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ABSTRACT 

 

The state of the cutting tool determines the quality of the surface finish produced on the 

machined parts. A faulty tool produces poor surface and inaccurate geometry leading 

to the rejection of parts. It is necessary to monitor tool conditions to have consistent 

quality and economic production. Condition monitoring is ineffective without the 

implementation of a real-time corrective strategy. In the present study, fault 

classification of single-point cutting tools for hard turning has been carried out by 

employing signal processing and machine learning technique using cutting force signals 

and vibration signals. A comparison of the performance of classifiers was made 

between cutting force and vibration signal to choose the best signal acquisition method 

in classifying the tool fault conditions using the machine learning technique. A set of 

four tool conditions, namely healthy, worn flank, broken insert and extended tool 

overhang, have been considered for the study. These faulty tools produce undesired 

vibration that reduces machine quality and production rate.  

The adverse effect of tool vibration leads to loss of geometric tolerance, accelerated 

tool wear, poor surface finish and machine instability. The author designed a current-

controlled compact magnetorheological fluid (MRF) damper consisting of an 

electromagnetic coil in the piston as a corrective measure. The damper is fitted onto the 

lathe machine with the optimal fluid composition to evaluate its performance in 

controlling the tool vibration. The optimal composition of MRF is identified by a 

genetic algorithm through the central composite design of the experiment. To cross-

verify the algorithm's output values, a validation study is done. A comparison between 

optimal in-house MR fluid and commercial MR fluid is conducted. The comparison 

demonstrates that in-house prepared MR fluid performs equally well compared to 

commercial fluid. The MR damper effectively damps high-amplitude vibration at 

aggressive cutting conditions. The L9 Taguchi design of the experiment opted to arrive 

at minimal machining parameters to evaluate the performance of the damper in 

machining two workpiece materials, namely oil-hardened nickel steel (OHNS) and high 

carbon high chromium (HCHCR) die steel. The surface roughness and tool vibration 
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are reduced with the damper. It is noted that in-house MR fluid performed equally well 

as commercial MR fluid. The tool wear study is also carried out to monitor the influence 

of external damping over tool life. The stability lobe diagram is obtained analytically 

with experimental validation to mark the stability limit of the machining condition. The 

stability boundary increases with the damper enabling aggressive cutting conditions. 

The designed MR damper is controlled by a real-time controller considering the 

vibration-limiting feedback approach. The Bouc-Wen model is used to estimate the 

damping force based on the vibration feedback of the tool. The tool wear, surface 

roughness, and amplitude of tool vibration are evaluated with and without a semi-active 

MR damper. 

The above-developed MR damper forms an external adaptor to control the tool 

vibration that can be installed on the lathe. To improve the design configuration of the 

MR damper, an internally damped novel tool holder is designed that houses MR fluid 

in its axial hollow section. The MR fluid is activated by the internal electromagnet coil 

wound around the inverse beam supported at the inner wall of the hollow portion. The 

developed MR tool damper reduces the tool vibration with the electric current supply.    

Keywords: Fault diagnosis, Machine learning, Hard turning, Tool life, 

Magnetorheological fluid, MR Damper, Optimization, Stability lobe diagram  
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CHAPTER 1 

 

 INTRODUCTION 

 

1.1 BACKGROUND   

Surface machining removes the external layer of a workpiece to obtain the desired 

shape, form and geometry. It requires a relatively hard tool to machine the workpiece 

mounted over a rigid machine tool which provides sufficient power to shear the layer 

of the workpiece. Machining in a conventional lathe is still a practice in low and 

medium-scale shop floors where sophisticated CNC are costly to afford and maintain. 

The conventional lathe can effectively produce desired components without much 

compromise in quality. One major problem associated with machining with such old 

machine tools is backlash and lack of rigidity, leading to chatter during machining. 

Chatter occurs more frequently during roughing operations and hard turning with 

greater chip load and deeper cuts. Chatter is a relative movement of tool or workpiece 

during machining operation due to difference in stiffness or damping in them. This self-

excited vibration lead to poor surface finish and lower productivity.  Chatter could be 

suppressed by adjusting the system's structural dynamics or selecting optimal cutting 

conditions. The machining process has to be halted to change the cutting parameters; 

however, adjusting structural dynamics by incorporating vibration damping devices 

increases the system's dynamic stiffness. Machining is a complex, unstable 

phenomenon that requires continuous monitoring to achieve consistent performance. 

The tool is subjected to dynamic force and vibration that may lead to tool failure and 

poor surface finish over the machined component. Many factors contribute to tool wear, 

the major being flow of chips over the rake face and unstable machining with violent 

vibration. A stable contact between the tool and workpiece ensures a uniform surface 

finish. Unsteady vibration poses frequent contact loss, leading to wavy surface and 

accelerated tool wear. Hard turning poses challenges in machining with violent 

vibration and accelerated tool wear as it is performed without any coolant to avoid 
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forming an oxide layer over the workpiece. The most common tool failures are flank 

and crater wear in hard turning.   

1.2 OVERVIEW OF METAL CUTTING  

Machining has been done for decades and evolved to many sophisticated machine tools 

and process capabilities; however, the basic principle remains the same for the 

conventional metal removal process. The metal removal process shears the layer of the 

workpiece from a relatively hard tool by holding the tool and workpiece rigidly. 

Machining is often referred to as the secondary or finishing operations, as the material 

is removed from the parts manufactured using different methods. Various metal cutting 

operations are performed to generate features such as cylindrical parts on a lathe, 

rectangular slabs on a milling machine, holes in a drilling machine, groves in a shaper 

or planer, and ribs cut on form milling. Conventional machining involves using single-

point or multi-point cutting tools with specific shapes and geometry. The schematic of 

chip formation is explained in Figure. 1.1 by considering a rotating workpiece (RPM) 

held rigidly in a chuck, machined by a single point cutting tool with the indented depth 

of cut (mm), traverses left at a velocity, V (mm/rev) to produce the chips which flow 

over the rake face of the cutting tool.  

Figure 1.1 Schematic of Chip formation in turning operation 

(Girsang and Dhupia 2015) 
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The tool moves with constant velocity, V, relative to the workpiece to cut the material 

of depth, t0, which produces the chip thickness, f, by continuously deforming and 

shearing the material along the shear plane. The independent factors that influence the 

machining are tool material; workpiece material; the shape of the tool; cutting speed, 

feed, depth of cut; fixtures; machine tool and cutting fluid. The responses affected by 

these factors are force, temperature rise; tool wear; surface finish and type of chip 

produced. A comprehensive examination is required for standard diagnostics when 

machining operations produce unacceptable results, such as the tool vibrating and 

chattering, the tool wearing rapidly and failing; the unacceptable surface finish is 

produced. The chatter vibration in machining is predominantly observed in machining 

hard steels, and unique materials such as Inconel and Titanium, machining of such 

materials are referred to as hard machining.  

1.3 HARD TURNING  

Hard turning is machining workpieces of hardness values over 55 Rockwell hardness-

C (HRC). Hard turning can create an equally good or superior surface quality at 

significantly greater material removal rates, eliminating grinding operation as a 

finishing operation. Hard turning can give a surface polish superior to grinding when 

using the proper combination of insert nose radii, feed rate, or the latest insert 

technology with process stability.   

1.3.1 Forces and vibrations in hard turning operation  

Knowledge of the cutting forces and power involved in machining operations is 

essential so that the workpiece can withstand these forces without excessive 

deformation; also, machine tools can be designed to minimise component distortion. 

Cutting force is typically measured using a force transducer, dynamometer or load cell. 

Cutting force can also be determined from the power consumption; however, the 

mechanical efficiency of the machine tool should be known. The contact stresses at the 

tool-chip and tool-workpiece interfaces are determined by the cutting force (Astakhov, 

2004) 
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The vibration level in machining depicts the health of machine tool and the state of the 

machining operation. Various rotating parts such as spindle, tailstock, and gears; linear 

translation parts such as feed carriage, and compound rest produce vibration. Shearing 

of chips, the flow of chips over the tool, and rubbing of the flank face with the 

workpiece also generate vibration. Vibration measurement in machining can identify 

tool faults and monitor the machining quality. Fault diagnosis of the cutting tool and 

surface finish produced on the workpiece can be monitored using the vibration signal. 

Accelerometer is employed to monitor the vibration. Digital signal processing and 

analysis are required to diagnose the tool faults and surface finish. Figure 1.2 shows a 

schematic of force and vibration measurement in turning operation using a 

dynamometer and accelerometer illustrated by Zhang et al. (2021).  

Self-excited chatter vibrations usually result from a dynamic instability of the cutting 

process (such as cutting with large tool-work engagements. They are most harmful to 

any machining process. Free and forced vibrations can be easily identified, and 

vibration sources can be eliminated, but chatter vibrations are difficult to control. It is 

crucial to suppress vibrations of the machine tool structure as their presence results in 

poor surface quality, unacceptable inaccuracy, tool wear and machine tool damage 

(Siddhpura and Paurobally 2012). Indeed, the most common cases in the literature 

Figure 1.2 Typical force and vibration measurement system for turning operation 

as illustrated by Zhang et al. (2021).   
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usually involve facing operations where the tool vibrates in the feed direction (called 

type A chatter by Tobias et al.). However, there is another type of chatter (type B 

chatter) where the cutting edge vibrates parallel to the cutting speed direction or a 

component in this direction. Type A chatter arises for short overhangs, generally in the 

radial direction, whereas type B chatter occurs for large tool overhangs, as shown in 

Figure 1.3.   

 

1.4 STABILITY LOBE DIAGRAM (SLD) 

The stability lobe diagram is a chart plotted between depth of cut (DOC) and spindle 

speed showing the stability boundary lines (shown in Figure 1.4) (Vnukov et al. 2017). 

The area inside the lobe is unstable, the area outside is stable, and points on the 

δ 

L 

F 

Figure 1.3 Tool deflection at the tip due to cutting force (Quintana and Ciurana 2011) 

Figure 1.4 Classical stability lobe diagram (Vnukov et al. 2017) 
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boundary are conditionally stable which marks the chatter boundary. SLD is useful in 

improving the material removal rate (MRR) without chatter and knowing the limiting 

depth of cut for a particular spindle speed. This thesis addresses the improvement of 

the stability regime with an external damper, which increases the limiting DOC.  

 

1.5 TOOL LIFE: WEAR AND FAILURE  

Tool geometry is an important parameter that influences chip flow, machining 

productivity, tool life and surface quality of machining. Hard turning is best 

accomplished with cutting inserts made from either coated tungsten carbide, CBN 

(Cubic Boron Nitride), Cermet or Ceramic (Shihab et al. 2014). Coated carbide inserts 

are the best option, provided the workpiece material is uniformly hard. Indexable inserts 

have proven effective compared to brazed tool holders or high-speed steel because of 

their replicability, additional hard coating, and chip-breaking geometry (Alok et al. 

2021).  

Tool wear is inevitable during machining; however, it should not obstruct machining. 

Tool life prediction by conventional methods, like using Taylor’s tool life equation and 

modified Taylors tool life equation, fails to predict the tool life accurately due to 

assumptions that are not so practically feasible (Salonitis and Kolios 2014). Various 

types of tool wear observed in machining are (a) Crater wear (b) Flank wear (c) Built 

up edge (d) Chipping (e) Breakage. 

These could be categorised as progressive wear or irregular wear. Irregular wear leads 

to catastrophic failure. Tool wear affects (a) Machine vibration and chatter (b) Surface 

finish (c) Tool life (d) Power consumption (e) Dimensional accuracy. Most tool wear 

tests are done under stable cutting conditions, which can't explain how the tool wears 

when the cutting is vibrating. In the current study, the author tries to figure out how a 

turning tool will wear and how long it will last when there are chatter and damped 

vibrations.  

Condition monitoring ensures a 100% guarantee of quality and productivity. Tool 

condition monitoring is achieved by employing a sensor or sensors system, which 
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acquires real-time information about the tool condition. The sensor signals are post-

processed to diagnose the condition of the tool.  

1.6 TOOL FAULT DIAGNOSIS BY SIGNAL PROCESSING 

One of the significant tool failures is due to chattering. It reduces tool life and leads to 

early tool failure. A healthy or faulty tool produces a characteristic frequency, which 

could be harmonic or non-harmonic frequency. Chatter frequency helps to monitor the 

stability of the machining process. Locating the tool fault by its frequency component 

at the time it has occurred is recognised using wavelet analysis. With this, one can 

identify the origin of a fault at a time with its magnitude.  

1.6.1 Time domain analysis 

The signals are recorded in the time domain and analysed in how a signal changes with 

time.  An oscilloscope may be used to visualize the time series data. Statistical 

parameters such as RMS, mean, median, kurtosis, skewness, and many more could be 

used to monitor the signal in the time domain. A faulty tool would produce more peaks 

than a healthy tool. Similarly, each fault produces distinctive time-domain signatures. 

Keeping track of these parameters is known as signal processing through time domain 

analysis. Although the statistical measures indicate the presence of a fault, they do not 

provide any information about the type of that fault. Although the statistical 

measurements point to the existence of a fault, they do not offer any information 

regarding the nature of that fault. 

1.6.2 The spectrum analysis  

 In signal processing, analysing a signal in frequency component rather than time 

domain is called frequency domain analysis. A given time domain signal is converted 

to a frequency domain by applying a mathematical operator known as Fourier 

transform. The signal after the transform is called the spectrum of frequency 

components (Akan and Karabiber Cura 2021).  
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1.6.3 The cepstrum analysis  

Cepstrum is a tool that can be used to look at periodic patterns in frequency spectra 

(Norton and Karczub 2003). These effects are caused by echoes or reflections seen in 

the signal or by harmonic frequencies. It deals with the mathematical problem of 

deconvolution of signals in frequency space. A cepstrum is a forward Fourier transform 

of the logarithm of a spectrum. Given an actual signal, various cepstrum forms can be 

evaluated, namely real cepstrum analysis, the complex cepstrum analysis, and the 

power cepstrum of a signal to reveal the periodicity in the frequency domain.  

1.6.4 Short-time Fourier transform 

In signal processing, time–frequency analysis studies a transient signal in both the time 

and frequency domains simultaneously. Classical Fourier analysis assumes signals are 

infinite in time or periodic, although many signals are short-lived and vary in intensity. 

Short-time Fourier transform (STFT) is a refinement of Fourier analysis, while wavelets 

are more advanced for unevenly spaced data. 

1.6.5 Wavelet analysis  

Wavelets, which mean "little waves," are small oscillating waveforms that start at zero, 

develop to their highest point, and then quickly return to zero. Wavelet analysis 

provides the frequency component and its location on the time strap with a magnitude 

of frequency. Wavelet transform is an effective tool for damage localisation. This 

technique has been used to diagnose faults in bearing, gears and cutting tools. 

1.6.6 EMD  

A complex and multiscale signal can be adaptively decomposed into a sum of a limited 

number of zero mean oscillating components known as Intrinsic Mode Functions (IMF) 

using the effective analytical technique of empirical mode decomposition.  IMF records 

the signal's repetitive behaviour at a specific time frame. The EMD breaks down a time 

signal into a collection of basis signals similar to the Fourier or wavelet transforms; 

however, unlike those transformations, the basis functions are obtained directly from 

the data. 
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1.7 TOOL FAULT DIAGNOSIS BY MACHINE LEARNING  

Machine learning is programming computers to optimize a performance criterion using 

example data or past experience. The model is defined up to some parameters and 

learning is the experience execution of a computer program to optimize the model's 

parameters using the training data or past experience. The model may be predictive to 

make predictions in the future or descriptive to gain knowledge from data or both (Roy 

et al. 2022). 

Machine learning uses the theory of statistics in building mathematical models because 

the core task is making inferences from a sample. Diagnostic tools play the important 

role of classifying the previously acquired and processed signals in a tool vibration 

control system and taking quick and precise decisions. Machine learning employs three 

basic steps for implementation: feature extraction, feature selection and classification, 

which is briefly explained using Figure 1.5. 
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1.7.1 Feature extraction  

The technique of converting raw data into numerical features that can be handled while 

keeping the information in the original data set is known as feature extraction. It 

produces accurate outcomes compared to using machine learning on the raw data 

directly. Identification and depiction of the characteristics pertinent to a particular 

condition are necessary for manual feature extraction. Knowing the domain can often 

aid in deciding which characteristics might be helpful. Engineers and scientists have 

created feature extraction techniques for images, signals, and text through many years 

of research. Signals are analysed to determine a signal's unique properties in the time, 

frequency, and time-frequency domains.  

Figure 1.5 Flowchart of the Machine learning for fault classification (Ravikumar et al. 

2019) 
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1.7.2 Feature selection by using a decision tree  

Using only a portion of the measured characteristics, feature selection minimizes the 

data dimensionality. Feature section enables improved prediction performance, quicker 

and more affordable predictors, and a better understanding of the data (Guyon and 

Elisseeff 2003). Even when all features are significant, too many features can reduce 

prediction performance. 

A decision tree consists of several branches, one root, several nodes and many 

leaves. One branch is a chain of nodes from the root to a leaf, and each node involves 

on an attribute (Peng et al. 2009).  In real-world applications, decision trees provide a 

set of valuable features that can significantly improve a model's forecast accuracy. 

1.7.3 Classification  

 A classification algorithm is a supervised machine learning which "learns" to 

categorise new observations using previously trained data. The training data set is 

labelled data through which the algorithm learns to classify the observations into a 

number of classes such as ‘yes or no’, and ‘spam or not spam’. The output of the 

classification is a category, not a value. Labelled dataset refers to input data set with 

corresponding known output, i.e. output (y) function is mapped to input variable (x).  

The Classification algorithm's primary purpose is to determine the category of a given 

dataset, and these algorithms are primarily used to anticipate the output for categorical 

data.  

1.8 CHATTER VIBRATION DUE TO TOOL WEAR  

During chatter vibration, the frictional force acting when the flank surface of a tool 

contacts the workpiece is critical in the supply of vibratory energy. Chatter stability 

decreases as tool wear flat of the cutting tool increases. However, some other aspects 

of damping of cutting tool chatter vibration due to tool wear must be investigated.  
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1.9 TOOL VIBRATION MODEL  

The cutting tool in turning is modelled as an Euler Bernoulli`s cantilever beam of a 

single degree of freedom system with stiffness k and internal damping coefficient c 

excited by a harmonic force F(t) at the free end. The response of the beam in the form 

of displacement or acceleration is analysed for varying input excitation, damping and 

stiffness. The chatter marks of δx are produced on the machined surface with δy 

deflection in a tangential direction, as depicted in Figure 1.6.  

 

1.10 VIBRATION SUPPRESSION TECHNIQUE  

The chatter in machining is a well-known issue that reduces productivity. (Taylor 1906) 

noted that "chatter is the most mysterious and sensitive of all issues confronting the 

machinist."  (Tobias and Fishwick 1958), and (Tlusty and Polacek 1963) identified the 

regeneration effect as the primary cause of chatter. Since then, one of the key problems 

has been the suppression of these self-excited vibrations, and the current situation 

implies that the prediction and suppression of chatter will continue to be an important 

issue in the future. Some techniques followed to supress the chatter are development of 

special tools (Stone 2014) such as variable pitch tools (Shaw, M. C., et al. 1952), helical 

tools  (Stone 1970; Vanherck 1967) and serrated tools (Stone 2014) that perturb the 

regenerative effect and process damping.   

Figure 1.6 Tool vibration model in tangential direction (Urbikain et al. 2013)   
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An un-damped tool vibration can be modelled as a single degree of freedom model, as 

shown in Figure 1.7 (Rao 2010). 

Chatter can be avoided effectively by making the structure, tool, and/or part of the 

machine tool stiffer. If only one dominant mode is considered, the static stiffness and 

modal stiffness are the same, and increasing it makes the process more stable. When 

the static stiffness increases, the damping might decrease (Koenigsberger and Tlusty 

1970). Hence increasing only stiffness by adding additional mass makes the machine 

tool bulky, requiring increased drive power to move the carriage or cross slide. At the 

same time, incorporating a damping mechanism ensures stable operation. There are 

three methods vibration suppression by external damping methods: passive, active, and 

semi-active.   

1.10.1 Passive damping techniques  

Increase the damping of the critical mode with passive solutions that don't need an 

outside power source to get rid of vibration energy. One can use passive damping 

techniques such as tuned mass dampers (Hahn 1951), impact dampers (Edhi and Hoshi 

Figure 1.8 Tuned mass damper as a passive damping technique (Rao 2010) 

M 

k 

Figure 1.7 Undamped single degree of freedom model (Rao 2010)   

M  

k c 
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2001), and installing internal damping materials (Kolluru et al. 2013).  Figure 1.8 shows 

the passive damped tool model (Rao 2010).  

