient of isenthalps (µ j) is positive, and the region of

heating is the exterior, where (µ j) is negative. The enthalpy differential is equal to

dH = T dS+V dP. (C.2)

Using second TdS equation,

T dS =CPdT −T
(

∂V
∂T

)
P

dP, (C.3)

CPdT =
1

CP
T dS+

T
CP

(
∂V
∂T P

dP, (C.4)
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dT =
1

CP
[dH−V dP]+

T
CP

(
∂V
∂T P

dP, (C.5)

dT =
1

CP

[
T
(

∂V
∂T

)
P
−V

]
dP+

1
CP

dH. (C.6)

The coefficient of Joule Thomson expansion can also be written as,

µ j =

(
∂T
∂P

)
M
=

1
CP

[
T
(

∂V
∂T

)
P
−V

]
. (C.7)

From this, one can get the inversion temperature by setting qµ j = 0,

Ti =V
(

∂T
∂V

)
P
. (C.8)

This is at the maxima of the isenthalpic curve, with the corresponding inversion pres-

sure. The point defined by inversion temperature and inversion pressure is called the

inversion point.
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Appendix D

Anti-de Sitter Space

Anti-de Sitter (AdS) is the maximally symmetric constant negative scalar curvature

spacetime. d +1 dimensional Anti-de Sitter space can be easily defined by an embed-

ding space Rd,2. Consider an anti-de Sitter space having radius `. The hyperboloid can

be given by constraint equation

−X2
0 −X2

1 +X2
2 +X2

3 + ......+X2
d =−`2. (D.1)

The metric of the (d +1) dimensional hyperbolic space can be written as,

ds2 =−dX2
0 −dX2

1 +dX2
2 +dX2

3 + ......+dX2
d . (D.2)

Consider five dimensional flat manifold embedded in a hyperboloid, then the space is

R3,2 .

−X2
0 −X2

1 +X2
2 +X2

3 ++X2
4 =−`2. (D.3)

The metric becomes,

ds2 =−dX2
0 −dX2

1 +dX2
2 +dX2

3 +dX2
4 . (D.4)

Here X0 and X1 having timelike dimensions and X2, X3 and X4 having spacelike dimen-

sions.
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We can parametrize the AdS space by introducing new coordinates(t,ρ,θ ,φ), then

X0 = `sint coshρ, (D.5)

X1 = `cost coshρ, (D.6)

X2 = `sinhρ cosθ , (D.7)

X3 = `sinhρ sinθ cosφ , (D.8)

X4 = `sinhρ sinθ sinφ . (D.9)

These equations will satisfy D.3, then the metric D.4 become,

ds2 = `2 (−cosh2
ρdt2 +dρ

2 + sinh2
ρdΩ

2
2
)
, (D.10)

where dΩ2
2 = dθ 2 + sin2θdφ 2is the metric of 2-sphere.

The coordinates (t,ρ,θ ,φ) are known as global coordinates, because which cover

entire space (ρ ≥ 0,0≤ t ≤ 2π). The timelike coordinate is periodic. The timelie curve

form a circle for constant (ρ,θ ,φ). Here the hyperbolic space has the topology of R3

and the timelike curve is of S1 . Hence the AdS space is the product of S1 and R3 i.e.,

S1×R3 . This periodic identification of timelike curve can be avoided by considering

R3,2 space. The range of time coordinate can be taken as −∞ ≤ t ≤ ∞. This has the

topology of R1 . Thus the entire AdS spacetime topology be R4 .This space time is

called universal covering space of AdS space. This makes the AdS space unique.

The space is conformally compactifying by defining coshρ := 1
cosχ

thus tanχ :=

sinhρ , then

ds2 =
`2

cos2χ

(
−dt2 +dχ

2 + sinh2
χdΩ

2
2
)
. (D.11)

The time coordinate ranges from −∞ ≤ t ≤ ∞ , and radial coordinates ranges from
−π

2 ≤ χ ≤ π

2 . Conformal boundary of d-dimensional AdS space (R×Sd−2) is same as

that of one lesser dimensional (R1,d−1) conformally compactifying Minkowski space.