Using a linear spring with stiffness and damping, passive damping adds inertial mass 

to the system to dampen chatter. These parameters' values are adjusted to reduce chatter 

by the original system's critical mode.  The original mode is consequently split into two 

modes with dynamic rigidity. The passive damping reliability and ease of use are two 

of their most remarkable features. However, the passive damping benefits are restricted 

to a specific frequency range and need precise tuning to the intended frequency.  

1.10.2 Active damping techniques  

Active approaches measure a vibration-related parameter, process it, and then introduce 

a regulated force signal via an actuator in response to the measured signal. In this 

manner, the vibratory component receives extra force, F, that is dynamically connected 

through a control and a sensor (Preumont 1997), as shown in Figure 1.9. Piezoelectric 

and electromagnetic actuators, which have proven to be reliable, are the most 

commonly utilised technologies in active systems (Neugebauer et al. 2007) (Sims et al. 

2005). There have also been other smart materials and fluids (electrorheological & 

Magnetorheological) primarily utilised in semi-active devices, which are essentially 

passive devices with real-time property tuning but cannot directly supply a mechanical 

force.  

M  

k  

Figure 1.9 Active damped tool model 

(Preumont 1997) 

Control  

F 
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1.10.3 Semi-active damping techniques  

Semi-active damping techniques are similar to passive damping techniques with 

provision to change the damper's properties such as the damping medium's viscosity as 

in magnetorheological and electrorheological fluids. The tool model attached with the 

variable damping coefficient is shown in Figure 1.10 (Pour and Behbahani 2016). This 

semi-active system performs with minimal power requirement and simple control. The 

semi-active system works as a passive system in case of power failure, unlike stalling 

of the active system during operation.  

 

1.11 MAGNETORHEOLOGICAL FLUID 

Magnetorheological (MR) fluid and Electrorheological (ER) are smart materials whose 

rheological properties are very responsive to magnetic and electric fields, respectively. 

MR fluid consists of ferromagnetic particles suspended in a carrier fluid. MR fluid can 

produce maximum yield strength of 50-100 kPa in magnetic fields strength of 150-250 

kA/m (Kciuk and Turczyn, 2006). Further, since the magnetic polarization mechanism 

is unaffected by temperature, the performance of MR-based devices is relatively 

insensitive to temperature over a broad temperature range. Figure 1.10 show changes 

in rheological properties in the absence and presence of a magnetic field. When fluid is 

exposed to the magnetic field, ferrous particles in the fluid form chain-like structure in 

the direction of the applied field, and the fluid tends to form a semisolid material in a 

M 

k c 

Figure 1.10 Semi-active damped tool model 

(Pour and Behbahani 2016)  
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few milliseconds, which creates resistance against the fluid flow. This effect is 

completely reversible when the magnetic field is removed. 

A typical MR fluid consists of 40-90 % by weight of relatively pure (1-10 micron 

diameter size) magnetisable particles suspended in a carrier liquid such as mineral oil, 

synthetic oil, water or glycol. Varieties of proprietary additives, similar to those found 

in commercial lubricants, are commonly added to MR fluids to enhance lubricity, 

modify viscosity, inhibit particle wear, delay gravitational settling, and promote particle 

suspension. MR fluid is used in various applications such as dampers, brakes, clutches, 

hydraulic valves, seals, flexible fixtures, pneumatic actuators and polishing devices 

(Wang and Meng, 2001). The MR fluids can be used in three different operating modes 

based on the different engineering applications. They are Squeeze mode, Shear mode 

and Valve mode. 

1.11.1 Squeeze mode  

In squeeze mode, the fluid is between two moving poles. Relative displacement is 

perpendicular to the direction of the fluid flow (Figure 1.12). The compression force 

applied to the fluid periodically varies. Displacements are small compared to the other 

modes, but resistive forces are high. This mode is used mainly in bearing applications 

(rong et al. 2013).  

Figure 1.11 Behaviour of MR fluid a) In the absence of magnetic field b) In the 

presence of magnetic field  (Kciuk and Turczyn, 2006) 
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1.11.2 Shear mode  

In shear mode, the fluid is located between a pair of poles in which one is stationary 

and the other slides with the first pole. The magnetic field is applied perpendicular to 

the direction of the shear poles (Figure 1.12). This mode of operation is suitable for 

clutches, brakes, and locking device applications.  

 

1.11.3 Flow mode  

In flow mode, the fluid is located between stationary poles. Flow between the plates 

occurs due to pressure drop. Resistance to the fluid flow is controlled by modifying the 

magnetic field between the poles in a direction perpendicular to the flow (Figure 1.13). 

Devices using this mode of operation include servo-valves, dampers, shock absorbers 

and actuator applications (Spaggiari 2012).  

 

Force  

MR fluid 

Magnetic field lines 

Figure 1.12 Squeeze mode (rong et al. 2013) 

MR fluid 

Magnetic field lines 

Force  

Force  

Figure 1.13 Shear mode (Spaggiari 2012) 
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MR fluid has been used for many applications, such as MR brakes, MR clutches, MR 

flow valves, and linear and rotary dampers. The rotary damper finds application in 

prosthetic knee, whereas linear damper finds application in vehicular suspension and 

civil structural damping subjected to seismic excitation. The variable coefficient of the 

MR damper makes it suitable to adapt to road conditions and ride comfort in the 

vehicular applications.  

Servo-valves, dampers, and shock absorbers are a few examples of devices that operate 

in the pressure driven flow mode. Devices that operate in the direct-shear mode include 

clutches, brakes, chucking, and locking mechanisms. Squeeze-film mode, a third mode 

of operation, has also been applied in low motion, high force application (Spaggiari 

2012). 

1.12 MAGNETORHEOLOGICAL DAMPER  

A magnetorheological damper is a semi-active device filled with magneto rheological 

fluid. In MR dampers, the magnetic field's action on the MR fluid controls the damping 

force. This allows the damping characteristics of the damper to be continuously 

controlled by varying the magnetic field. The construction of an MR damper is quite 

similar to the conventional hydraulic damper. Along with the typical configuration of 

the viscous dampers, MR dampers have an iron core with copper windings fitted to the 

piston. Leads of the windings are connected to a direct power (D.C) source. Because of 

road undulations, the hollow piston head moves inside the cylinder, a supply of electric 

current will magnetize the iron core and ferromagnetic particles dispersed in the fluid 

will align along the lines of magnetic flux, increasing the apparent viscosity of the fluid. 

Figure 1.14 Flow mode (Spaggiari 2012) 

Flow  

Magnetic field lines 

Flow  
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The MR dampers can be classified as monotube, twin tube and double rod end MR 

dampers.  

1.12.1 Mono tube MR Damper  

Mono tube MR damper consists of a single reservoir for MR fluid. Accumulator to 

accommodate the volume displaced by piston rod movement. The accumulator piston 

provides a barrier between MR fluid and compressed gas/compressed spring, as shown 

in Figure 1.14  (Gurubasavaraju et al. 2017).  

1.12.2 Twin tube MR damper  

The Twin tube MR damper (Figure 1.15) consists of two cylinders, namely the inner 

cylinder and the outer cylinder. The inner housing guides the piston rod during 

extension and compression, similar to the mono-tube damper. During piston 

compression, MR fluid is displaced from the inner cylinder to the outer cylinder through 

the base valve provided at the bottom of the inner cylinder (Desai et al. 2021).  

Figure 1.15 Monotube MR Damper with an accumulator 

(Gurubasavaraju et al. 2017)    

Figure 1.16 Twin tube MR damper (Desai et al. 2021) 



20 

 

1.12.3 Double rod end MR damper  

Double-ended type MR damper consists of a piston rod of equal diameter that extends 

from both the ends of the damper housing, and in this damper, there is no change in 

volume as the piston moves and it does not require an accumulator mechanism as shown 

in Figure 1.16 (Poynor and Reinholtz 2001).  

 

1.13 MODELLING MR DAMPER 

Variable damper plays a key role in the control of semi-active suspension system. 

Designing and analysis of the suspension system controller requires an accurate model 

of the damper. A practical damper exhibits non-linearity and hysteresis, which must be 

taken into account in simulation studies in order to investigate the real-time system 

performance. Modelling of the dampers can be broadly classified into two categories: 

(a) Parametric modelling  (b) Non-parametric modelling 

In the parametric modelling approach, the damper is represented as an interconnection 

of mechanical elements like springs and dash pots. Parameters of the model are 

obtained through experimental results and mathematical methods. A number of 

parametric models have been proposed in the literature to describe the dynamic 

behaviour of MR damper. Some of the widely used models are: (a) Bingham model (b) 

Bouc-Wen model (c) Modified Bouc-Wen model (d) Kwok model 

Non-parametric modelling describes the behaviour of the damper by analytic 

expressions that give the result close to experimental results. Non-parametric models 

Figure 1.17 Double rod end MR damper (Poynor and 

Reinholtz 2001) 
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need a large amount of data to model the system. Non-parametric modelling methods 

are robust and can be applicable to linear, non-linear and systems with hysteresis. Non-

parametric models can be classified as follows: (a) Polynomial-based techniques (b) 

Neural network-based methods 

1.14 CONTROL STRATEGIES 

An automatic controller, in general, compares the actual output of a plant with that of 

the reference input and produces a control signal that will reduce the deviation between 

the actual and desired values to zero or a small value. The controller detects the 

actuating error signal, which is usually a very low power level and amplifies it to a 

sufficiently high level via the current amplifier for MR devices. In this section, some 

effective control methodologies for tool vibration application featuring MR damper is 

proposed. 

1.14.1 Semi-active control 

 Using MR devices, the damping of the system can be continuously controlled by 

controlling the intensity of the applied field.  The desired damping force can be 

achieved in the controllable domain regardless of the velocity.  This is a salient feature 

of the semi-active control system activated by MR devices.  To achieve the desired 

damping force in the controllable domain, one can use three semi-active control 

methods: skyhook, ground hook, neuro-fuzzy and PID controllers.  The logic of the 

skyhook controller (Wang et al. 2010) is simple and easy to implement in an actual 

field.  The desired damping force, Fd, can be set by   

 ( ) 'd skyF C E x  
(1.1) 

 

Where Csky is a control gain that physically indicates the damping.  The magnetic field 

can judiciously tune the control gain to meet the desired damping force.  In practice, 

the control gain can be chosen by on-off logic as: 

 Csky is maximum, x’>0 

Csky is minimum, x’≤0 

(1.2) 

(1.3) 

 



22 

 

The above logic of the controller is typically adopted for the vehicle suspension 

systems(Seung-Bok and Young-Min 2013).  High and small damping can be controlled 

by just controlling the magnetic field without using the directional check valve.  The 

skyhook control method is typically used to isolate the vibration of the sprung mass 

directly connected to the ground.  Ground hook controller can isolate the vibration of 

unsprung mass, which is directly connected to the ground (Seung-Bok and Young-Min 

2013).  

Semi active dampers can also be controlled via proportional-integral-derivative (PID) 

control. The transfer function in the frequency domain serves as the basis for the 

linearized mathematical model of the semi-active suspension system. The performance 

of the PID-controlled system is determined by how accurately the linear model predicts 

the system's actual behaviour. A PID controller can be created by choosing appropriate 

gains for the proportional, integral, and derivative terms. Several tuning techniques are 

available to construct a PID controller and get the desired performance from the semi-

active system (Talib and Darus 2013). 

The fuzzy control algorithm is effective for uncertain systems. It should be noted that 

certain vehicles have displacement sensors built right into the suspension system. In 

this case, the fuzzy controller might operate successfully without additional sensors. In 

other words, the MRF-based suspension could be efficiently controlled by the 

suggested control algorithm with fuzzy steps utilising just one sensor, not increase 

hardware costs or system complexity (Phu et al. 2015).  

The on-off control theory refers to the control system used to control such elements 

where the control element has only two positions: fully closed or fully open. This 

control element does not function in any intermediate position.    When a tool vibration 

changes and crosses a certain pre-set level in this control system, the output value of 

the system is suddenly fully opened and gives total current or fully closed to 0 A. In 

theory, we assume there is no time delay for control equipment to be turned on and off. 

However, in practise, there is always a non-zero time delay for controller elements' 

closing and opening action. 
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1.15 ORGANIZATION OF THE THESIS 

Chapter 1 introduces various signal processing and machine learning techniques used 

in this thesis—a brief introduction on chatter vibration induced in hard turning process 

and various ways to control them.  

Chapter 2 reviews the literature on recent developments in controlling tool vibration, 

the advantages of signal processing and its application in various engineering 

applications. The machine learning algorithm is applied to various engineering 

applications such as machining and machinery fault diagnosis. Various developments 

are discussed in controlling the tool vibration by passive and semi-active methods.  

Chapter 3 illustrates the methodology followed to achieve the overall research 

objectives. The method to accomplish each objective is also shown as a flowchart with 

a brief explanation. 

Chapter 4 identifies and diagnoses the tool faults using signal processing and machine 

learning techniques. Time domain, frequency domain and wavelet transform are the 

various signal processing used to identify tool faults using vibration and cutting force 

signals.  Machine learning techniques, such as the rotation forest algorithm, random 

tree and the Naïve Bayes algorithm with statistical and discrete wavelet features, are 

used for tool fault diagnosis. 

Chapter 5 deals with the design configuration and development of a mono-tube shear 

mode external mounted magnetorheological fluid damper to suppress the tool vibration. 

The preliminary study on fault diagnosis helps identifying the design input parameters 

and materials for the development of the MR damper. The optimal composition of in-

house magnetorheological fluid for the developed MR damper is synthesised and 

characterised.  

Chapter 6 describes the implementation of the developed MR damper on the lathe 

machine to evaluate its ability to suppress the tool vibration using optimal MR fluid 

prepared in-house and commercial fluid. Online tool vibration control is ensured by 

implementing a current controller while monitoring the real-time vibration signal. The 
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amplitude of the tool vibration, surface finish, tool wear and stability boundary of the 

machining are evaluated with and without MR damper 

Chapter 7 establishes the development of an internally damped MR tool holder. A free 

vibration test, force vibration test and actual machining test was performed to evaluate 

the tool holder's vibration-damping ability.  

Chapter 8 concludes the research findings on tool fault diagnosis, MR damper and its 

machining performance in controlling the tool vibration with constant current and 

controller current.  
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CHAPTER 2 

 

 LITERATURE SURVEY  

 

2.1 INTRODUCTION  

Modern machining processes depend heavily on tool defect diagnosis to provide 

automation and precision manufacture with little human involvement. Automation 

promotes productivity and efficient job-handling ability. Cutting tool malfunction 

diagnosis is made possible via online tool condition monitoring. A sensor is employed 

to acquire information on the tool's condition. The sensor data will be in raw form, 

which must be processed using a signal processing technique to derive useful 

information about the tool fault.  

Tool wear influences vibration during machining, which directly impacts tool life, 

productivity and accuracy of the machined component in any machining process. In the 

past few decades, many researchers have investigated the origin of chatter and 

developed various mathematical models to clearly understand the factors more 

influential on machining vibration. The literature survey in this chapter covers work by 

various researchers on tool fault diagnosis, tool vibration, magneto rheological fluid, 

use of MR damper in reducing the tool vibration, optimization of MR damper, 

controller and control strategy employed to control the damping force of MR damper 

of varies application. 

2.2 VIBRATION IN MACHINING OPERATION   

Vibration in machining can be categorised as forced vibration and self-excited 

vibration, or chatter vibration. The causes of this vibration are improper cutting 

conditions, higher MRR, faulty tool conditions and hard-to-machine workpiece 

materials. The characteristics of these vibrations are the generation of poor surface 

finish, shrill noise, increased tool wear, and reduced tool life. Taylor (1906), who 

conducted a profound study on the cutting process, developed the cutting force model 

and stated that chatter is a delicate and catastrophic phenomenon in turning. Urbikain 
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et al. (2013) demonstrated the generation of surface roughness on the machined parts 

due to the cutting tool's tangential movement due to the tool holder's low flexion. The 

depiction of the surface roughness due to a slender tool is shown in Figure 2.1.   

 

 

2.3 A VIBRATION LIMITING CHART - SLD 

Merritt (1965) introduced the stability lob diagram (SLD). It is a graph of spindle speed 

on abscissa and depth of cut on the ordinates. SLD represents the region of the stable 

and unstable regions to mark chatter-free and chatter conditions, respectively. Figure 

2.2 shows typical SLD for turning operation as demonstrated by Merritt in 1965 in their 

article. Díaz-Tena et al. (2013) investigated the milling of thin floor parts with the aid 

of an MR damper, where the effect of tool trajectory on damping coefficient, rigidity, 

Figure 2.1 Vibration in tangential direction during longitudinal turning 

(Urbikain et al. 2013) 

Figure 2.2 A typical stability lobe diagram. Merritt (1965) 
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the frequency was studied. A three-dimensional stability lob diagram (SLD) showed 

that a machining speed of up to 24,000 rpm could be used to machine thin plates. A 

stability lobe diagram has been obtained in the current study through analytical 

calculation and validated by experimental study.  

2.4 VIBRATION INDUCED DUE TO FAULTY TOOL 

A faulty tool induces undesired vibration that leads to poor surface finish and instability 

in machining. Each fault produces unique vibration characteristics; however, when 

multiple faults are induced, it is difficult to identify them through basic signal 

processing.  Arizmendi et al. (2009) showed that tool vibrations during the cutting 

process are one of the elements that significantly impact the machined surface and can 

degrade its quality. Thomas et al. (1996) collected and evaluated surface roughness and 

tool vibration data from dry-turning mild carbon steel. According to vibration analysis, 

the dynamic force caused by a change in chip thickness acting on the tool is related to 

the amount of vibration the tool makes while cutting at its natural frequency.  

2.5 SENSORS AND TRANSDUCERS FOR FAULT DIAGNOSIS 

Most down time in machining is caused due to tool breakage and tool handling. The 

only technique that is viable in reducing the down time during machining is Tool 

Condition Monitoring (TCM). TCM involves monitoring tool health status by acquiring 

real-time tool condition information using sensors and transducers such as an 

accelerometer (Ghule et al. 2017), dynamometer (Lyu et al. 2021), acoustic emission 

(AE) sensor (Kishawy et al. 2018) current sensor (Song et al. 2020), surface profiler 

(Muhammad et al. 2021), pyrometer (Kus et al. 2015)  and charge-coupled device 

(CCD) camera (Wu et al. 2019). The cutting tool's condition monitoring (CM) is 

necessary to ensure efficient machining operation with minimal tooling costs and 

downtime. Tool fault diagnosis is one method of CM. Cuka and Kim (2017) performed 

embedded tool condition monitoring of the end milling tool with the signals acquired 

from the dynamometer, microphone, accelerometer and current sensor using a machine 

learning technique. The signal-to-noise ratio of a microphone is the least as monitoring 

the sound signal is influenced by external disturbances, and the bandwidth of that 

disturbance may lie in the same bandwidth of interest. Current sensors are the least 
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sensitive to minimal changes in the machining process. The current change is observed 

only when there is a difference in load than process changes.  

2.5.1 Milling 

Milling is also the most widely used machining process which requires condition 

monitoring for efficient machining. Hesser and Markert (2019) retrofitted an old CNC 

milling machine to monitor tool wear by embedding a programmable sensor (Bosch 

XRD sensor platform) that sends the machining process's vibration information through 

a wireless communication mode. Two tool conditions, healthy and worn tools, were 

considered for the study. Ramirez-Nunez et al. (2018) used infrared thermography to 

monitor tool breakage during the milling process under dry and wet conditions. A tool's 

healthy state or broken state is determined by analysing temperature gradients in the 

cutting zone. The flow process of the CM is shown in Figure 2.3. Cutting fluid 

surrounding the tool forms the barrier for direct measurement. Ryabov et al. (1996) 

used a laser sensor which reconstructs 3D image of milling tool profile with laser 

displacement and intensity technique to evaluate geometric failures of tool. The 

Figure 2.3 Fault diagnosis using thermal imaging (Ramirez-Nunez et al. 2018) 
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technique was able to detect the location of tool chipping and length of flank wear at 

an accuracy of 40 micron. Figure 2.4 shows helthy tool and worn tool through image 

processing. The image shows the scale to measure the area of wear land.  These days, 

indirect method of tool wear monitoring is found to be more effective for online 

monitoring of machining operation with advancement of signal processing, image 

processing and artificial intelligence. 

2.5.2 Turning  

This section deals with sensors and transducers employed to turn operations for fault 

diagnosis. Jurkovic et al. (2005) used a CCD camera to create a 3D image of the relief 

surface to measure the tool wear of carbide inserts in turning operation. The technique 

had the characteristic of measuring the profile depth with the help of projected laser 

light using a diode and linear projector. Dimla (2002) followed experimental and 

analytical methods to independently correlate tool wear with measured vibration signal 

and cutting force signal for turning operation. The z-direction of the cutting force and 

vibration signal was found to be sensitive to tool wear. Bhuiyan et al. (2014) conducted 

an experimental investigation to monitor tool abrasion, surface finish and chip 

formation using an accelerometer and acoustic emission sensors in turning operation. 

Figure 2.5 shows the schematic of the experimental setup established for the CM of 

turning operation by Bhuyian et al.(2014). Schmitt et al. (2012) employed a machine 

vision system to measure tool wear and classify them by neural network based on an 

active contour algorithm. Tools were held in the special fixture for image acquisition 

of tool wear. Image processing chain comprised feature extraction, classification and 

tool wear measurement. 

Figure 2.4 Geometric image of milling cutter in different condition (Ryabov et al. 

1996) 
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Tool condition monitoring can be carried out either by direct measurement or indirect 

measurement.  Non-contact, direct measurement of cutting tool edges with 

sophisticated systems give accurate information about tool wear. Dynamometers and 

accelerometers are preferred the most due to their short transfer path and better signal-

to-noise ratio (Ingle, R., & Awale, R. 2018).   

2.6 FAULT DIAGNOSIS USING SIGNAL PROCESSING 

Tool wear estimation by conventional Taylor's tool life equation is prone to either 

underestimation or overestimation (Johansson et al. 2017). Excessive replacement of 

tools leads to a huge tooling cost. Consequently, valuable resources and precious time 

are at stake (Masood et al. 2016). The sensor data are in raw or time-domain, which is 

not in information-revealing form. These sensor data must be processed to improve 

subjective quality and detect components of interest in a measured signal. Researchers 

use various signal processing techniques: Fourier transform, short-time Fourier 

transform, and wavelet transform. Liu et al. (2018) applied signal-processing 

techniques such as time domain analysis, Fast Fourier Transform (FFT) analysis and 

wavelet decomposition method for both vibration signal and cutting force signal 

corresponding to the milling of thin wall feature to recognise the complex machining 

condition. 

Figure 2.5 Experimental setup established for fault diagnosis using acoustic sensor 

and accelerometer (Bhuiyan et al. 2014) 
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2.6.1 Time domain  

Every signal acquired in CM and fault diagnosis is time series data. An oscilloscope 

may be used to visualise the time domain data; however, statistical features of the same 

signal can be evaluated to identify faults and features of the signal acquired. Time 

domain signal forms the basis for all signal processing and machine learning 

techniques. Gangsar and Tiwari (2014) classified five bearing fault conditions by 

considering three statistical features: standard deviation, kurtosis and skewness of a 

vibration signal.  A frequency plot opts best whenever a rotating element is involved in 

any machinery system. Gangsar and Tiwari (2016) diagnosed the faults of the induction 

motor based on the analysis of the time-domain signal through a support vector 

machine. They had selected optimum statistical features from higher statistical 

moments to the faults. 

2.6.2 Frequency domain 

Frequency domain analysis reveals the periodicity of time domain measurement. The 

Fourier transform best identifies the frequency of rotation or oscillation. The amplitude 

variation indicates the degree or extent of the fault. Harmonics and non-harmonics of 

fundamental frequency can be used to monitor the system's health. Plaza and López 

(2018) monitored the online surface roughness of the finish turning operation on a CNC 

lathe by applying singular spectrum analysis to the vibration signal acquired during 

machining.  

A signal is divided into a collection of independent additive time series known as 

principal components using the non-parametric time series analysis technique known 

as singular spectrum analysis. The FFT plot of the three components of the vibration 

signal is shown in Figure 2.6.  Plaza et al. (2017) evaluated the performance of an 

individual and grouped analysis of singular spectrum analysis in a series of trials under 

Figure 2.6 FFT plot of three vibration component (Plaza and López 2018) 
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various cutting settings in CNC. The findings demonstrate that vibration signal 

processing using singular spectrum analysis distinguished the frequency ranges useful 

for forecasting surface roughness. The findings demonstrate that singular spectrum 

analysis is perfect for examining vibration signals for online surface roughness 

monitoring. 

2.6.3 Cepstrum analysis 

Cepstrum identifies the periodicity in a frequency plot and is also helpful in identifying 

the side bands of a fundamental frequency that is otherwise not revealed in the spectrum 

plot. Liang et al. (2013) compared the application of power spectrum, cepstrum and 

neural network to identify and classify faults in an induction motor. The cepstrum 

analysis could reveal the sidebands related slip frequency dependent on motor load. The 

cepstrum plot for the healthy and broken rotor is shown in Figure 2.7. The sidebands 

shifted wider, and increased amplitude as the load on the broken rotor bar increased. A 

similar observation was noted on stator current power spectra. Kim et al. (2021) 

decomposed vibration signals using empirical wavelet filters based on cepstrum 

analysis. The suggested method averages the envelopes of decomposed signals for 

demodulation analysis to improve fault-related signals. Simulation and experiment 

validated the method. The proposed method increased the fault diagnostic performance 

over previous methods.  

Figure 2.7 Vibration cepstrum of induction motor (a) healthy and (b) broken 

rotor (Liang et al. 2013) 
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2.6.4 Wavelet analysis  

Wavelet analysis is a time-frequency analysis that reveals the time and frequency 

resolution of the signal under consideration. Some of the applications where wavelet 

signal processing is applied are reviewed in this section. Using continuous wavelet 

transform analysis, Ravikumar et al.(2020) diagnosed ball bearing in a two-stroke IC 

engine. The author had considered healthy, 50 % defect and 100 % defect in the gear 

tooth at three different loading conditions. The bearing faults identified through the 

wavelet plot are shown in Figure 2.8. Barbieri et al. (2019) developed a technique to 

identify the presence of damage in gearboxes using vibration signals. Signal processing 

techniques, wavelet transform, and mathematical morphology were used to check the 

presence of a fault in the gearbox. Pattern spectrum and selective filtering were used to 

identify gearbox damage.  

Figure 2.8 Fault diagnosis of ball bearing of IC engine gearbox using wavelet 

analysis (a) Healthy bearing (b) Inner race defect (c) Outer race defect 

(Ravikumar et al. 2020) 
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2.7  FAULT DIAGNOSIS BY MACHINE LEARNING  

The condition of fault would be many in numbers. In such cases, the monitoring system 

must learn from previous experience and recognize its faults as and when they occur. 

These pre-recorded (by previous experience) faulty conditions serve as reference 

signatures for fault identification during the actual running condition. TCM, through 

machine learning, was applied to various machining operations such as drilling, milling 

and turning, turbomachinery, wind mill and all other critical rotating machinery. ML 

follow three basic steps; feature extraction, feature selection and classification. Figure 

2.9 shows the steps and process flow involved in fault diagnosis of machinery 

equipment through machine learning. The literature about each step of ML is addressed 

in the following subsection.   

2.7.1 Feature extraction 

Understanding deeply hidden information in a signal is achieved by extracting 

remarkable features such as Discrete Wavelet Transform (DWT), statistical, histogram, 

and empirical mode decomposition (EMD) features. Kuljanic and Sortino (2005) 

introduced torque force indicator (TFD) and normalized cutting force indicator (NCF) 

as on-line tool wear indicators for the milling process by studying the feature vector 

parameters of the cutting force signal obtained using a rotating dynamometer. Li et al. 

(2010) incorporated Empirical mode decomposition (EMD) into chatter feature 

Figure 2.9 Fault diagnosis procedure using machine learning (Lei et al. 2020) 
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extraction by examining the energy spectrum of each IMF obtained by decomposing 

the vibration signal for the chatter symptom feature.  The findings demonstrate that a 

feature derived from the boring bar's vibration by EMD can be used as a feature vector 

for quickly identifying chatter.  

2.7.1.1 Statistical features 

Statistical features are typically derived form time domain signals. There have been at 

least seven statistical features extracted in the current study using ANOVA in MS-

Excel: mean, variance, standard deviation, maximum, minimum, sum, kurtosis and 

skewness, and co-variance. Li et al. (2015) developed a novel method to extract 

statistical features based on the central limit theory to diagnose the faults in rotating 

machinery. The feature extraction method was found to improve the effectiveness of 

the classification.   

2.7.2 Empirical mode decomposition features 

Wavelet transform (WT) and wavelet packet transform are time-frequency methods 

used to identify the chatter frequency based on the gradual increase of the chatter 

component (Anisheh M. 2009; Yao et al. 2010). However, these methods require 

designating wavelet basis and decomposition level for each signal which may vary the 

results based on the wavelet type. Empirical mode decomposition (EMD) is relatively 

better than WT, where a prior selection of parameters is not required (Wang and Fang 

2019). Spindle current variation, tool vibration, acoustic emission, and sound signals 

can all be used to monitor the condition of a machining process. However, no well-

defined mathematical model specifies which signal should be analysed; many follow 

EMD to distinguish just the chatter band. 

2.7.2.1 Discrete wavelet transform features 

Wavelets provide an effective tool for nonstationary signal analysis. Particularly during 

cutting, the appearance of irregular momentary disturbances renders the recorded signal 

nonstationary in vibration monitoring. Transients can be broken down via wavelet 

analysis into several wavelet components corresponding to a particular frequency 

octave. Gangadhar et al. (2017) diagnosed SPCT using DWT features in vibration 

signals. The MATLAB program was used to extract the DWT features. Bessous et al. 
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(2018) diagnosed bearing faults by decomposing the vibration signal through a discrete 

wavelet transform. The high pass filter and low pass filter allow the approximation 

coefficient and detailed coefficient to be derived. DWT allows multiple decomposition 

levels; the threshold is decided based on the energy level in detail of wavelet 

decomposition.   

2.7.2.2 Histogram features  

Madhusudana et al. (2016b) carried out condition monitoring of the face milling tool 

under different conditions of the tool using vibration signals. They extracted histogram 

features from the signals for classification. Elangovan et al. (2010) classified tool wear 

using histograms and statistical features in turning operations. They extracted 20 

histogram features from the vibration signal. They found that feature classification 

using statistical features was better than histogram features.  

2.7.3 Feature selection 

The feature selection process plays the following roles in machine learning systems: It 

makes machine learning algorithms train more quickly. If the proper subset is selected, 

it enhances a model's accuracy, simplifies interpretation, decreases overfitting, and 

minimises model complexity. The following sections further detail how the feature 

selection technique is used. Elangovan et al.  (2011) compared fault classification based 

on feature selection using the J48 algorithm and principal component analysis to 

monitor the turning tool using vibration information. 

2.7.3.1 Decision tree J-48 

The decision tree technique is frequently utilised in classification and machine learning. 

Both feature selection and feature classification can be made using decision trees. A 

decision tree is a technique for representing knowledge based on trees. Weka's 

adaptation of the J48 algorithm is frequently used for creating decision trees. 

Madhusudana et al.  (2016b; a) experimented with diagnosing milling tool conditions 

through vibration signals. A decision tree was used to capture significant histogram 

features in the dataset. The k-star algorithm was used as a classifier to identify various 

fault classes in the milling tool. The decision tree used for diagnosing the fault in the 

milling tool insert using histogram features is shown in Figure 2.10.  Sugumaran et al. 
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(2007) used a decision tree to monitor the health condition of roller bearings using a 

vibration signal. Features of vibration signals were deduced using statistical analysis. 

 

2.7.4 Classification of features 

The preceding feature extraction and selection steps are followed by a classification 

where the classifier builds an algorithm based on the significant feature selected with 

66 % training data set and 34 % of the testing data set. 10-fold cross-validation is 

applied to the classifier for iterative improvement of the algorithm. The primary fault 

classifiers in various engineering applications are dealt with in subsequent sub-sections.  

2.7.4.1 Rotation forest algorithm 

The rotational forest (RF) ensemble method is relatively recent. It uses a boosted 

gradient descent algorithm designed by Rodrguez et al.  (2006) to improve the 

efficiency of underperforming machine learning methods like trees. The J-48 algorithm 

cultivates the trees from a decision tree classifier. Due to its resistance to background 

noise, RF can provide swifter and more precise classification results. In place of a single 

classifier, it uses multiple them. The research by Jha et al. (2022) uses latent semantic 

analysis to provide an efficient method for transforming experimental attributes of a 

breast cancer dataset using a publicly available breast cancer dataset; the proposed 

method is verified using a multilayer perceptron, support vector machine. Using the 

Figure 2.10 Decision tree used for milling tool insert fault diagnosis using histogram 

features (Madhusudana et al. 2016b) 



38 

 

same set of features, other classifiers such as naive Bayes, rotation forest, simple linear 

logistic regression, and logistic model tree produce recognition accuracies between 

96.75% and 99.30%.  

2.7.4.2 Naïve Bayes algorithm 

Due to its efficiency and ease of implementation, the naive Bayesian classification 

algorithm has found widespread application in big data analysis and other domains. The 

cutting force of end-milling tests at varying spindle speeds was collected by Karandikar 

et al. (2015). The Naive Bayes classifier was trained using an evaluation of how tool 

wears changes force features over time and across frequencies. The Naive Bayes 

classifier was used to predict the degree of tool wear. 

2.7.4.3 Random forest  

Ma et al. (2016a) used the random forest algorithm to predict the tool life of the milling 

cutter with 315 number milling test data. The results were compared with artificial 

neural network (ANN) algorithms and support vector regression (SVR). It was found 

that RF had better tool life prediction accuracy than rest two. Rajini and Jabbar (2021) 

suggested a lung cancer prediction model by employing the random forest classifier, 

which aims at assessing symptoms (gender, age, air pollution, weight loss) for the early 

prediction of lung cancer. The random forest algorithm showed higher accuracy 

compared with previous approaches. 

2.7.4.4  SVM 

Kothuru et al. (2018) compared SVM and convolution neural network (CNN) 

techniques in machining operations. The progression of wear rate in the cutting tool 

and variation of hardness in the workpiece was analysed using the above techniques as 

decision-making models. Wang et al. (2018) studied the application of a support vector 

machine (SVM) in multi-class gear fault diagnosis. Classification accuracy was 

excellent when the training data set, and testing dataset had identical rotational speeds. 

Since the training dataset was not available at all rotational speeds, interpolation and 

extrapolation of test data were used to help the SVM classifier perform fault diagnosis. 
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2.7.4.5 K-star algorithm 

One of the instance-based classification methods is the K-star algorithm. According to 

a few similarity methods, this is the class of a test instance that is based on training 

instances that are identical to it. Compared to other instance-based learners, it is 

different in how it uses a distance function based on entropy. An instance is classified 

by comparison to a database of previously classified examples. 

Vibration analysis was used by Painuli et al. (2014) to investigate defect diagnosis of 

lathe tool monitoring. Utilizing the K-star approach, statistical features were collected 

from the received signals and classification was carried out. Results indicate that K Star 

could classify the tool's conditions with a 78% degree of accuracy. Using vibration 

signals, Singh and Amarnath (2016) studied wavelet transform, decision tree, and K 

star algorithms for helical gear box problem diagnostics using vibration signals.  

2.7.4.6 Artificial neural networks (ANN) 

Regarding ANN, the artificial nodes are highly related to one another. These links are 

referred to as neurons. It's an adaptive system that shapes itself in response to data 

streaming via the network. The multilayer feed-forward back propagation technique is 

one of many designs used for rotating machinery components. An artificial neuron 

consists of synapses, a summing function, and an activating function (Sharma et al. 

2017). 

2.8 CONTROLLING VIBRATION IN MACHINING  

Machining instability is caused due to chatter with the lack of relative stiffness of the 

tool and its supporting structure. Tool chatter can be mitigated by increasing the tool 

stiffness or isolating the source of vibration (Pour and Behbahani 2016). Increasing 

stiffness shifts the damping resonant frequency to other machine components. Isolating 

the source of vibration is not viable as the shearing of the chip is a dynamic process. 

Theoretical modelling and analysis of tool vibration is a complex process and is a topic 

of many recent studies, but its complete elimination is very costly (Rivin 2000). Hence 

many machinists follow practical alternatives which are cost-effective such as 

employing spindle speed variation (SSV) in high-speed machining (Yamato et al. 

2020), vibration-assisted cutting (Xiao et al. 2002), using tuned mass damper (Biju and 
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Shunmugam 2014), incorporating vibration damping technology (Som et al. 2015; 

Sørby 2017) and incorporating active vibration technology (Park et al. 2007). Recent 

research on vibration control has proved that smart materials play a vital role in 

vibration control without altering the system design.  Many researchers have used 

several vibration suppression techniques involving passive, active and semi-active 

damping of tool vibration for reliable machining processes. Figure 2.11 shows the 

schematic of three damping techniques employed for tool vibration control considering 

the cutting tool as a single degree of freedom model.  

2.8.1 Passive damping techniques 

A passive damping system couples an auxiliary mass to the vibrating tool; thus, 

oscillations of mass in negative cycles of chatter cycles form the damping and inherent 

stiffness of the tool holder as a spring Munoa et al. (2016). However, it is not adjustable 

to a wide frequency range. Ma et al. (2021) developed a pre-tuned damping system in 

the tool adaptor that houses a heavy mass supported by rubber springs that absorbs the 

vibration energy produced during the machining. The parts and components of the tool 

holder are shown in Figure 2.12. However, the technique was applied to a long slender 

milling tool. The cost of the tool was seemingly high; also, the tool holder was required 

to have a unique fixture and software integration. Biju and Shunmugam (2014) 

investigated the particle impact damper in attenuating the regenerative chatter and 

surface finish in boring by filling the cavity in the bar with various particle sizes and 

particle volumes.  

Figure 2.11 Damping methods employed for tool vibration  
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2.8.2  Active damping techniques 

Active damping employs sensors to sense the vibration level and send the control signal 

to the actuator, such as a piezoelectric, magnetostrictive or electromagnetic actuator 

with a more robust and stable control scheme to counter the vibration to control the 

vibration. A review of the application of active materials and their development of in-

process control was carried out by Park et al. (2007) in detail suggests that the 

multifunctional capability and unobtrusive nature of active material had made them the 

integral of machine tools; however, the cost involved in such component was seemingly 

huge. Monnin et al. (2014) presented the effective control of vibration in machining by 

Figure 2.13 Active spindle (Monnin et al. 2014) 

Figure 2.12 Milling tool embedded with passive damping unit. 1—end cover; 2—

damping element; 3 and 8—gasket; 4—shell; 5—mass block; 6—steel rod; 7—

support block (Ma et al. 2021) 
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using piezoelectric stacks in the spindle unit to minimise the influence of cutting force 

on tool tip deviation by considering the dynamics of the machine structure.  Figure 2.13 

shows the schematic of the active force generator in the spindle unit.   

2.8.3 Semi-active techniques 

Many researchers have worked on tool chatter control by designing various methods 

and components. Vibration control using smart material can be referred to as semi-

active vibration control, where the advantage of both active and passive systems are 

brought together while overcoming the disadvantages of both, such as requiring 

minimal power for functioning and in case of failure they could still perform as a 

passive system with no need of a complex controller.  Recent research on vibration 

control has proved that smart materials such as MR fluid in a damper and mount have 

effectively controlled the vibration with easy installation and no structural 

modification. Kolluru et al. (2013) developed a magnetorheological shock absorber bed 

to minimize chatter developed during milling thin-walled features at high speed. A good 

quality product was produced with the shock absorber bed, which isolated the 

instabilities of machining. Eem et al. (2019) developed an adaptive elastomer mount to 

suppress machine vibration transmitting to the isolation table. A hybrid simulation test 

Figure 2.14 MR sponge used for vibration control in boring operation (Saleh et al. 

2021) 
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was conducted to evaluate the performance of the developed MR elastomer mount with 

the passive counterpart using a shaking table and equipment over the elastomers. The 

adaptive elastomer outperformed its counterpart. In another independent research, a 

flexible fixture was made to suppress the vibration of a thin-walled workpiece. The 

workpiece was immersed in the tub of MR fluid; an appropriate magnetic field was 

supplied to secure the workpiece during machining (Ma et al. 2016b). Saleh et al. (2021) 

used an MR sponge as a damper to improve the stability of the boring bar for machining 

Inconel 718 and AL 7075 with improvement in both dynamic stiffness and damping. 

The 3D model of the installation of the MR sponge on the cutting tool is shown in 

Figure 2.14.  Biju and Shunmugam (2019) developed a tunable boring bar as an inverse 

cantilever inside the primary structure with MR fluid in the bar cavity and tuning the 

oscillation frequency by activating the magnetic field. The schematic of the tool holder 

is shown in Figure 2.15. Mohan and Natarajan (2016) employed an MR damper to 

control the chatter of boring tools. The boring tool was attached to the piston rod of the 

MR damper (which was a modified pneumatic damper). Cutting experiments were 

conducted in the presence and absence of an MR damper. It was observed that the 

vibration amplitude of the tool was decreased by up to 24%; also, the surface amplitude 

of the workpiece was reduced by up to 31% after using the MR damper.  

The literature survey shows spindle speed variation, active tool holder, passive tuned 

mass damper and many other techniques to address tool vibration however, the need to 

implement such techniques economically on the conventional lathe is desired. Hence 

an attempt is made to design the MR damper with optimal MRF composition to 

suppress the tool vibration. The study also includes the design of experiments and 

techniques to arrive at better fluid composition. 