That means AdS space is conformally flat. Consider static coordinates r = `sinhρ , then

ds2 =−
(

1+
r2

`2

)
dt2 +

(
1+

r2

`2

)−1

dr2 + r2dΩ
2
2. (D.12)
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Any spacetime which asymptotically approaches this metric is known as asymptotically

AdS spacetime.
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Appendix E

Thermodynamic Geometry

To study black hole microstructure, in 2008, George Ruppeiner proposed a phenomeno-

logical model based on fluctuation theory. Fluctuation theory describes that, in equi-

librium, the physical quantities of a microscopic body are nearly equal to their mean

values. However, they fluctuate from their mean value in a small amount. For fluc-

tuation, we need to calculate the probability distribution of a physical quantity x to

be in between (x0,x1, ...,xN) and (x0 + dx0,x1 + dx1, ...,xN + dxN) . The probability is

proportional to the number of microstates Ω.

P(X0...xN)dx0...dxN = KΩ(X0...xN), (E.1)

where K is proportionality constant.

According to Boltzmann entropy formula

S = kBlnΩ =⇒Ω = e
S(x)
kb , (E.2)

P(x)dx = Ke
S(x)
kb dx. (E.3)

Using Taylor expansion around equilibrium valu x0, then

S(x) = S(x0)+(x− x0)
∂S
∂x
|x=x0+

1
2
(x− x0)

2 ∂ 2S
∂x2 |x=x0+...., (E.4)

∂S
∂x |x=x0= 0, because system will have maximum entropy around x0. Define :−x−x0 =
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∆x and

(
−kB(

∂2S
∂x2

)
x=x0

)
=< (∆x)2 >= σ2, then the equation becomes,

P(x)dx = Kexp
(
−(∆x)2

2 < (∆x)2 >

)
dx. (E.5)

We can express standard deviation of the energy, when it fluctuate in canonical ensembe,

which is same as heat capacity

σ
2
E =< (∆E)2 >=< E2 >−< E >2= kBT 2Cv. (E.6)

Consider two fluctuating variables xµ andxν , then

∆xµ = xµ − xµ

0 and ∆xν = xν − xν
0 ,

where xµ

0 and xν
0 are their equilibrium values.

So

P(x)dx = KeS(x)|x0+
1
2

∂2S
∂xµ ∂xν |x0∆xµ ∆xν

, (E.7)

= 1

(2π)
1
2

e−
1
2 gµν ∆xµ ∆xν√

det(gµν)dx. (E.8)

We have line element (∆`)2 = gµν∆xµ∆xν , which is the distance between thermody-

namic states, and gµν =− 1
kB

∂ 2S
∂xµ ∂xν is a second rank tensor. The fluctuation probability

is inversely proportional to the distance between fluctuation states. The metric will

tell about thermodynamic stability, which is a hessian of entropy function that contains

response functions like heat capacity and compressibility. The approach in thermody-

namic makes use of differential geometry is called thermodynamic geometry.
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Altamirano, N., Kubizňák, D., and Mann, R. B. (2013). “Reentrant phase transitions in

rotating anti–de Sitter black holes”. Physical Review D, 88(10):101502.
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Åman, J. E., Bengtsson, I., and Pidokrajt, N. (2003). “Geometry of black hole thermo-

dynamics ”. General Relativity and Gravitation, 35(10):1733–1743.
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Ökcü, Ö. and Aydıner, E. (2017). “Joule–Thomson expansion of the charged AdS black

holes ”. The European Physical Journal C, 77(1):24.
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2019.

2. K V Rajani , Deepak Vaid. “Comparative study of bulk and boundary bahavior

of phase transition in Reissner Nordstrøm AdS black hole.”. 30th meeting of

the Indian Association for General Relativity and Gravitation(IAGRG) at BITS

Pilani Hydrabad, India during Jauary 3-5, 2019.

3. K V Rajani , Deepak Vaid. “Comparative Study of Bulk and Surface Pressure

of Charged AdS Black Hole”. XXIII DAE-BRNS HIGH ENERGY PHYSICS

SYMPOSIUM at Indian Institute of Technology, Madrass, India during December

10-14, 2018.

4. K V Rajani , Deepak Vaid. “Similarities of Quantum Hall Effect and Black

Hole Physics”. National level conference on‘Cosmology and Particle Physics at

Women’s Christian College, Chennai, India during October 1-2, 2018.
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