2.9 DESIGN OPTIMIZATION AND APPLICATION OF MR DAMPER 

Parlak et al. (2013) performed geometric optimisation of the MR damper using the 

Taguchi design of experiments. The work was concentrated on maximising the 

magnetic flux density at the annular gap of the MR damper and classifying the design 

variables, which strongly influenced the objective function. The optimal damper 

configurations obtained from the study were fabricated and tested for verification. The 
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FEM images of the different design configurations obtained are shown in Figure 2.16. 

Parlak et al. (2012) geometrically optimized the MR damper using goal-driven 

optimisation based on maximum damper force and magnetic flux density as objective 

functions. Gurubasavaraju et al. (2017) geometrically optimized the monotube MR 

damper under shear mode with the ANSYS optimization tool; surface response 

techniques were used to optimise the MR geometrical parameters damper. Xu et al. 

(2013) conducted multi-objective optimization of an electromagnetic circuit of an MR 

damper to minimize the area of the magnetic circuit and enhance the damper force using 

the finite element method. Electrorheological and magnetorheological fluid devices 

were compared based on the electrical power requirement and an optimized MR damper 

to minimize the electrical power consumption.  

Farjoud and Bagherpour (2016) presented a procedure to develop electromagnets with 

optimum design for MR devices using the finite element technique. Both steady-state 

design and dynamic design methods were discussed. The magnetic energy density 

(MED) and magnetic field efficiency (MFE) were used as performance parameters to 

assess MR electromagnets. Goldasz (2013) developed a model which can be extended 

to any monotube MR damper of multi-parallel annular flow paths.  The model 

demonstrated the simulation of fluid flow through the piston. Kishore et al. (2018) 

developed an MR damper to suppress tool chatter in turning operation. The damper had 

a magnetic coil wound around the cylinder, and voltage was varied to control the 

damping co-efficient of the damper. A finite element analysis of the cutting tool was 

carried out, which simulated the effect of a damper on tool deflection during machining. 

The developed damper had reduced the tool wear, improved the surface finish and 

reduced cutting force.  

The MR damper in the current study is designed with optimal geometric dimensions 

through a multi-objective genetic algorithm using a central composite design of 

experiment in ANSYS magnetostatic analysis.   



45 

 

2.10  MAGNETORHEOLOGICAL FLUID 

MRF has proved its effectiveness in various engineering applications such as dampers 

(Parlak et al. 2012), clutches (Rabinow 1948), brakes (Acharya et al. 2021), engine 

mount (Nguyen et al. 2013) and surface grinding/polishing of optical lenses (Poynor 

and Reinholtz 2001). The preparation, rheological study and optimization of MR fluid 

are briefly discussed in this section.  

2.10.1 Preparation and characterisation  

The typical base oil used for the preparation of MRF is silicone oil (Osial et al. 2022), 

mineral oil ((Lim et al. 2004) and hydraulic oil (Acharya et al. 2019). The size of solid 

particles (carbonyl iron particles) may vary from 1μm to 10 μm (Ashtiani et al. 2015).  

Figure 2.15 Magnetic flux density for various design configuration (Parlak et al. 2013) 
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Paul et al. (2015) investigated the effect of nanoparticles on the performance of an MR 

fluid damper when employed in turning. An attempt was made to minimize the 

temperature and improve the viscosity of MR fluid by infusing the aluminium and 

titanium oxide particles. The steps involved in preparing and characterising MR 

particles and MR fluid using various techniques have been shown in detail by (Kumar 

Kariganaur et al. (2022) in Figure 2.17.  

2.10.2 Rheological study 

 Kamble and Kolekar (2014) used silicon as a carrier fluid with different amounts of 

iron carbonyl particles to synthesize a new MR fluid and studied its rheological 

properties. A plate and cone type rheometer was used to determine shear stress, shear 

strain rate, viscosity and shear modulus. Song et al. (2009) synthesized a magnetic 

nano-sized additive made by decomposing penta carbonyl iron and studied the effect of 

adding this material in MR fluid under the influence of magnetic material. 

2.10.3 Optimization of composition of MRF 

It is difficult to find the exact composition of MRF based on the design equations as 

unknown practical parameters influence their behaviour; hence, optimization by 

experimental techniques is necessary. Achieving the optimal rheological properties of 

MRF for each application requires a detailed evaluation of its constituents, composition 

and preparation method. MRF delivers varying damping coefficients based on the 

magnetic field induced in them (Phule et al. 1997).  

(Acharya et al. 2019) obtained optimal composition of MR fluid for a shear mode mono 

tube damper by considering three different particle loading and two different particle 

size to obtain maximum damping force with minimum off-state viscosity through a 

multi-objective genetic algorithm.   (Acharya et al. 2021) Finding optimal MR fluid 

composition for MR brake by considering particle mass fraction, base oil viscosity, and 

mean particle diameter of carbonyl iron particle using the multi-objective genetic 

algorithm by maximising field induced brake and minimizing off-state torque.  
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2.11 DYNAMIC MODELLING OF MRD 

Seung-Bok and Young-Min (2013) compiled dynamic modelling and control 

methodology to design MR devices for various vehicle applications, such as MR 

damper, MR brake, MR clutch, MR mount, and MR valves which help scientists and 

engineers in developing new devices.  

2.12 MATHEMATICAL MODELLING OF CUTTING TOOL 

Turkes et al. (2011) developed a mathematical model to predict chatter frequency for 

orthogonal cutting by assuming turning as a single degree freedom system. The chatter 

frequency prediction model was developed by applying the orient transfer function 

(OTF) and tau- decomposition technique to Nyquist criteria. OTF and tau-

decomposition techniques predicted the chatter frequency with a 3.3% and 2.12% 

deviation with the experimental value, respectively. Ramesh et al. (2013) designed a 

boring tool which was attached to different damping materials such as copper, cast iron 

and brass. Experimental results were compared with the analytical model developed 

using an artificial neural network. It was identified that experimental results conformed 

with analytical results. Ahmed et al. (2014) designed the MR operated end mill cutter 

and developed an FE model for the end mill cutter with an MR damper using the Euler 

beam model. Mohan et al. (2017) conducted a harmonic analysis of a boring tool 

incorporated with an MR damper. The effect of the MR damper on the peak amplitude 

of tool vibration was studied. It was identified that the peak value was reduced 

significantly after using the MR damper. Chiou and Liang (1998) developed a 

mathematical model for chatter stability for both sharp and worn tools. Experimental 

results verified analytical stability limits. Budak and Ozlu (2007) developed an 

analytical model for boring operation using multi –a dimensional approach and showed 

the effect of nose radius on the chatter stability. Experimental tests were also conducted 

to verify the analytical results. 

2.13 CONTROL STRATEGIES 

Ramesh et al. (2013) investigated chatter stability in the boring bar and predicted tool 

wear using ANN. 3D plots and ANOVA tables were used to understand the influence 
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of cutting parameters and their interactions on tool wear. An experiment was conducted 

on a boring tool with an impact damper to validate the predictive model. 

2.13.1 PID control 

Devikiran et al (2022) designed and simulated a custom-built MR damper for a two-

wheeler application. The Kwok model was chosen to represent the MR damper 

mathematically.  The supply of current to the MR damper was regulated by a PID 

controller on the basis of the damper's deflection. The ride comfort and road holding 

was improved with the PID control. Using an intelligent PID controller with an iterative 

learning algorithm, a simulation study of a magneto-rheological (MR) damper and 

hydraulic actuator for suspension system was conducted by (Talib and Darus 2013). 

Based on the force-displacement and force-velocity characteristics, the needed damper 

force was calculated using the Bouc Wen model of MR damper. 

2.13.2 Fuzzy control  

Pour and Behbahani (2016) developed semi –active fuzzy control for chatter stability 

using an MR damper in turning in which the Chatter stability index (CDI) was used to 

analyse the stability of the process and fuzzy control to give the best voltage signal 

based on the measured vibration signals. It was observed that stability in the turning 

has increased up to 50% using a fuzzy controlled MR damper model. Sajedipour et al. 

(2010) developed the lumped model for MR damper using the Bouc-Wen model for 

turning operation. The turning process was analysed with the help of integrated 

simulation software and fuzzy control to calculate suitable voltage for the MR damper 

to suppress the chatter based on the vibration signal. It was observed that simulation 

results conformed with experimental results, also fuzzy controller significantly 

improved the system stability characteristics. 

2.13.3 ANN  

Cao et al. (2008) demonstrated the feasibility of the ANN and Probabilistic Moving 

Near Neighbor (PMNN) as the scalable and invertible MR damper model, which can 

be applied to system design. It was suggested that PMNN is not a universal approach 

which requires physical principle structure knowledge.  
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2.14 RESEARCH GAP  

The current research trends show various methods to damp the vibrations induced 

during the cutting operation. The list of publications and patents involved in this field 

show the need to address this problem. Some have attempted in applying the passive 

and MR fluid damper technology to reduce tool vibration for boring operation and 

milling operation, however no attempt has been made to apply suitable control strategy 

for the semi-active system for hard turning operation. Thus there is a need to develop a 

tool specific MR damper and to apply a suitable control strategy to reduce the vibration 

and improve the surface finish of the workpiece and evaluate machining performance 

with external damper on stability limit of machining, chip morphology, tool life, and 

cutting force. The proposed research enables to develop a variable damping MR tool 

damper which adjusts to changing cutting conditions to improve the machining 

performance and reduce surface roughness. From the literature survey, it is found that 

there is no attempt made to control the damping force of damper online during 

machining. Existing damper of Paul et al. (2012) was manual controlled. In the 

proposed work, MR damper designed for cutting tool vibration control can do lot more 

than the existing design such as online prediction of surface roughness by using 

accelerometer signal, a robust controller designed to change the stiffness of the damper 

to control deteriorating surface finish at varying cutting condition along with correcting 

strategy. This damping technique enables stable machining, delays the tool wear in 

aggressive cutting conditions, and enables a higher material removal rate.  

 

2.15 MOTIVATION FROM THE LITERATURE SURVEY 

The literature review concludes that signal processing and machine learning are 

effective tool fault identification and diagnosis techniques during machining processes 

for early tool failure detection to avoid unsteady vibration and poor surface finish. It is 

also evident from the literature that MR fluid devices have improved the machining 

performance in various operations, such as milling and boring. A similar approach is 

followed in this thesis to dampen the tool vibration in turning hard steels in addition to 

real-time control, unlike many researchers who attempted to reduce tool vibration 
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manually. The predefined machining parameters do not meet the modern machining 

requirement, which is becoming more automatic due to dynamic changes in the tool 

and workpiece. Therefore, it is essential to monitor and correct the cutting process 

online by identifying deviations from the actual machining regime to unstable by 

properly adjusting the structural support of the machining operation. 

2.16 OBJECTIVES OF RESEARCH WORK 

1. To identify tool faults in hard turning operation based on vibration and cutting 

force through signal processing and machining learning techniques  

2. To design, develop and characterise a magnetorheological fluid damper to 

control the vibration of the cutting tool  

3. To synthesise and characterise the optimal composition of magnetorheological 

fluid for magnetorheological tool damper  

4. Implementation and evaluation of damper performance in controlling the tool 

vibration  

2.17 SCOPE OF CURRENT RESEARCH 

The scope of the current research work are drawn as follows  

 Signal processing techniques such as time domain, spectrum and wavelet 

analysis under various tool fault conditions are evaluated using cutting force 

and vibration signal. 

 In the present work, the experiment will be carried out on all geared precision 

panther lathe equipped with cutting force measuring dynamometer and 

vibration measuring accelerometer under different cutting conditions.  

 Machine learning techniques such as Rotation forest, Naïve Bayes and Random 

tree are used to classify the features to diagnose the tool fault conditions—

determination of best feature and classifier combination for diagnosing the tool 

faults. 

 Based on the results of fault diagnosis, the vibration level and amplitude of 

cutting force for healthy and faulty conditions are identified and a suitable 
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vibration damping technique, preferably MR damper, is designed, developed 

and characterized.  

 Detailed steps of optimizing the geometric dimensions with better magnetic 

properties of the damper materials; optimal MR fluid composition that results 

in maximum yield stress and damping force are carried out. 

 The developed MR damper is implemented on the lathe for turning operation to 

evaluate the machining process's tool wear, surface roughness and stability 

limit. 

 Real-time control is implemented to control the MR damper to achieve effective 

controllability. 

 A novel tool holder containing MR fluid in the axial hollow section is developed 

that can reduce tool vibration by changing the damping coefficient of the MR 

fluid contained in the tool holder.   

 

2.18 SUMMARY  

This chapter deals with literature on signal processing and machine learning techniques 

for tool fault identification and classification, respectively—the application of MR fluid 

in some engineering fields, specifically machining. The chapter lists the literature 

discussing chatter identification and avoidance technique used in machining operations. 

The literature referred to in this chapter forms the basis for identifying the research gap 

and formulating the objectives to achieve the thesis title.  
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CHAPTER 3 

 

 METHODOLOGY  

 

3.1 INTRODUCTION 

In the present study, fault classification of single point cutting tools for hard turning has 

been carried out by employing signal processing and machine learning technique using 

cutting force signals and vibration signals. A comparison of the performance of 

classifiers was made between cutting force and vibration signal to choose the best signal 

acquisition method in classifying the tool fault conditions using the machine learning 

technique.  

Tool wear is inevitable in machining; however, one can delay the tool wear and increase 

the tool life by selecting optimal and stable machining conditions by using vibration 

suppression techniques that aid aggressive cutting conditions. An MR damper is sought 

as a vibration suppression device fitted onto a lathe machine with the optimal MR fluid 

composition to evaluate its performance in controlling the tool vibration. The L9 

Taguchi design of the experiment opted to arrive at minimal machining parameters to 

evaluate the performance of the damper in machining two workpiece materials, namely 

oil hardened nickel steel (OHNS) and high carbon high chromium (HCHCR) die steel. 

The stability lobe diagram is obtained analytically with experimental validation to mark 

the stability limit of the machining condition. The designed MR damper is controlled 

by a real-time controller considering the vibration-limiting feedback approach. The tool 

wear, surface roughness, and amplitude of tool vibration are evaluated with and without 

a semi-active MR damper. To improve the design configuration of the MR damper, an 

internally damped novel tool holder is designed that houses MR fluid in its axial hollow 

section. The developed MR tool damper reduces the tool vibration with the electric 

current supply.  



54 

 

 

Figure 3.1 Flowchart of overall research methodology  
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3.2 METHODOLOGY  

The proposed research work involves three stages. They are as follows 

1. Fault diagnosis using signal processing and machine learning 

2. Design and development of MR damper to suppress the tool vibration  

3. Implementation of MR damper on the lathe to evaluate machining performance  

3.2.1 Fault detection based on signal processing  

The current study considers four tool conditions: a healthy tool, a tool with extended 

overhang, a tool with flank wear and a broken tool. These faults are induced naturally 

to simulate the practical scenario. Vibration signals and cutting force signals are 

acquired to monitor tool condition. Spectrum and wavelet analyses are applied to these 

time domain signals to identify the tool state. Spectrum analysis reveals the frequency 

component of fault, while the wavelet spectrogram represents fault by a magnitude and 

characteristic frequency. Wavelet analysis reveals both time localisation and frequency 

component of the signal 

3.2.2 Fault diagnosis based on machine learning 

Machine learning is gaining importance in the current world due to its ability to identify 

and classify parameters based on the training data set. A set of trial runs are run with 

each tool's condition, and both vibrational and cutting force signals are acquired 

simultaneously. Machine learning is employed over these data set to classify the tool 

faults by following three basic steps of ML, namely feature extraction, feature selection 

and classification. The DWT and statistical features are extracted from vibration and 

cutting  force signals. A decision tree is used to select the significant features from the 

features extracted. Finally, classification of tool conditions using two classifiers, 

namely Naïve Bayes and Rotation forest. The ML used in the current study is a 

supervised ML with a 66 % training data set and 34 % testing data set with 10 fold cross 

validation.   

 



56 

 

3.2.3 Design, development and characterisation of MR damper  

Referring to the literature on the vibration suppression techniques by a passive, active 

and semi-active techniques it is found that semi-active is a feasible solutions for tool 

vibration control; hence an external MR damper is designed and developed to be 

implemented on a lathe. 

An MR damper is designed, developed and implemented by considering design input 

parameters obtained from preliminary turning experiments. Design of MR damper 

initiated with magnetostatic analysis of flow valve where geometric dimensions of flow 

valve of the damper are assigned and optimized. The magnetic material best suitable 

for achieving maximum flux density is evaluated by assigning material properties to 

the ANSYS model 

Figure 3.2 Flowchart of fault diagnosis using machine learning  

Cutting force measurement  

Feature extraction (Statistical 

features and DWT features) 

Feature selection [J48 decision 

tree] 

Classification of features by Naïve 
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cutting tool with healthy and 

simulated tool faults  

Vibration signal 

measurement  
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3.2.4 Synthesis and characterisation of MR fluid  

The optimal composition of MR fluid is selected based on the desired shear stress from 

various samples prepared in-house. MR fluids are characterized on a rheometer to 

evaluate their rheological characteristics suitable for the damper. Commercial MR 

Figure 3.3 Flowchart of damper design and fluid synthesis 

Finite element analysis of MR 
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Geometric optimization to 

maximise the damping effect  

Design of shear mode mono 
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Rheological 

characterisation using 
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fitting Hershel Bulkley 

model to Rheological 

curves  

Fabrication of MR 

damper  

Characterisation of 

damper using dynamic 

testing machine   

Measuring the 

damping force 

Obtain optimum particle loading and viscosity based on 

maximum (ON/OFF state) damping force and yield 

stress using multi objective genetic algorithm (MOGA) 

Validation of optimal 

sample composition  
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Fluid is used to compare the performance of in-house MR fluid. The damper is 

fabricated to optimized design parameters and tested on a dynamic testing machine to 

evaluate its dynamic behaviour under various current supplies.    

3.2.5 Implementation of MR damper to evaluate machining performance 

The machining study is carried out with the augmentation of a Magnetorheological 

(MR) fluid damper to suppress tool vibration in hard tuning with easy installation 

without much structural modification. The optimal composition of MR fluid prepared 

in-house and is used in the damper. The in-house MR fluid is compared with 

commercial MR fluid.  The L9 Taguchi design of the experiment opted to arrive at 

minimal machining parameters to evaluate the performance of the damper in machining 

two workpiece materials, namely oil hardened nickel steel (OHNS) and high carbon 

high chromium (HCHCR) die steel. The tool wear study is also carried out to monitor 

the influence of external damping over tool life. The stability lobe diagram is obtained 

analytically with experimental validation to mark the stability limit of the machining 

condition.  

3.2.6 Implementation of current control  

An accelerometer is placed on the tool holder to acquire the vibration in the tangential 

direction. Vibration signals of the cutting tools were acquired and analysed using NI 

DAQ 9230 & NI LabVIEW. The piston rod of the MR damper was connected securely 

to the bottom of the tool holder, and the base of the MR damper was rigidly fitted on 

the lathe carriage to provide upward reaction force and neutralise the tool displacement. 

The Block diagram of the experimental setup is shown in Figure 3.4 for a detailed 

understanding of the connection between data acquisition and damper control. The 

digital control signal developed in the LabVIEW software is sent to the current 

controller through a digital-to-analogue converter NI 9403 with a DSUB module 

mounted on NI cDAQ 9174. The current controller acts as s switch to continuously turn 

ON/OFF the power supply from the DC power source to the MR damper. The activated 

MR damper changes its damping coefficient according to the limiting vibration 

feedback.   
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3.2.7 Design of a novel anti-vibration tool holder   

We have seen that an external damper can reduce the tool vibration effectively, enabling 

a good surface finish. Similarly an internal damper embedded into the tool holder is 

conceptualised. The tool holder is designed, and developed featuring MR fluid which 

can change its damping coefficient with a change in viscosity of contained MR fluid. 

The tool holder is one of a kind and use for turning operations with a magnetic circuit 

inside the tool holder. More details on the design, development and characterisation of 

the novel tool holder are dealt with in chapter 7. The dynamic response of the tool 

holder is evaluated through free and forced vibration study to reveal the damping ratio 

and controllability. The tool holder is later installed on the lathe to study the machining 

performance. The vibration amplitude and surface roughness are evaluated.  
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Figure 3.4 Block diagram of effective control of tool vibration with NI DAQ and 

accelerometer   
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3.3 SUMMARY  

This chapter deals with the methodology followed to achieve fault diagnosis using 

signal processing and machine learning. The vibration induced by these faulty tools are 

suppressed using the MR damper. This damping technique enables stable machining, 

delays the tool wear in aggressive cutting conditions, and enables a higher material 

removal rate. The existing methodology mainly focus on passive damping techniques 

aplied to boring operation and milling operation, whereas the current study addresses 

the violent vibration induced in hard turning operation without much structural 

modification to machine tool. The method is adaptable to cutting conditions unlike 

passive damping which are tuned to specific frequency. The detailed evaluation of 

machining performnce brings out the added advantages achieved with the adaptable 

external damping for machining operation.  The adopted methodology ensures effect of 

external damping on machining performance by detailed evaluation of stability lobe 

diagram, chip morphology, tool life, vibration level, cutting force and surface finish 

produced on the workpiece which are not addressed comprehensively in the literature.  

The limitation of the current study requires sensors and signal analyser that are to be 

accurate to send control signal in real time to control tool vibration online. The MR 

damper suffers gravitational settling instability which makes it ideal for continuous 

usage rather than delay or long time idle. However, the settling instability could be 

addressed by continuously keeping the MR fluid in active condition with minimal 

power usage. 

The whole system of control, cutting tool, sensors, battery supply and signal analyser 

could be miniaturised using a programmable micro controller for easy and convenient 

handling. One of the strong point associated with the current design and methodology 

is variable damping that adapts to changing cutting conditions and hard workpiece 

materials. All literature have used either single material or single cutting condition to 

evaluate the machining performance whereas in the current study two hard steels 

operated at three different depth of cut, three different speed and three different feed 

rate are evaluated.     
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CHAPTER 4 

 

 FAULT DIAGNOSIS OF SINGLE POINT CUTTING TOOL BY 

SIGNAL PROCESSING AND MACHINE LEARNING 

 

4.1 INTRODUCTION  

Tool fault diagnosis with limited human intervention is essential in the modern 

machining process to witness automation and precise manufacturing. Automation 

increases productivity and efficient job handling ability. Online tool condition 

monitoring enables the fault diagnosis of cutting tools. A sensor is employed to acquire 

the information on the tool condition. The sensor data will be in raw form, which needs 

to be processed using a signal processing technique to derive useful information about 

the tool fault. In the present work, a single point cutting too02l of carbide tip is used to 

machine oil hardened nickel steel. Various tool conditions are considered: healthy, 

extended overhang, worn flank and broken tool. Vibration signals corresponding to 

each tool's condition are acquired using the accelerometer to monitor the tool 

conditions. The time domain signals are transformed to the frequency domain by 

employing a fast Fourier transform (FFT)—other signal processing techniques, such as 

wavelet analysis used to understand the ailment of the tool. 

 

4.2 SIGNAL PROCESSING TECHNIQUE 

4.2.1 Time domain analysis 

The following statistical features describe a time domain signal, namely maximum 

value, mean value, standard deviation. Eqn. 4.1 and Eqn. 4.2 represent the general form 

of mean and standard deviation. A low standard deviation signifies the data points are 

close to the mean value, whereas a high standard deviation signifies the data points are 

scattered away from the mean value. 
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(4.1) 

 

 

(4.2) 

4.2.2 Frequency domain analysis 

The frequency components of rotating members is identified by employing Fourier 

transform on the time domain signal (Bae et al. 2019).  Fourier transform for angular 

frequency ω is given by, 

 

 

(4.3) 

X(ω) is the Fourier transform of the time domain signal x(t).  

In turning process tool vibration signal is periodic, and its characteristic frequency is 

spindle frequency (SF), so the spectrum plot of the vibration signal shows peaks at SF 

and its harmonics while the appearance of peaks at other frequencies indicates chatter 

 𝑆𝐹 =
𝑛

60
=

1000𝑣

60𝜋𝐷
 (4.4) 

Where n is spindle speed in RPM and v linear speed in m/min. D is the diameter of the 

workpiece (Madhusudana et al. 2016d). 

4.2.3 Wavelet analysis 

Fourier transform does not apply to non-stationary signals, even though they are most 

common in real life. Online condition monitoring requires tools that handle non-

stationary signals to give real-time system information  (Büssow 2007).  Fourier 

transform cannot reveal the frequency component corresponding to a particular time. 

The spectra reveal only the existence of various frequency components in a system 

concerned. Wavelet analysis provides the frequency component and its location on the 

time strap with a magnitude of frequency (Mallat 2002). Wavelet transform is an 
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effective tool for damage localisation. A continuous wavelet transform of time domain 

signal x(t) is defined as, 

 

 

(4.5) 

In Eqn. 4.7, Ψ(t) is the mother wavelet, Ψ*(t) is the complex conjugate of Ψ(t) . ‘a’ is 

the scaling parameter and ‘b’ is the translation parameter. Xψ(a,b) is a transformed 

signal with the function of ‘a’ and ‘b’ . 
1

√|𝑎|
 is divided with wavelet coefficients at each 

scale to normalise the signal energy  (Benkedjouh and Rechak 2018). 

 

The morlet wavelet transform belongs to the family of CWT. Mother Wavelet of Morlet 

is given by 

 

 

(4.6) 

In the Eqn. 4.8 ω0 is the central frequency of the mother wavelet, the term 𝑒−
𝑤𝑜

2

2  is used 

for correcting the non-zero mean of the complex sinusoid. It is ignored if w0 >5. The 

redefined mother wavelet when w0>5 is given in Eqn. 4.9. 

 

 

(4.7) 

4.3 EXPERIMENTAL WORK 

Experiments were conducted on all geared high-precision universal lathe machines 

powered by a three-phase induction motor with cutting conditions mentioned in Table 

4.2. 

Table 4.1 Chemical composition of Oil hardened nickel steel 

Element C  Si Mn Cr W V Mo Ni Fe 

Weight percentage (%) 0.82  0.18 0.52 0.49 - 0.19 0.13 0.05 Rest 
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Table 4.2. Details of cutting conditions 

Parameters  Specifications  

Work material Oil hardened nickel steel 

Tool holder Sandvik PCLNR2020K12 

Insert material Coated carbide (diamond shape) 

Cutting speed 56 m/min 

Feed 0.3 mm/rev 

Depth of cut 2 mm 

Various conditions of the tool Healthy, overhang, worn flank and broken tool 

 

Oil hardened nickel steel was used as a workpiece material for the study. It is a hard 

steel whose chemical composition is listed in Table 4.1. It finds numerous applications 

in the manufacturing of stamping dies, thread cutting tools, reamers and blanking tools.  

 

Figure 4.1 Schematic representation of experimental setup 
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Fig. 4.1 shows the schematic representation of the experimental setup for understanding 

the acquisition and recording of cutting force and tool vibration during the machining 

process. 

Kistler dynamometer type 9257B was used to acquire cutting force during machining, 

whose specifications are shown in Table 4.3 with the sensitivity of the dynamometer in 

various directions, range of measuring the cutting force and operating temperature of 

the device. Dynamometer had a sampling frequency of 11.6 kHz. The signal generated 

by the piezoelectric dynamometer flows to a multi channel charge amplifier  type 

5070A to condition the signal. The conditioned signal flows into data acquisition 

system 5697A with an integrated A/D card.  Finally, the data is visualised on the 

computer screen. 

Table 4.3. Specification of Kistler 9257B Dynamometer 

Range 

Fx,Fy,Fz (kN) 

Sensitivity 

(Pc/N) 

Natural 

Freq.(kHz) 

Fn(x,y,z) 

Capacitance 

(pF) 

Operating 

Temperature 

Range Fx, Fy Fz 

-5 to 10 -7.5 -3.7 3 to 5 220 0 to 70oC 

Vibration signals are acquired using a tri-axial accelerometer sensor (YMC145A100). 

The analogue output of the accelerometer is converted into voltage by a National 

Instruments data acquisition (DAQ) device. Specifications of the sensor are shown in 

Table 4.4. 

Table 4.4 Specification of the accelerometer used in the experiment 

Parameter  Modal Number Sensitivity(mV/g) Measuring 

Range(g) 

Specification  YMC121A100 X:104.1 Y: 99.28 Z:106.3 ±50  

 

4.4  EXPERIMENTAL PROCEDURE 

Single point cutting tool was mounted on the tool dynamometer, which was secured 

firmly on the tool post, as shown in the inset of Figure 4.3. The direction of various 

force components Fx, Fy and Fz can be seen in the inset of Figure 4.3. Cutting conditions 
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were set according to the test plan (such as speed = 572 RPM, feed = 0.3 mm/rev and 

depth of cut = 0.5 mm). A data acquisition system was used for acquiring force signals 

from the tool dynamometer, which was amplified by a charge amplifier and sent to 

DynoWARE software for post-processing. The force measuring system was calibrated 

prior to measurement. Rough machining was done to remove the unevenness over the 

workpiece and to remove the rust layer formed on the workpiece.  Machining was 

started and measurement of cutting force for the set cutting condition and tool condition 

was taken. Machining time is set for 40 seconds, out of which 30 seconds was the time 

for data acquisition, to stabilise the system prior to measurement. Tool conditions were 

changed keeping cutting conditions constant.  

 

Figure 4.2 Photographic image of various tool wear (a) Healthy tool (b) Extended 

overhang (c) Worn flank (d) Broken tool 

Figure 4.3 Experimental setup containing lathe machine with force measuring and 

analysing system 
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The experiments were carried out for four different tool conditions.  

Different conditions of the tool insert considered in the present study are shown in 

Figure 4.2. 

Case 1. A healthy tool with proper mounting (Figure 4.2 (a)) 

Case 2. Healthy tool but extended overhanging (Figure 4.2 (b)).  

Case 3. Worn flank with proper mount (Figure 4.2 (c)) 

Case 4. Broken tool while mounted properly (Figure 4.2 (d)) 

A fresh and brand new tool insert was used for case 1. However, in case 2, the insert 

used was healthy but tool holder was extended by 45mm extra to simulate the condition 

of the tool mounted with an extended overhang. A worn flank insert was selected in 

case 3. Similarly, a broken tool while machining a similar workpiece was chosen in 

case 4. Case 1, case 3 and case 4 were mounted properly without an extended overhang. 

Case 2 to case 4 are the typical tool condition experienced in machining industries. 

 

4.5 RESULTS AND DISCUSSION ON VIBRATION SIGNAL 

4.5.1 Time domain analysis 

The following figure signifies the time domain signals of various tooling conditions, 

acquired using an accelerometer. The amplitude of tool vibration can be observed in 

the time domain. The range of  time  domain  signal for proper is ±1 g, for  overhang 

±2 g. If the signal is not labelled, one cannot say which signal corresponds to what tool 

condition. The difference between the flank wear and broken tool in the Figure. 4.4 is 

the RMS amplitude of the time domain signal. The RMS of flank wear is 2.9 g, whereas 

the RMS amplitude of the broken tool is 4.01 g. They look the same because a severely 

worn flank leads to a broken tool. The broken tool shows higher amplitude in the time 

domain because of the rubbing of the broken cutting edge. However, FFT and CWT 

analysis allows one to know the tool condition by frequency components and time-

frequency components. As time progresses, the acceleration signal vary but this was 

not visualised nor evident in the time domain signal as large one masked small 

frequency components. A frequency domain plot solves this problem and represents 
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every component of frequency in the spectrum. Some characteristic frequencies appear 

at a particular condition of the tool which can be identified and monitored in a spectrum 

plot for tool fault severity check. 

4.5.2 Frequency analysis 

The variation of harmonic and non-harmonic frequency present in vibration signal 

is analysed to detect tool fault. Many frequency components with high amplitude for 

worn flank and broken tool could be due to friction between non-cutting edges and 

workpieces. The tool fault information may be in low-frequency or high-frequency 

regions. The vibration signal of the healthy tool depicts harmonic and non-harmonic 

frequency components clearly at nominal frequencies.  

The dominant peak value appears at low harmonics of SF, 48 Hz and 100Hz (1x and 

2x); when tool fault changes, high harmonics of SF also appear besides low harmonics. 

Maximum amplitude occurs at 48 Hz, which can be seen in every plot. Some peaks 

appear at different frequencies besides multiplies of SF for healthy tool condition and 

the amplitude are at nominal value and shows no marked spectrum periodicity. In case 

of faulty tools either these harmonics varied or were absent. The spectrum of the faulty 

tool contains many sidebands with a spacing of approx—20 Hz.  FFT shows the 

presence of additional frequencies. Newly occurred frequencies that differ from 
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multiplies SF correspond to chattering, so the chatter occurred for broken and worn 

flank tools. Chatter frequencies are complex as a tool has worn out and more complex 

vibration has been induced. However, FFT does not provide any clear indication of tool 

wear, which can be considered as conclusive evidence.  Referring to Figure 4.5 the 

frequency amplitude of the broken tool is lesser than the worn flank because the broken 

tool creates sharp edges, whereas the worn flank smudges the cutting edge 

 

4.5.3 Time-frequency analysis/ wavelet analysis 

Usually, Morlet wavelets are suitable for detecting gradual frequency changes in a 

signal (Büssow 2007). Figure 4.6 to Figure 4.9 shows wavelet decomposition of 

vibration signal for various tool conditions. Analysing the CWT plot of healthy tool in 

Figure 4.6 reveals the presence of low amplitude frequency components between 0 and 

500 Hz. However, there were narrow, low-frequency components at the beginning but 

they decreased from a time scale of 0 to 1 second. There were broader frequency 

Figure 4.5 Spectrum plot of different tool conditions 
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components between 500 to 1000 Hz with an amplitude of around 1.5 g. Frequency 

amplitude decreased with time in 500 to 1000 Hz.  

The CWT of overhang frequency components raised in magnitude from 10 to 1000 

Hz. The frequency band spread broader in the 0 to 500 Hz range than healthy, with an 

increase in amplitude from 2 g to 4 g, as seen in Figure 4.7. The quantity in Figure., 4.6 

to Figure. 4.9, represents the vibration acceleration level in ‘g’. 

 

 

Figure 4.7 CWT plot for extended overhanging tool 

Figure 4.8 CWT plot for worn flank 

Figure 4.6 CWT plot for Healthy tool 
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The CWT of flank wear in Figure 4.8 shows the further increase of amplitude from 2 g 

to 8 g in all frequency ranges. Also, the band increased up to 1750 Hz. As the tool flank 

wears, the tool rubbing the workpiece sets additional frequency to come into existence. 

The amplitude of tool vibration also increases due to the high cutting force being put 

onto the tool.  

The CWT of the broken tool in Figure 4.9 has a higher amplitude of tool vibration in 

the 200 Hz to 700 Hz range; there are no much frequency components in the 800 Hz to 

1000 Hz.  

4.6 RESULT AND DISCUSSION ON CUTTING FORCE SIGNAL 

4.6.1 Time domain cutting force signals 

Cutting force signals were recorded for healthy tool, the tool with extended overhang, 

insert with flank wear and a broken insert at a constant cutting speed of 572 RPM, 0.3 

mm/rev feed and 0.5 mm depth of cut. For each tool condition, 30 samples were 

recorded. Cutting force signals acquired for various conditions of tool are shown in 

Figure 4.10 to Figure 4.13.   

Figure 4.9 CWT plot for broken tool 

Figure 4.10 Time domain plot of cutting force signal of healthy tool 
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The sampling frequency was 16.66 kHz. As tangential force is the major cutting force 

with maximum amplitude, it was considered for the machining process analysis. Z-

direction implies tangential direction where the cutting force is maximum. The effect 

of tool deflection due to tool failure is more prominent in the tangential direction. The 

amplitude of peaks was changing and the range of the signal was also changing but it 

does not give any information of the tool diagnostics. 

Figure 4.10 corresponds to a healthy tool mounted properly; Figure 4.11 corresponds 

to an extended overhang. The cutting condition was maintained the same for all the 

cases of tool state. The variations observed in signals were not significant to distinguish 

between the proper mount and extended overhang. In such a condition, it was necessary 

to opt for a signal processing technique, which takes minor changes in signal to 

distinguish accurately. However, signal processing yields result about classification; if 

Figure 4.12 Time domain plot of cutting force signal of worn flank 

Figure 4.11 Time domain plot of cutting force signal of healthy tool mounted 

with extended overhang 
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good sensor and programming are established in the system (to be monitored while 

machine learning makes the system learn automatically with the examples).  

Figure 4.12 corresponds to the signal of flank wear, which induces high cutting force. 

Figure 4.13 is the force signal for tool breakage. With tool breakage, the tool loses its 

geometry, and rises cutting force. A pictorial representation of cutting force is not just 

enough to classify the tool condition. These signals have to be analysed further to get 

the in-depth information buried in the signal to classify the tool state accurately. 

4.6.2 Frequency domain analysis 

The spectrum of cutting force for all four tool conditions is shown in Figure 4.14. A 

dominant frequency component of 4.44 Hz and its 2x harmonics is seen in all four 

conditions—the amplitude of this frequency is seen to be varying with tool condition. 

The amplitude at 4.44 Hz for a broken tool is 105 N much larger compared to other tool 

conditions. A broken tool consumes more energy compared to the rest other conditions. 

However, for the healthy conditions the amplitude is 1.39 N and it increased to 1.71 N 

for overhanging case, whereas it reduced to 1.15 N for flank wear. The level of flank 

wear is seen reduced due to process damping achieved with flank wear land, as evident 

from the study of Tunç and Budak (2012). The spectrum plot resulted in frequency band 

of up to 5 kHz; however, only up to 50 or 100 Hz are shown in here for convenient 

discussion, as sharp peaks appeared in these ranges.  

Figure 4.13 Time domain plot of cutting force signal of broken tool 
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4.6.3 Wavelet analysis of cutting force 

Figures 4.15 to 4.18 show the wavelet analysis of cutting force signal for healthy, 

overhang, flank wear and broken tool, respectively. Only low-frequency components 

were present in the plot in all time stamps. However, the amplitude level kept increasing 

from healthy to overhang, flank wear, and broken tool. Additional frequency 

components were seen in flank wear due to rubbing of a worn flank face with the 

machined parts. The broken tool has only low frequency but high amplitude due to 

sharp edges formed after breakage. These sharp edges get blunt and form newer sharp 

edges, which is evident from the reduction of amplitude from 0 to 0.6 s which further 

increases from 0.6 s to 1 s in Figure 4.18.       
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Figure 4.16 Wavelet plot of overhanging tool – cutting force 

Figure 4.18 Wavelet plot of broken tool - cutting force  

Figure 4.17 Wavelet plot of worn flank – cutting force  

Figure 4.15 Wavelet plot of healthy tool – cutting force 
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4.7 TOOL FAULT DIAGNOSIS BY MACHINE LEARNING  

Sequential steps followed for fault diagnosis of single point cutting tool during 

hard turning are shown in Figure 4.11. Both healthy and simulated faulty tools were 

used for machining oil-hardened nickel steel workpieces. Cutting force and vibration 

signals were acquired using a cutting tool dynamometer and accelerometer. Pre-

processing of the signal was carried out independently for each signal type to feed to 

the transformation tool. Discrete wavelet features were extracted from the signals 

through discrete wavelet transform (DWT), a MATLAB code. DWT yields 8 wavelet 

coefficients (features) for each single second of data. Significant features are selected 

from the coefficients yielded by DWT. This selection of significant features was made 

by the J48 decision tree algorithm. The tree represents the significant features for 

classification in pictorial form with the logic of classification visible explicitly. A 

Figure 4.19.  Methodology followed to classify tool faults using machine learning 

technique. 

Cutting force measurement  

Feature extraction (Statistical 

features and DWT features) 

Feature selection [J48 decision 

tree] 

Classification of features by Naïve Bayes 

Algorithm and Rotation forest algorithm 

Required information of tool condition  

Machining with single point cutting tool 
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decision tree can be used as a feature selector as well as a classifier if, it provides good 

classification accuracy; else, different other classifiers are tested to classify the tool 

conditions. In the current study Naïve Bayes algorithm to classify the tool faults. Since 

two signal types are used, the classification accuracy obtained with vibration and 

cutting force signals were compared to see which sensor signal is more suitable for tool 

fault classification. 

4.7.1 Wavelet Transform Analysis  

Wavelet as a mathematical tool that divides a continuous-time signal into 

different scale components. The wavelets are scaled and translated over a finite-length 

waveform. This finite length waveform is known as a mother wavelet and scalable and 

translatable wavelets are called daughter wavelets. Wavelet transforms can represent 

functions that have discontinuities and sharp peaks. Wavelet transformation 

deconstructs and reconstructs non-stationary signals accurately, whereas traditional 

Fourier transform fails to do so (Wang et al. 2007).  

Wavelet transforms are used to transform data, and then encode the transformed 

data. Wavelet transforms can be of two types.  First, discrete wavelet transforms 

(DWTs); second, continuous wavelet transforms (CWTs).   DWTs use a specific subset 

of scale and translation values. CWTs operate over every possible scale and translation 

and CWT are generally used for signal analysis (Sugumaran et al. (2016), Kumar, H., 

Sugumaran, V., Amarnath, M. (2016)).  
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4.7.2 Feature extraction using discrete wavelet transform 

The effective way of representing large data (signal) is achieved by correlating 

with approximation coefficients. These coefficients contain the most useful information 

in the dataset (Madhusudana et al., 2016a). Decomposed signal has detail coefficients 

and approximation coefficients. Detailed coefficients describe high-frequency 

coefficients, while approximation coefficients describe low-frequency coefficients 

Sundararajan, D. (2015). Approximation coefficients will be considered in each feature 

vector for the formation of the vector which is shown in pictorial form in Figure 4.20. 

Feature V1 is level one decomposition. V2 is level two decomposition and so on.  

Wavelet considered for the present study is the Haar wavelet. Haar low pass 

filter computes simple average while Haar high pass filter computes simple difference. 

The basis function for the DWT is the filter coefficients.  

The DWT feature vector is given by, 

 𝑣𝑑𝑤𝑡 = {𝑣1
𝑑𝑤𝑡, 𝑣2

𝑑𝑤𝑡 , … . . 𝑣𝑛
𝑑𝑤𝑡}𝑇 (4.8) 

 𝑣𝑖
𝑑𝑤𝑡 is the element associated with the different resolutions and can be calculated as 

follows, 

 

 

(4.9) 

 

 

(4.10) 

𝑣𝑖
𝑑𝑤𝑡   is ith  feature vector element in a DWT vector, 

 ni  is the number of samples in the sub-band, 

𝑤𝑖,𝑗 
2  is the sub band for the jth detailed coefficient. 

The pictorial representation of the decomposition is shown in Figure 4.21. The details 

of the DWT feature with its feature vector can be found in studies. The wavelet tree 

representation of the vibration signals gives a clear idea about how the original signal 

is reconstructed using the approximations and details at various levels. The coefficients 

obtained using this wavelet transforms are further subjected to statistical analysis and 
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the statistical features are extracted for all the signals and for all the wavelet coefficients 

from “D1” to “D8”. These features are used for classification and fault diagnosis. 

(Saravanan and Ramachandran 2010) 

 

DWT has different wavelet types: Haar, Daubechies, and Newland transform. 

The mother wavelet function H(l) of the Haar wavelet is represented as Eq. 4.11(Chui 

1992) 

 𝐻(𝑙) = {
1   0 ≤ 𝑙 < 0.5

−1    0.5 ≤ 𝑙 < 1
0               𝑒𝑙𝑠𝑒

 (4.11) 

The scaling function S(l) of the mother wavelet is represented as 

 

 𝑆(𝑙) = {
1    0 ≤ 𝑙 < 1

0            𝑒𝑙𝑠𝑒
 (4.12) 

 

The Haar function Hm,n for every pair belonging to R is 

 
𝐻𝑚,𝑛(𝑙) = 2

𝑚
2 𝐻(2𝑚𝑙 − 𝑛), 𝑙 ∈ 𝑅 

 

(4.13) 

Figure 4.21 Decomposition level of signal using DWT (Saravanan and Ramachandran 

2010) 
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Haar function supported on the right-open interval. It has integral 0 and norm 1 in 

the Hilbert space L2(R), 

 ∫ 𝐻𝑚,𝑛(𝑙)𝑑𝑙 = 0, ‖𝐻𝑚,𝑛‖
𝐿2(𝑅)

2
= ∫ 𝐻𝑚,𝑛(𝑙)2𝑑𝑙 = 1

𝑅𝑅

 (4.14) 

 ∫ 𝐻𝑚1,𝑛1(𝑙)𝐻𝑚2,𝑛2(𝑙)𝑑𝑙 = 𝛿𝑚1,𝑚2𝛿𝑛1,𝑛2
𝑅

 (4.15) 

 

𝛿𝑖,𝑗  Represents Kronecker delta. 

4.7.3 Selection of features using a decision tree 

The decision tree represents decisions and decision-making rules visually and 

explicitly. Decision trees are simple to understand and make a reasonable interpretation 

of data and are effective ways of decision-making. They reduce ambiguity in decision-

making. A decision tree displays the logic of classification for interpretation, unlike a 

neural network (NN) which uses a black box algorithm Sugumaran et al. (2013). 

A decision tree has nodes, branches, and roots to represent the classification of samples. 

A node represents a feature (attribute), a branch represents a decision rule and a leaf 

represents an outcome. A decision tree will have a single root node for a whole training 

set of data (Anoop and Sugumaran 2017)). A new node is added to the tree for every 

partition.  

The detailed steps involved in developing the decision tree are listed below: 

a. The tree starts with a node representing the training samples of data collected. 

b. If the samples are all of the same class, then they are labelled as a leaf.  

c. Otherwise, the algorithm will divide the samples into individual classes based 

on the entropy-based measure known as information gain by discretizing 

attributes to select the optimal threshold. 

d. To create the branch, samples are portioned for each interval. 

e. The algorithm uses the same steps mentioned above repeatedly to form the 

decision tree. 

f. This repetition process to form the tree stops only after one of the following 

criteria is met 
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i. When all the samples of a node given belong to one class. 

ii. When there is no attribute remaining to partition the samples. 

iii. When samples get exhausted for the branch test attribute. 

4.7.4 Classification using Naïve Bayes classifier 

  Naïve Bayes classifier (NBC) belongs to a family of probabilistic classifiers 

built on the Bayes theorem of probability. It predicts the class of an unknown dataset. 

It is a simple but highly effective probabilistic learning method, applied to predictive 

diagnosis and other applications. The classifier relates the attribute set to the class 

variable by applying knowledge of probability and statistics. The classifier learns 

features of the training data set while analysing them. Madhusudana et al. (2014) used 

the Naïve Bayes algorithm to classify the healthy and faulty milling tool conditions, 

resulting in 96.9% classification accuracy. The algorithm assumes that all attributes (Ti) 

are independent when given the class (K) value. 

Naïve Bayes uses the following steps for classification: 

 Learning conditional probability of each attribute Ti from the class label K.  

 Classification is done by applying the Bayes rule to compute the probability of 

K when T1, ., Tn are given.  

 The probability of a class Ki given an instance I ={T1,...,Tn} for n 

observations is given by: 

 

 
(4.16) 

 
(4.17) 

 

(4.18) 

where, 

 p(I) = probability of predictor,  

 p(Ki) = prior probability of the class, 

 p(Ki/I) = posterior probability of class(Ci) when predictor (I) is given. 

i i ip(K )=p(I K )×p(K ) p(I)I

1 n i i p(T ,...,T K )×p(K )

n

j i i

j=1

= p(T K )×p(K )
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 p(I/Ki) = probability of predictor when class is given 

It is assumed that features are independent of each other for a set of random 

variables. It is impossible to estimate all the parameters without such an assumption 

Espinilla, M., Montero, J., Rodríguez, J. T. (2014). Naive Bayes is fast in response and, 

thus, could be used for making real-time predictions. It has a higher success rate while 

classifying multi-class predictions. 

4.7.5 Classification using rotation forest algorithm 

Rotation forest (RF) goals at constructing accurate and varied classifiers. RF is 

an ensemble technique that can distinctly train the ‘L’ number of decision trees. It 

transforms the data set while retaining all the information in the set. An ensemble 

classifier unites the predictions of several classifiers instead of only one classifier. 

Because ensemble reduces the variance and bias. It is essential to alter the data set 

bagging, boosting or learning method to create different classifiers.     

Let X = [x1, x2 ……xn]
T a data point with n features and X is an N x n matrix 

containing the training examples. Y = [y1, y2……yn]
T is a class label with c classes. 

Assuming that true class labels of all training examples are also provided. The ensemble 

vector is D = {D1, D2….DL}, where L is a number of different classifiers in the 

ensemble and F, is the feature set. All classifiers can be trained in parallel. A detailed 

study was carried out by Rodríguez et al.(2006) 

4.8 RESULTS AND DISCUSSION  

The detailed discussion of the results of feature extraction, feature selection and 

classification of the tool faults using cutting force signal data is explained in this 

section.  

4.8.1 Feature extraction for cutting force using DWT 

In the current study, the ‘Haar’ wavelet was used in the discrete wavelet transformation. 

The DWT extracted 8 features (V1 to V8) from each signal. There were a set of 120 

signals with 30 signals for each class. The classes considered are healthy, overhang, 

flank wear and broken tool. Table 4.6 shows only 4 signals for each class for reference. 
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Wavelet coefficients 
Class 

V1 V2 V3 V4 V5 V6 V7 V8 

14.30 11.80 13.10 20.50 46.50 102.00 40.40 130.00 

H
ea

lt
h
y

 

15.40 12.00 12.70 24.00 62.00 142.00 41.60 112.00 

19.50 13.40 14.00 25.00 53.00 145.00 55.00 204.00 

17.30 13.00 14.30 23.30 52.80 123.00 66.20 183.00 

16.00 12.80 14.10 27.00 82.10 240.00 74.70 187.00 

O
v
er

h
an

g
 

18.00 14.40 14.70 24.50 60.10 127.00 61.20 185.00 

17.50 14.60 14.30 31.80 89.50 244.00 76.30 194.00 

16.50 14.10 13.50 24.30 55.60 111.00 51.80 158.00 

345.0 240.0 66.90 99.50 66.10 173.00 49.40 122.00 

F
la

n
k
 w

ea
r 

269.0 187.0 52.60 80.40 55.70 133.00 46.10 154.00 

199.0 141.0 41.20 65.90 70.30 197.00 57.20 141.00 

278.0 194.0 62.90 133.0 381.0 1210.0 103.0 424.00 

9.05 8.36 10.80 28.30 103.0 556.00 2700 19600 

B
ro

k
en

 t
o
o
l 

9.08 7.84 10.40 26.50 118.0 588.00 2930 21400 

9.19 8.32 10.50 25.20 97.60 530.00 3010 22400 

8.54 7.98 9.80 23.90 98.00 437.00 2890 21300 

 

4.8.2 Feature extraction for vibration signal using DWT 

As for the cutting force signal, the vibration signal was transformed to obtain 

wavelet coefficients tabulated in Table 4.7. The tool condition and feature extraction 

method also remained the same for the vibration signal. 

 

 

 

 

 

 

Table 4.5. Discrete wavelet features extracted from the cutting force signal 
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Wavelet coefficients 
Tool condition / Class 

V1 V2 V3 V4 V5 V6 V7 V8 

0.051 0.144 0.260 0.074 0.068 0.049 0.040 0.046 

Healthy 
0.050 0.142 0.271 0.073 0.069 0.043 0.037 0.048 

0.052 0.148 0.267 0.071 0.067 0.049 0.029 0.051 

0.050 0.149 0.240 0.078 0.071 0.048 0.028 0.039 

0.157 0.510 1.110 0.837 0.391 0.160 0.151 0.070 

Overhang 
0.151 0.486 1.090 0.932 0.365 0.157 0.149 0.091 

0.157 0.479 1.050 0.905 0.420 0.161 0.144 0.105 

0.163 0.506 1.110 0.926 0.450 0.170 0.126 0.079 

0.248 0.979 2.340 2.730 1.170 1.080 0.356 0.241 

Flank wear 
0.253 0.959 2.440 2.870 1.130 1.100 0.373 0.308 

0.266 1.010 2.370 3.010 1.030 0.963 0.310 0.245 

0.278 1.060 2.490 3.060 0.994 0.925 0.260 0.275 

1.980 4.770 4.150 4.750 0.901 1.250 0.441 0.337 

Breakage 
2.020 4.590 3.540 3.880 1.040 0.986 0.426 0.267 

2.290 4.970 3.960 4.610 1.260 1.610 0.531 0.327 

2.210 4.570 3.740 4.020 1.210 1.210 0.371 0.335 

 

Table 4.6 Discrete wavelet features extracted from the vibration signal 
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4.8.3 Decision tree for feature selection   

The J48 algorithm was used to form the decision tree. The algorithm was fed 

with labelled wavelet coefficients to classify the classes which were derived from 

DWT. Out of 8 features extracted in DWT, only 6 features were used by the decision 

tree to classify the tool state. In a decision tree, the classes are represented by 

rectangular boxes. The box contains several instances classified correctly and those 

classified incorrectly using the rule mentioned in the branch. The decision tree formed 

is shown in Figure 4.22.  All instances of flank wear were classified using a single 

feature, V3, and all instances of the broken tools were classified using two features, V3 

and V2. Healthy and overhang were classified using 6 features with 14 branches. These 

two classes required more features and branches because of data similarity in both 

classes. To classify the flank wear feature, V3 should be greater than 15.7. To classify 

breakage, V3 should be less than or equal to 15.7, and V2 should be less than or equal 

to 9.99. Flank wear and broken tool used one and two features, respectively, because 

of their well-distinguished pattern in their signal and feature. However, six features 

Figure 4.22 J48 decision tree for cutting force 
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were used to classify overhang and healthy because of data overlap. Thus, they required 

feature inside feature to classify them. 

Figure 4.23 represents a decision tree formed from the wavelet coefficients of 

vibration signals. In Figure 4.22, V1 is the root node through which the whole tree is 

formed. V1 >0.058 among V1 <0.168 are classified as overhang else healthy or 

breakage. Similarly, flank wear is classified using V1, V2 and V5 and so on for the 

other classes. 

4.8.4 Classification using the Naïve Bayes algorithm for vibration signal  

The Naïve Bayes algorithm used 10 fold cross-validation method, with 66% 

training data set and 34% testing data set. The confusion matrix in Table 4.7 represents 

the number of instances classified. Across the row are classes, and down the column 

are classified into various classes. Referring to the first row, out of 30 instances of a 

healthy class, 29 were classified as healthy, and one was misclassified as an overhang. 

In the second row, 27 out of 30 were correctly classified as overhang, while 3 were 

misclassified as healthy. Referring to the third row, all instances of flank wear were 

Figure 4.23 J48 Decision tree used for feature selection for vibration signal 
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correctly classified as flank wear. Referring to the fourth row, all instances of broken 

tools are classified correctly.  The overall classification accuracy was 96.6 %.   

classified as  Healthy  Overhang  Flank wear Broken tool 

Healthy 29 1 0 0 

Overhang 3 27 0 0 

Flank wear 0 0 30 0 

Broken tool 0 0 0 30 

 

4.8.5  Classification using Naive Bayes for cutting force  

Table 4.8 shows the confusion matrix for cutting force signal where Naïve 

Bayes classified tool faults using vibration signal at 70% accuracy. i.e., 84/120 were 

correctly classified to their respective classes, and 36/120 were misclassified to other 

classes. This misclassification is due to data similarity in both classes and also an 

inefficient classification algorithm.   

 

classified as  Proper  Overhang  Flank wear  Breakage  

Healthy  30 0 0 0 

Overhang 0 30 0 0 

Flank wear 0 0 6 24 

Breakage 6 0 6 18 

 

4.8.6 Classification using Rotation forest algorithm for cutting force  

The classification using the significant features from the decision tree resulted in the 

following confusion matrix. The classifier is fair in classifying the flank wear and 

broken tool but poor in classifying the healthy and overhang conditions. Looking at 

Table 4.9, samples 25/30 have been classified correctly as healthy, whereas 5 are 

classified as an overhang. Similarly, 27/30 are classified as overhang, and 3 are 

Table 4.7 Confusion matrix for Naive Bayes classifier – vibration signal 

Table 4.8 Confusion matrix for Naive Bayes classifier for cutting force 
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misclassified as healthy. The classification accuracy of the rotation forest for cutting 

force signal using DWT statistical features is 93.33 %.  

Table 4.9 Confusion matrix of rotation forest algorithm for cutting force signal 

classified as  Healthy  Overhang  Flank wear Broken tool 

Healthy 25 5 0 0 

Overhang 3 27 0 0 

Flank wear 0 0 30 0 

Broken tool 0 0 0 30 

 

4.8.7 Classification using Rotation forest algorithm for Vibration signal   

The classification accuracy of the rotation forest algorithm for vibration signal using 

DWT features is also 93.33 %. However, none of the tool conditions is classified with 

100 % confidence. Broken tool condition is misclassified as healthy as well as flank 

wear. Other such tool classifications can be referred to in Table 4.10   

Table 4.10 Confusion matrix of rotation forest algorithm for vibration signal using 

DWT features  

classified as  Healthy  Overhang  Flank wear Broken tool 

Healthy 28 0 2 0 

Overhang 0 29 1 0 

Flank wear 0 0 29 1 

Broken tool 2 0 2 26 

 

4.8.8 Classification using Random tree algorithm for cutting force  

The random tree also gave a classification accuracy of 93.33% for the random trees 

using a cutting force signal with 100 % confidence in classifying flank wear and broken 

tool and 83.33 % confidence in classifying healthy state and 90 % confidence in 

classifying overhang.  
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Table 4.11 Confusion matrix of the random tree for cutting force signal using DWT 

features 

classified as  Healthy  Overhang  Flank wear Broken tool 

Healthy 25 5 0 0 

Overhang 3 27 0 0 

Flank wear 0 0 30 0 

Broken tool 0 0 0 30 

 

4.8.9 Classification using Random tree algorithm for vibration signal   

Random tree classified the tool conditions for vibration signal using DWT features at 

93.33 % accuracy with 100 % confidence in classifying the healthy and overhang, 

whereas 90 % and 83.33 % confidence in classifying flank wear and broken tool, 

respectively.  The confusion matrix is shown in Table 4.12.  

Table 4.12 Confusion matrix of the random tree for vibration signal using DWT 

features 

classified as  Healthy  Overhang  Flank wear Broken tool 

Healthy 30 0 0 0 

Overhang 0 30 0 0 

Flank wear 0 0 27 3 

Broken tool 0 0 5 25 

 

4.8.10 Comparison of various classifiers for their classification accuracy  

Referring to Table 4.13, Random tree and rotation forest yielded the same classification 

accuracy of 93.33 %, whereas Naïve Bayes resulted in 96.6 % accuracy using a cutting 

force signal and 70 % using a vibration signal. The Naïve Bayes algorithm with DWT 

features using cutting force signal is recommended for better classification accuracy.  
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Table 4.13 Comparison of classification accuracy of various classifiers  

Classifier 

Rotation forest 

algorithm 
Random tree Naïve Bayes 

Classification accuracy for 

cutting force (%) 
93.33 93.33 70.00 

Classification accuracy for 

vibration signal (%) 
93.33 93.33 96.6 

 

4.9 TOOL FAULT DIAGNOSIS BY MACHINE LEARNING USING 

STATISTICAL FEATURES 

4.9.1 Statistical feature extraction 

Statistical feature extraction is one basic signal processing technique that uses 

mathematical tools to transform raw non-linear signals into informative signatures 

against noise.  A feature is a distinguishing property obtained from a section of a pattern 

(here, vibration signal).  Features are extracted to represent the important information 

hidden in the signal by decomposing the signal. Statistical features extracted in the 

current study are mean, sum, minimum, maximum, variance, standard deviation, 

kurtosis, and skewness (Tiwari 2000). These features are described in Table 4.13. 

 

Sl. 

No. 
Terminology Statistical formula Description 

1 Mean 

 

A dimensional 

quantity that 

measures the 

central tendency 

of the distribution 

(a measure of 

location) 

Table 4.14 Statistical features and their definition. 

1

1

1 n

i

i

X X
n
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2 Variance 

 

A dimensional 

quantity that 

measures the 

spread about the 

mean or power of 

fluctuation from 

the mean 

3 

Higher 

statistical mo-

ments about 

mean 

 

Higher moments 

4 
Standard 

deviation 
 

A dimensional 

quantity that 

measures the 

variability of the 

distribution or 

fluctuation from 

the mean 

5 Skewness 

 

A non-

dimensional 

feature that 

measures the 

degree of 

asymmetry of the 

distribution (or 

shape of the 

distribution) 

about the mean. 

6 Kurtosis 

 

A non-

dimensional 

feature that  

2 2

2

1

1
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i

i

X X
n
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reflects the 

peakedness of the 

distribution 

7 Standard error 

 

The standard error 

is a measure of the 

amount of error in 

the estimation of y  

 

4.10 RESULTS AND DISCUSSION 

4.10.1 Statistical feature extraction for the experimental dataset 

Statistical features were extracted by Analysis of variance (ANOVA). The 

labelled dataset containing vibration signal information in tabular form is given to the 

software. Only tangential vibration was considered for the study, which was more 

dominant than the other directions. A one-second data of vibration signal of a class (tool 

condition) had 25600 data points. There were thirty seconds of data for each class; four 

classes were in the experiment. One second data set is reduced to twelve statistical 

features. There are 20 data sets for each case; however, only 5 samples for each case of 

vibration signal are shown for reference in Table 4.14 and cutting force data in Table 

4.15.   

2

2

2

( )(y y)
1

(y )
( 2) ( )

x x

Y y
n x x
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Mean 

Std 

Dev. 

SE of 

mean Variance Sum Skewness Kurtosis Mode Min Median Max Range  Case 

0.045 0.311 0.002 0.097 1154.296 -0.003 0.089 -0.132 -1.303 0.045 1.302 2.605 Healthy  

0.045 0.304 0.002 0.092 1143.689 0.003 0.018 -0.057 -1.087 0.044 1.220 2.308 Healthy 

0.046 0.313 0.002 0.098 1165.604 -0.009 0.034 -0.187 -1.120 0.047 1.288 2.408 Healthy 

0.045 0.313 0.002 0.098 1147.899 -0.003 0.098 -0.139 -1.306 0.045 1.340 2.646 Healthy 

0.044 0.319 0.002 0.102 1132.472 -0.041 0.038 -0.088 -1.264 0.047 1.328 2.592 Healthy 

0.044 1.702 0.011 2.896 1136.415 -0.007 0.010 -1.154 -8.834 0.038 6.716 15.550 Breakage 

0.043 1.800 0.011 3.239 1089.782 0.022 0.033 1.134 -7.071 0.035 7.050 14.121 Breakage 

0.045 1.740 0.011 3.029 1143.698 0.001 0.080 -1.261 -9.017 0.047 6.707 15.725 Breakage 

0.044 1.741 0.011 3.032 1127.773 0.035 0.181 0.502 -7.467 0.053 7.658 15.125 Breakage 

0.044 1.702 0.011 2.896 1136.415 -0.007 0.010 -1.154 -8.834 0.038 6.716 15.550 Breakage 

0.042 0.943 0.006 0.890 1085.294 -0.032 0.140 -0.201 -3.782 0.051 3.953 7.735 flank wear 

0.044 0.953 0.006 0.908 1118.085 -0.033 0.019 0.583 -4.222 0.052 3.911 8.132 flank wear 

0.042 0.959 0.006 0.919 1087.680 -0.006 0.112 0.016 -3.882 0.048 4.743 8.625 flank wear 

0.043 0.977 0.006 0.954 1108.934 -0.011 0.085 -0.678 -3.813 0.046 4.594 8.408 flank wear 

0.043 0.972 0.006 0.944 1105.077 -0.025 0.011 -0.423 -4.001 0.050 4.150 8.151 flank wear 

0.045 0.643 0.004 0.414 1153.358 -0.003 0.044 -0.057 -2.857 0.045 2.347 5.204 Overhang 

0.044 0.638 0.004 0.408 1131.619 0.023 0.035 -0.343 -2.683 0.042 2.677 5.360 Overhang 

0.044 0.635 0.004 0.404 1134.998 -0.004 0.080 0.155 -2.529 0.043 2.573 5.102 Overhang 

0.044 0.650 0.004 0.422 1118.950 -0.025 -0.060 0.150 -2.410 0.049 2.613 5.023 Overhang 

0.044 0.665 0.004 0.442 1137.582 -0.016 0.139 -0.189 -2.793 0.049 2.686 5.478 Overhang 

 

Table 4.15 Statistical features extracted from the vibrational signal  
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Table 4.16 Statistical features extracted for cutting force signals 

Mean 

Std 

Dev. 

SE of 

mean Variance Sum Skewness Kurtosis Mode Min Median Max Range  Case 

280.786 6.51024 0.0504 42.3832 4.68E+06 -0.066 -0.08936 281.128 251.831 280.884 304.443 52.612 Healthy 

281.667 7.63723 0.0591 58.3273 4.69E+06 -0.006 -0.60375 281.128 258.911 281.738 305.054 46.143 Healthy 

275.821 6.72561 0.0521 45.2337 4.60E+06 0.102 -0.25895 277.344 254.761 275.757 302.612 47.851 Healthy 

276.880 5.43767 0.0421 29.5682 4.61E+06 0.118 -0.21511 274.414 257.446 276.611 299.561 42.115 Healthy 

272.935 7.60061 0.0588 57.7693 4.55E+06 -0.039 -0.21117 273.071 247.437 273.071 301.758 54.321 Healthy 

273.907 5.96785 0.0462 35.6152 4.56E+06 0.015 -0.08019 275.391 251.831 273.926 298.096 46.265 overhang 

276.652 5.49332 0.0425 30.1765 4.61E+06 0.042 0.17858 278.442 255.859 276.611 303.101 47.242 overhang 

270.239 6.519 0.0505 42.4973 4.50E+06 0.224 -0.12163 270.02 249.512 269.897 294.922 45.41 overhang 

271.819 6.58445 0.051 43.3549 4.53E+06 -0.064 -0.30119 271.24 241.821 271.851 295.288 53.467 overhang 

271.413 5.205 0.0403 27.0920 4.52E+06 -0.133 0.10844 271.362 249.268 271.484 291.992 42.724 overhang 

243.196 108.181 0.8379 11703.2 4.05E+06 -0.188 -1.44366 380.859 69.8242 258.667 405.884 336.059 flank wear 

233.244 112.044 0.8679 12553.8 3.89E+06 -0.031 -1.50529 83.0078 64.8193 240.479 412.598 347.778 flank wear 

233.549 110.239 0.8539 12152.6 3.89E+06 -0.105 -1.4883 376.831 62.8662 244.995 400.269 337.402 flank wear 

239.089 113.786 0.8814 12947.3 3.98E+06 -0.109 -1.49428 71.5332 60.791 250.61 412.109 351.318 flank wear 

226.818 114.336 0.8856 13072.7 3.78E+06 -0.006 -1.49508 71.4111 58.2275 231.567 408.081 349.853 flank wear  

308.635 12.3694 0.0958 153.002 5.14E+06 0.022 0.06305 308.716 261.108 308.228 354.37 93.262 Breakage  

312.544 11.2685 0.8729 126.979 5.21E+06 -0.092 0.07851 312.988 270.386 312.744 353.149 82.763 Breakage 

312.363 11.6424 0.0901 135.547 5.21E+06 0.062 0.13988 312.378 267.822 312.5 355.347 87.525 Breakage 

310.556 12.6979 0.0983 161.237 5.18E+06 0.095 -0.06706 303.345 267.578 310.425 363.525 95.947 Breakage 

306.706 12.5416 0.0971 157.292 5.11E+06 0.019 0.07877 304.81 261.475 306.763 354.736 93.261 Breakage 
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4.10.2 Feature selection using the J48 decision tree   

Figure 4.24 shows the decision tree which used seven features namely, SE of 

mean, Standard deviation, variance, Kurtosis, sum, maximum and skewness for the 

classification of features. These features serve as input to the classification algorithm. 

Looking at the decision tree diagram, one can observe that the ‘overhang’ class has 

been classified with two features; the ‘proper’ class has been classified with three 

features; the ‘Flank wear’ is classified with five features, and the ‘breakage’ is classified 

using seven features. The class, which uses more features, have data similarity with 

other classes.  

 

Similarly, Figure 4.25 shows the decision tree based on statistical features of the cutting 

force signal. Only two significant features are selected (Maximum, Sum).  

 

 

Figure 4.24 Decision tree (J-48) based on statistical features of vibration data 
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4.10.3 Classification using various classifiers  

4.10.3.1 Random tree 

Table 4.16 shows the confusion matrix of the Random tree for vibration signal. 

The overall classification accuracy achieved by a random tree is 92.5 %, lesser than a 

random forest with 8 instances out of 120 miss classified. Similarly, the confusion 

matrix of a random tree for cutting force is shown in Table 4.17, which shows 89.16 % 

classification accuracy. Flank wear and breakage are classified without any miss 

classification, whereas healthy and overhang are classified with 76.6 % and 80.0 % 

confidence, respectively.   

j k l m  classified as 

29 0 1 0 j=healthy  

0 30 0 0 k=overhang 

0 0 29 1 l=breakage 

0 0 6 24 m=flank wear 

 

 

Table 4.17 Confusion matrix of Random tree – vibration signal 

Figure 4.25 Decision tree based on statistical features of cutting force signal 
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Table 4.18 Confusion matrix of Random tree-cutting force 

j k l m  classified as 

23 7 0 0 j=proper 

6 24 0 0 k=overhang 

0 0 30 0 l=breakage 

0 0 0 30 m=flank wear 

4.10.3.2 Naïve Bayes classifier  

Table 4.18 tabulates the classification chart of the Naïve Bayes classifier with 

an overall classification accuracy of 75.83 %, with 29 instances miss classified and 91 

instances correctly classified. Naïve Bayes yielded the lowest classification accuracy 

using vibration signal compared to the rest of the classifiers. Table 4.19 tabulates the 

confusion matrix of the Naïve Bayes algorithm using a cutting force signal with an 

overall classification accuracy of 91.66 %. There is no confusion in classifying the 

breakage and flank wear; however, 4 samples of healthy are confused with overhang, 

and similarly, 6 of the overhang are confused with healthy.   

j k l m  classified as 

28 0 2 0 j=healthy  

0 30 0 0 k=overhang 

0 0 10 18 l=breakage 

0 0 7 23 m=flank wear 

 

Table 4.20 Confusion matrix of Naïve Bayes classifier – cutting force  

j k l m  classified as 

26 4 0 0 j=healthy 

6 24 0 0 k=overhang 

0 0 30 0 l=breakage 

0 0 0 30 m=flank wear 

Table 4.19 Confusion matrix of Naïve Bayes classifier – vibration signal 
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4.10.3.3 Rotation forest algorithm  

In Table 4.20, the rotation forest algorithm has correctly classified all 30 

instances of proper mount-healthy-state of tool. Extended overhang instances are also 

classified accurately. Breakage: 26 instances are correctly classified as Breakage. The 

rest four instances are misclassified as flank wear. Flank wear: 26 instances are 

correctly classified as flank wear, and the rest 4 are misclassified as Breakage. This 

misclassification is due to the similarity in features of Breakage and flank wear. The 

overall classification accuracy of the algorithm is 95.00 %.  

 Table 4.21 shows the confusion matrix of the rotation forest using the statistical 

features of the cutting force signal. The classification accuracy of the algorithm is 90.83 

%.  The algorithm is good at classifying the flank wear and breakage at 100 % 

confidence using a cutting force signal, whereas poor at classifying the healthy and 

overhang case.  

j k l m  classified as 

30 0 0 0 j=proper 

0 30 0 0 k=overhang 

0 0 26 4 l=breakage 

0 0 4 26 m=flank wear 

 

 

Table 4.22 Rotation forest` confusion matrix – cutting force 

j k l m  classified as 

28 2 0 0 j=healthy 

9 21 0 0 k=overhang 

0 0 30 0 l=breakage 

0 0 0 30 m=flank wear 

 

 

Table 4.21 Rotation forest` confusion matrix – vibration signal 
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4.10.4 Comparison of classifiers  

The comparison of all three classifiers for their classification accuracy is 

tabulated in Table 4.22. The Rotation forest algorithm gives the highest classification 

accuracy of 95 % using the statistical features of the vibration signal. It can be seen in 

Tables 4.16, 4.18, 4.20 that vibration signal is preferred for achieving reasonable 

confidence in classifying the healthy and overhang, whereas cutting force is preferable 

to achieve the highest confidence in classifying the flank wear and broken tool (Table 

4.17, 4.19, 4.21). None of the cutting force, vibration signal, classifier, or statistical 

DWT features could give 100 % accuracy.  

 

Sl. 

No. 
Classifier 

Classification 

accuracy for 

vibration data (%) 

Classification accuracy for 

cutting force data (%)  

1 Rotation forest 95.00 90.83 

2 Random tree 93.33 93.33 

3 Naïve Bayes 75.83 91.66 

 

The classification accuracy of all three classifiers corresponding to vibration 

and cutting force through DWT and statistical features are tabulated in Table 4.24. The 

classification accuracy of the vibration signal is better than the cutting force signal for 

both DWT and statistical features. However, Naïve Bayes gives good classification 

accuracy with DWT features, whereas Rotation forest gives good classification 

accuracy with statistical features.  

Table 4.24 Classification accuracy of various classifiers for vibration and cutting 

force signal   

Features  Signal  Rotation forest Naïve Bayes Random tree 

DWT  Cutting force 93.33 70.0 93.33 

Vibration  93.33 96.6 93.33 

Statistical   Cutting force  90.83 91.66 93.33 

Vibration  95.0 75.83 93.33 

Table 4.23 Classification accuracy comparison using statistical features 
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4.10.5 SUMMARY 

The chapter discusses the tool fault diagnosis using signal processing and 

machine learning techniques applied to vibrational and cutting force signals. 

Accelerometer is easy to mount without any structural modification of the tooling 

structure, whereas a dedicated setup is to be established for installing the dynamometer 

for cutting force measurement. The tool faults can be diagnosed using the statistical 

parameters and visual inspection of the time domain signal. The rotational frequency 

and chatter frequency components could be identified, and their amplitude could be 

tracked using the frequency domain analysis. Wavelet analysis reveals both the time 

resolution and frequency resolution of the tool fault, making it the best way to identify 

the time of occurrence of the tool fault and the kind of tool fault.  

In the current study, supervised machine learning with a labelled data set is used 

to train and test the vibrational and cutting force signals. Machine learning follows three 

steps for classification, namely feature extraction, feature selection and classification. 

Statistical features and wavelet features have been extracted for classification. The 

decision tree J48 algorithm is used for feature selection. Random tree, rotation forest, 

and Naïve Bayes algorithm are employed as the classifier, and their classification 

accuracy is compared. The results show that the vibration signal gives better 

classification accuracy than the cutting force signal; moreover, mounting the 

accelerometer and acquiring the vibrational signal is portable and versatile. 

 The next chapter discusses the damper design based on the level of vibration 

and cutting force produced by healthy and faulty tools. The healthy tool has a steady 

vibration pattern with the least standard deviation in the cutting force signal. Similarly, 

unsteady vibration with a large standard deviation is observed in faulty tools. The 

damping coefficient of the damper is to be adjusted to shift the unsteady machining 

state to a steady state. The detailed study of improved tool life can be achieved using 

the damper in the machining operation. The damper's ability to improve the machining 

operation's stability limit is also detailed in the next chapter.  
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CHAPTER 5 

 

 DEVELOPMENT AND CHARACTERISATION OF MR 

DAMPER WITH OPTIMAL COMPOSITION OF MR FLUID  

 

5.1 INTRODUCTION  

The MR damper is designed, developed and implemented by considering design 

input parameters obtained from preliminary turning experiments of healthy tools and 

faulty tools. Design of MR damper initiated with magnetostatic analysis of flow valve 

where geometric dimensions of flow valve of the damper are assigned and optimized. 

The magnetic material best suitable for achieving maximum flux density is evaluated 

by assigning material properties to the ANSYS model. The optimal composition of MR 

fluid is selected based on the desired shear stress from various samples prepared in-

house. MR fluids are characterized on a Rheometer (Make: Anton Paar) to evaluate 

their rheological characteristics suitable for the damper. Commercial MR fluid (Make: 

Lord Corporation, 132 DG) is also used to compare the performance of in-house MR 

fluid. The damper is fabricated to optimise design parameters and tested on a damper 

testing machine to evaluate its dynamic behaviour under various current supplies.  

 

5.2 DETERMINING THE OPTIMAL COMPOSITION OF MRF FOR THE MR 

DAMPER  

Figure 5.1 shows the flowchart of the methodology followed to achieve the 

optimal particle loading and suitable viscosity of base oil that can result in maximum 

yield stress in ON-state concurrently with the maximum effective damping range. A 

preliminary study of solid particles is carried out with SEM characterisation, vibration 

sample magnetometer and particle size distribution to understand the morphology and 

magnetic properties of the carbonyl iron particles used in the study.   
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Figure 5.1 Methodology of fluid synthesis and evaluation of its performance 
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5.3 CHARACTERIZATION OF CARBONYL IRON PARTICLE (CIP)  

The magnetisable solid particles dispersed in a liquid medium must possess 

significant properties that define the rheological characteristics of the MRF. It is 

referred from the literature that larger particle sizes have higher magnetic saturation 

than smaller carbonyl iron particles (Lemaire et al. 1998). Hence the particles 

considered for the study are tested for their particle size distribution. Figure 5.2 shows 

the mean diameters of CIP as 8.27 μm with narrow distribution range.   

Figure 5.3 SEM image of CIP 

Figure 5.2 Particle size distribution of CIP 
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Figure 5.3 shows the FESEM image of these CIP particles taken to reveal their shape 

morphology. They are spherical in shape and have better abrasion and adhesive wear 

resistance (Cho et al. 2002; Lemaire et al. 1998).  

 

 The magnetic permeability of MRF is proportional to the saturation 

magnetization of iron particles dispersed in them. For higher yield stress, the iron 

particles should have high saturation magnetization (Genç and Phulé 2002). The 

magnetic hysteresis curve of 8.27 μm sized CIP has magnetic saturation at 15000 

Gauss, as shown in Figure 5.4. The particles achieve a saturation limit at 6000 Gauss. 

To have a larger effective damping range, the iron particles must possess good 

reversibility of the MR effect with low coercivity and low residual magnetization. For 

good magnetic properties of CIP, MRF show little or no hysteresis. The crystal lattice 

structure of CI particles was found to be body centred cube (BCC) which is shown 

through peaks at 45°, 65.7° and 83°as shown in Figure 5.5 

5.4 SYNTHESIS AND CHARACTERISATION OF MR FLUID 

Silicone oil of 350 cSt (Si-350), hydraulic oil of 57 cSt (Hyd-57) (shock 

absorber oil) and silicone oil of 32 cSt (Si-32) are considered as a dispersed medium 

for the study. Silicone oil has high-temperature stability, whereas hydraulic oil has high 
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Figure 5.4 Magnetization curve of CIP   
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load-bearing capacity. Lower viscosity silicone oil is chosen to achieve low OFF-state 

viscosity, ensuring maximum effective damping range.  

Nine MRF samples are prepared, as shown in Table 5.1, with a specification of samples 

and their nomenclature. The levels of parameters in synthesising the MRF samples are 

tabulated in Table 5.2. The OFF-state viscosity of MRF should be as low as possible to 

achieve maximum effective damping range with the MR damper; hence viscosity of oil 

has been chosen as one of the design parameters. A lower viscosity also supports a 

faster MRF reaction time and better iron particle re-dispersibility (Genç and Phulé 

2002). White lithium grease at 2% of the base fluid mass was used as an additive to 

prevent agglomeration and sedimentation for all MRF samples. Initially, the proper 

mass of each base fluid, additive, and CIP is precisely measured. White lithium grease 

is mixed with base oil for about 8 hours, then CIP is mixed and stirred at 800 rpm for 

12 hours.  

 

 

 

 

Figure 5.5 XRD image of the CIP 
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Table 5.1 Nomenclature of MRF samples prepared for the experiment 

Sample no Base oil Wt. fraction. (%) 

S1 Hyd-57 70 

S2 Hyd-57 60 

S3 Hyd-57 50 

S4 Si-350 70 

S5 Si-350 60 

S6 Si-350 50 

S7 Si-32 70 

S8 Si-32 60 

S9 Si-32 50 

Characterisation of these nine samples of MRF at 3 current inputs (0A, 0.7 A and 1.4 

A) will result in 27 test samples. To reduce the number of test trials, DOE with central 

composite design (CCD) is employed. Table 5.6 with columns 2 and 3 were deduced 

from CCD (placed in section 5.7).  

Table 5.2 Various levels of the parameters for DOE 

Parameters 
Levels 

L1 L2 L3 

Base oil viscosity (cSt) 32 57 350 

Weight fraction (%) 50 60 70 

Supply current to the electromagnet  0 0.7 1.4 

Shear stress vs shear rate was measured for all nine MRF samples according to the 

sample set obtained by CCD using a parallel plate Rheometer (Figure 5.6) (Anton Paar 

MCR-702) in controlled shear rate  (CSR)  for different magnetic fields. A gap of 0.45 

mm between the parallel plates and the temperature maintained at 30 °C. This same 

annular fluid flow gap is maintained between the piston and the cylinder in the damper. 

MRF's post-yield magnetorheological properties are typically modelled under sustained 

shear using the Herschel-Bulkley model (HBM) (Gołdasz and Sapiński 2015).  
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Eq. 5.1 describes the HBM, which has three parameters: yield stress, 

consistency, and flow index. The model describes viscoplastic materials exhibiting a 

power-law relationship (Herschel and Bulkley 1926). Where τ is applied shear stress, 

τo is yield stress, K is consistency index, (du/dt) is the shear rate, n is the flow behaviour 

index. Fitting this equation to flow curves results in parameter values. 

Figure 5.7 shows the plots of MRF characterised on the rheometer as a variation 

of shear stress against shear rate. The fluid samples were tested for 0 A, 0.7 A and 1.4 

A currents corresponding to 0 kA/m, 30.647 kA/m and 56.588 kA/m field strength on 

the test platform of the rheometer. Each curve is fitted by Herschel–Bulkley model for 

all nine samples. Shear stress increases as particle loading of CIP and magnetic field 

strength. MRF with Si-350 displays higher shear stress than Si-32 and Hyd-57 at all 

particle loading except at 70 % wt fraction, indicating the particle loading has an equal 

influence on shear stress as the viscosity of the fluid. A similar trend is seen in the 

experimental work of Acharya et al. (2019) where shear stress increases with particle 

loading from 6000 Pa to 8000 Pa and then to 12000 Pa with particle loading increasing 

from 60 % to 70 % and then to 80 % respectively for particle size around 10 µm. 

However, looking at the shear stress value at 1.4 A of 70 % wt fraction of Si 350 is less 

 𝜏 = 𝜏𝑜 + 𝐾 (
𝑑𝑢

𝑑𝑡
)

𝑛

 (5.1) 

Figure 5.6 Rheometer to characterise MRF samples 
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than 60 % wt fraction indicating the MRF is saturated with particle loading. However, 

the 32 cSt and 57 cSt oil can accommodate still more particles. Hence 32 cSt oil and 57 

cSt oil are further used to prepare 75%, 80 % and 85 % wt fraction samples. Table 5.3 

shows increased yield stress, whereas, they attain saturation level at 80 % wt fraction. 

Hence it could be concluded that 80 % is the threshold loading value for 32 cSt and 57 

cSt base oils and 60 % is the threshold particle loading for 350 cSt oil.  
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  Figure 5.8 shows the variation of dynamic yield stress with varying magnetic 

fields. The yield stress is primarily influenced by the viscosity of base oil and then by 

particle loading. The least viscosity of base oil ensures adequate liquidity and minimal 

damping force at zero-field. Moreover, particle loading has a greater influence on shear 

stress for low-viscosity base oil, whereas marginal influence for high-viscosity base oil.  

Figure 5.9 depicts the off-state viscosity vs. shear rate plot for prepared MRF 

samples. MRF viscosity decreases with increasing shear rate, indicating that the fluid 

shows shear thinning behaviour. Shear thinning behaviour approaches an asymptotic 

value as the shear rate increases.    

Table 5.3 Estimating the saturation limit of particle loading 

Sample name  Particle loading (%) Base oil Yield stress at 1.4 A 

S10 75 Hyd-57 6896.4 

S11 80 Hyd-57 7258.3 

S12 85 Hyd-57 7025.1 

S13 75 Si-32 6587.2 

S14 80 Si-32 6912.6 

S15 85 Si-32 6898.2 

Figure 5.8 Plot of dynamic yield stress for fluid samples under magnetic field (for 

input current) 
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The equation obtained by fitting the curves to the plots in Figure 5.7 is used in 

estimating the damper's damping force, which is discussed in the further section.    

 

 

 

5.5 DESIGN OF MR DAMPER  

The MR damper consists piston–a cylinder system with modification at the 

piston head and fluid involved. The piston head has got electromagnet capable of 

providing a desired magnetic field to restrict the flow of MR fluid through the passage. 

The material used for the piston core and cylinder should be ferromagnetic to keep the 

magnetic flux line close to the restricted passage. In the present study, four different 

ferromagnetic materials are selected for both the piston and cylinder. The schematic 

diagram of the MR damper depicting the cylinder, piston, and electromagnet and MR 

fluid is shown in Figure 5.10. The constraints primarily are the size and shape of the 

Figure 5.9 Viscosity curves of MRF under no magnetic field  
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damper which can be accommodated in the limited space under the tool holder without 

compromising the machining process.  

5.5.1 Design of Magnetic Circuit  

Designing an MR damper for an estimated damping force is achieved by 

developing a magnetic circuit which involves determining Ampere-turns (NI) required 

to produce magnetic flux through the piston. The designed magnetic circuit can produce 

maximum flux density and allows maximum flux lines in the working zone.  

The induction of magnetic flux and magneto motive force (MMF) in the circuit is 

explained using Ohm`s law given as  

 
 

(5.2) 

Where, Φ = magnetic flux produced in the coil, 𝑁𝐼 designates magneto-motive force 

with N being the number  of turns and I  the electric current passing through the coil,  μ 

= magnetic permeability of coil material, A = cross-sectional area.  

The damper is made as compact as possible to accommodate it in limited space 

while considering all functional aspects. The number of coils calculated for the 

designed damper is 95, with a maximum current of 1.4 A. The gauge of the wire being 

used decides the electric current limit. Since a lower-diameter wire is desired to 

accommodate a maximum number of turns, the current is limited to 1.4 A. 

NI A 

Figure 5.10 Schematic representation of MR damper in shear mode  
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The magnetic flux conservation rule establishes the relation between magnetic field 

intensity and the applied current as follows. 

 

 

(5.3) 

The magnetic flux density developed at the annular gap of fluid flow is   

 

 

(5.4) 

Where g = fluid flow gap,   μMR = relative permeability of MR fluid, μo=magnetic 

permeability of free space  

5.5.2 Designing finite element models of MR damper  

The finite element model of the MR damper is shown in Figure 5.11, which is 

modelled and analysed using FEA. As the damper is geometrically symmetric, only 

one-fourth portion of the computational domain is considered for the analysis.  

 

 

 

2
MR
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H

g
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o MR NI
B

g

 


Figure 5.11 Electric boundary condition applied to magnetic circuit  
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 Following assumptions are made during magneto static analysis,  

 Flux lines pass through the cylinder and there is little leakage into the 

surrounding space.  

 The magnetic flux lines are parallel to the surface. 

 The model is axisymmetric; only one-quarter of a damper is analysed. 

 Magnetic flux density induced in the annular fluid flow gap depends on the material 

used for the piston and cylinder. In shear mode, the fluid lies between the cylinder and 

the piston. Choosing the material for the cylinder and piston of proper magnetic 

properties is also crucial apart from designing the electromagnet coil. Ferromagnetic 

materials allow magnetic flux lines to pass through the fluid gap, flow through cylinder 

material, cross across the fluid gap, and reach the piston again, thus closing the 

magnetic field path.  Figure 5.11 also shows the feature selected for assigning electric 

boundary conditions.    

The magnetic field flow depends on the magnetic permeability of a material. The 

magnetic permeability of MR fluid is lesser than ferromagnetic material. According to 

electromagnetic field theory, field lines are parallel to the surface vector. The flux lines 

pass across the flow path, creating the required resistance to the flow of MR fluid 

through the passage while remaining parallel in the cylinder. The explanation is shown 

Figure 5.12 Flux lines around the MR flow valve  
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in pictorial form in Figure 5.12, representing the flow of magnetic flux lines, and their 

directions in the magnetic circuit.  

5.5.3 Comparison of finite element models 

 The magnetic flux density at the fluid gap is visualized by taking MR fluid 

elements separately for different materials, as shown in Figure 5.13 – 5.16. The 

magnetic flux density is maximum at the flange region. The plots also show the 

variation of flux density along the length of MR fluid (axially). Figure 5.13 shows the 

variation of magnetic flux density along the active region for various current inputs. 

The active region is the annular MR fluid surrounding the piston. 

 

 

Figure 5.13 Magnetic flux density distribution in MR fluid element 

between piston and cylinder of material AISI 1008 
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Figure 5.15 Magnetic flux density distribution in MR fluid element 

between piston and cylinder of material AISI 1018 

Figure 5.14 Magnetic flux density distribution in MR fluid element 

between piston and cylinder of material AISI 1010 
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Figure 5.17 Magnetic flux density distribution in MR fluid element 

between piston and cylinder of material AISI 1020 
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The flux density across the length of the piston for various current is shown in Figure 

5.17. The X-axis is the length of the piston from the bottom to the face end. All four 

magnetic materials are evaluated for increasing the current. The saturation limit could 

be clearly seen in AISI 1008 and AISI 1010. AISI 1020 gives minimum flux density 

and minimal dynamic range, whereas AISI 1010 gives 550 mT at 1.4 A.   

5.5.4 Estimation of damping force  

If the viscosity of a fluid is controlled, then the damping force can be varied 

accordingly. Yield stress (τB) developed at the annular gap between piston and cylinder 

due to magnetic field B is given as in Eqn. 5.4. The magnetic field B is obtained from 

FEA performed in ANSYS. τB in Eq. 5.4 is obtained by curve fitting the plot obtained 

through current sweep in Figure 5.7 (section 5.4) with constant shear in the rheometer 

for in-house prepared MRF (here is an instance of an S5 fluid sample) 

 

 

(5.5) 

 Damping force (Fd) in an MR damper is computed through the Eqn. (5.5) to (5.9).  The 

damping force for a shear mode is the summation of frictional, shear, and viscous 

forces. Shear force can be controlled using electric current, while frictional and viscous 

4 3 2
39.7 132.4 119.1 10.3 0.1

B
B B B B     

Figure 5.18 Nomenclature and dimensions of the magnetic circuit 
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forces are uncontrollable and inevitable. The geometric parameters of the damper are 

marked in the schematic sketch in Figure 5.18. 

 

L=effective pole length (mm)=2L1  

(5.6) 

 

Where w= Annular gap (mm), g=fluid flow gap, and D = diameter of 

piston (mm).  

 

(5.7) 

 

Ap = Area of Piston (mm2), , d0 = diameter of piston rod (mm)  

 

(5.8) 

 
 

(5.9) 

 

 

(5.10) 

    The force induced in the MR damper is calculated for various current inputs at 

a 12 V DC supply. The maximum force obtained in AISI 1008, AISI 1010, AISI 1018 

and AISI 1020 is 152 N, 160 N, 140 N and 121 N, respectively. The damper with higher 

flux gives a higher damping force. Figure 5.19 shows the variation of damping force 

for all four material models for various current inputs. The comparison shows the AISI 

1010 produces max damping force for the current 1.4 A, 12 V supply. AISI 1020 is the 

least suitable for damper material as it produced 120 N force at 1.4 A supply. AISI 

1008, AISI 1010 and AISI 1018 got saturated at 1.4 A current which is evident from 

Figure 5.19 with no significant difference between 1 A and 1.4 A. There could be an 

increase in force through an increase in flux density by increasing the current input to 
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AISI 1020. However, the wire gauge 28 AWG does not support 1.4 A current pass 

through it.   

 

5.6 OPTIMIZING THE GEOMETRIC DIMENSIONS OF MR DAMPER 

Optimal geometric dimensions of the MR damper are obtained by performing 

magnetostatic analysis in ANSYS workbench with Magnetostatic toolbox. The 

geometric modelling of the MR valve is carried out with initial design variables. A 

quarter portion of the computational domain of MR fluid in the annular flow gap is 

shown in Figure 5.20 with initial design variables. A maximum of 0.3 T magnetic flux 

density was achieved in the fluid flow gap with the optimized dimensions. Fluid flow 

gap, copper coil width and flange length (input design variables) are assigned as 
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parameter sets. The magnetic flux density developed at the annular fluid gap is set as a 

response parameter.  

 

The input design variables are assigned upper and lower bound through central 

composite design to obtain design points tabulated in Table 5.4. Maximum magnetic 

flux density achieved at the fluid flow gap is evaluated for all design points generated 

in DOE. Surface response plots evaluate the influence of design input parameters over 

magnetic flux density. A full second-order polynomial regression model was used to 

obtain the surface response plots. The sensitivity of these input parameters over output 

response could be examined by plotting a sensitivity chart since three input variables 

influence the magnetic flux density; the optimal design parameters are obtained by 

adopting multi-objective genetic algorithm (MOGA) optimization to maximize the 

magnetic flux density and minimize the design input parameters. The MOGA 

optimization earmarks three candidate points achieving maximum magnetic flux 

density at the flow gap, and the possible candidate point is chosen as the final design 

parameter.  

Figure 5.20 Computational domain of annular fluid flow gap 
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The initial, lower and upper design values are chosen based on the space 

constraints and cutting force measured in the preliminary turning experiment. The space 

available between the tool holder and saddle was 81 mm. The preliminary study was 

carried out to measure the vibration of the cutting tool in hard turning and the roughness 

produced on the machined surface. The amplitude level is higher in the tangential 

direction than in the feed and radial directions. The maximum cutting force produced 

was 236.9 N for speed 572 RPM, 0.125 mm/rev feed and a depth of cut of 0.3 mm. 

Hence, the authors designed the damper based on maximum cutting force and tool 

oscillation. 

Current, I is considered by the gauge of the copper wire used. The gauge is 

considered based on the number of turns required to produce the desired magnetic flux 

density. The voltage supplied to the magnetic circuit is 12 V DC; hence the permissible 

value of current to the AWG 28 coil is 1.5 A, if exceeded this value the wire fuses. To 

accommodate a maximum number of turns, the current is limited to 1.5 A 

B is the value obtained by the magnetostatic analysis for the initial design values. The 

response of the design parameters depends on the current and properties of the MR fluid 

used in the model.  

The response surface plotted the correlation between input design parameters and 

output response. Figure 5.21 and Figure 5.22 shows a correlation between fluid flow 

gap vs coil width and flange length vs coil width, respectively. Coil width has a more 

significant influence on flux density than flange length also, fluid gap influences in 

achieving maximum flux density. 

Table 5.4 Parametric boundaries and optimal dimensions 

Parameters  Initial design 

variables 

Lower 

bound  

Upper 

bound  

Optimal 

dimension 

Width of piston coil (l)  10 mm 4 mm  6 mm  4.6 mm 

Flange length (t)  4 mm 3.6 mm 4.4 mm 3.6 mm 

Fluid flow gap (g)  0.5 mm 0.45 mm 0.55 mm 0.45 mm 

Current magnitude (I)  0.8 A 0.5 A 1.5A  1.4 A 

Mag. Flux den. (B) 0.33 T - - 0.51 T 
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Figure 5.23 shows the correlation between fluid gap vs flange length against flux 

density. The minimal flange length and minimal fluid gap result in maximum flux 

density. The damping force is calculated for the optimum values obtained from the 

above optimization process. The physical damper fabricated to optimal design 

dimensions is shown in Figure 5.24. 

 

Figure 5.22 Response surface of coil width vs flange length   

Figure 5.21 Response surface of coil width vs fluid gap 
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Figure 5.23 Response surface of fluid gap vs flange length   

Figure 5.24 The damper fabricated to optimal design dimensions with its parts 

labelled 
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5.7 CHARACTERISATION OF MR DAMPER  

The damper testing machine characterises the short-stroke damper fabricated to 

optimal dimensions to record the nature of force against displacement. Figure 5.25 

shows the dynamic test set up to characterise the MR Damper. All nine fluid samples 

in Table 5.1 were tested on the damper testing machine (DTM) to obtain damping force 

and effective damping range. The DTM comprises two jaws, one movable and another 

fixed. The movable jaw was actuated by a servo-controlled linear hydraulic actuator 

fitted with LVDT. The fixed jaw was fitted with a load cell to measure the force. The 

force-displacement curve is obtained by setting the amplitude and velocity of 

oscillations via MOOG ™ controller. The readings are recorded on the local dedicated 

desktop. The hydraulic power pack supplies the desired pressure difference for 

actuation. The damper is held between these two jaws. The piston rod was held in a 

movable jaw and the cylinder was on a fixed jaw.  The damper is actuated by a 

programmable DC power supply.  The voltage was set at  12 volts and a 0.7 A and 1.4 

A current was supplied.   

The force-displacement curves for all nine samples operated at three DC supply 

currents are plotted in Figure 5.26. The effective damping range is estimated. These 

values are tabulated in Table 5.5. Similarly, yield stress values corresponding to Figure 

Figure 5.25 Damper testing machine with all its supporting elements 
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5.9 is also tabulated in Table 5.5. The maximum yield stress and ratio are highlighted 

boldly in Table 5.5. These are individual best values however, not the optimal values. 

Because a high yield stress may not always produce a max ratio of damping force and 

vice versa, optimization is necessary to obtain the optimum fluid composition and 

current supply for maximizing yield stress and the ON/OFF damping force ratio. 

 

 

 

 

Figure 5.26 Force-displacement curves of MRD with various fluid samples 
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Table 5.5 DOE result obtained by CCD and its responses 

Sl. No. Sample 

No. 
Current (A) 

Yield stress 

(Pa) 
Effective damping range 

1  S9 1.4 115.49 1.84267 

2  S9 0 0 1 

3  S3 1.4 3922.1 1.8732 

4  S6 0.7 2103 1.37021 

5  S3 0 0 1 

6  S5 0.7 2560.1 1.30599 

7  S8 0.7 802.46 1.52715 

8  S5 0.7 2560.1 1.30599 

9  S5 0 0 1 

10  S5 0.7 2560.1 1.30599 

11  S5 0.7 2560.1 1.30599 

12  S2 0.7 1625.1 2.34449 

13  S5 1.4 7379.4 1.37736 

14  S5 0.7 2560.1 1.30599 

15  S5 0.7 2560.1 1.30599 

16  S7 0 0 1 

17  S4 0.7 2906.5 1.58882 

18  S1 0 0 1 

19  S1 1.4 6286 1.97456 

20  S7 1.4 6246.1 2.3536 

 

5.8 ANALYSIS OF VARIANCE (ANOVA) AND MULTI-OBJECTIVE 

OPTIMIZATION 

The influence of input factors on responses (i.e. yield stress and effective 

damping range) can be identified using analysis of variance (ANOVA). The responses 

were analysed with different modes of modelling. In this sense, the types of equations 

are changed to check model suitability. Three modelling methods were implemented: 

linear, linear+interactions and full quadratic equations. All the models were created 

with a 95% confidence level. The ANOVA for both responses is illustrated below. 

The influence of linear, interactions and square terms over the yield stress is 

provided in Table 5.6. The full quadratic model yielded the best result for yield stress 
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response in terms of weight_fraction, current and base oil viscosity. The full quadratic 

model for yield stress is given as Eq. 5.11. 

 

𝑦𝑖𝑒𝑙𝑑_𝑠𝑡𝑟𝑒𝑠𝑠 = 3419 − 67 × 𝑤𝑒𝑖𝑔ℎ𝑡_𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 − 5100 ×

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 179 × 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 + 0.71 × 𝑤𝑒𝑖𝑔ℎ𝑡_𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛2 +

2567 × 𝑐𝑢𝑟𝑟𝑒𝑛𝑡2 + 6.34 × 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦2 + 70.9 ×

𝑤𝑒𝑖𝑔ℎ𝑡_𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 × 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 1.09 × 𝑤𝑒𝑖𝑔ℎ𝑡_𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ×

𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 + 73.1 × 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 × 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦  

(5.11) 

The R2 value for this model was noted as 99.04 %. Linear and linear + interactions 

model showed less feasibility when compared to the full quadratic model in terms of 

R2. It can be seen through the ANOVA table that weight_fraction was less significant 

in both linear and square terms. 

Table 5.6 ANOVA for yield stress 

Source DF Adj SS Adj MS F-Value P-Value 

Model 9 92940920 10326769 115.19 0.000 

Linear 3 3885717 1295239 14.45 0.001 

Weight_fraction 1 37908 37908 0.42 0.530 

current 1 2509777 2509777 28.00 0.000 

viscosity 1 1338032 1338032 14.93 0.003 

Square 3 5493600 1831200 20.43 0.000 

Weight_fraction2 1 13802 13802 0.15 0.703 

Current2 1 4349896 4349896 48.52 0.000 

Viscosity2 1 1273398 1273398 14.20 0.004 

2-Way Interaction 3 3505390 1168463 13.03 0.001 

weight_fraction x current 1 1971095 1971095 21.99 0.001 

Weight_fraction x 

viscosity 
1 66472 66472 0.74 0.409 

Current x viscosity 1 1467823 1467823 16.37 0.002 

Error 10 896499 89650   

Lack-of-Fit 5 896499 179300 * * 

Pure Error 5 0 0   

Total 19 93837419    

 

Similarly, the analysis of variance is illustrated in Table 5.7 for the effective 

damping range. The best feasible model was obtained using linear terms rather than full 
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quadratic and linear + interaction models. The best fit was again decided using the R2 

value of the equation. Again, current and base oil viscosity is more significant than the 

weight fraction. 

Table 5.7 ANOVA for effective damping range  

Source DF Adj SS Adj MS F-Value P-Value 

Model 3 2.40594 0.80198 12.93 0.000 

Linear 3 2.40594 0.80198 12.93 0.000 

Weight_fraction 1 0.06904 0.06904 1.11 0.307 

current 1 1.95487 1.95487 31.51 0.000 

viscosity 1 0.38203 0.38203 6.16 0.025 

Error 16 0.99253 0.06203   

Lack-of-Fit 11 0.99253 0.09023 * * 

Pure Error 5 0.00000 0.00000   

Total 19 3.39847    

The regression equation for the effective damping range is shown in Eq. 5.12 

 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝑟𝑎𝑛𝑔𝑒

= 0.889 + 0.00831 × 𝑤𝑒𝑖𝑔ℎ𝑡_𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 0.632

× 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 0.01667 × 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 

(5.12) 

The yield stress, an essential feature of the MRF, decides the dynamic responses 

through its application. The effective damping range decides the intensity of the 

magnetic effect in the MRF. Hence, both responses are essential in selecting MRF for 

an application. Understanding the combined effect and the corresponding optimal 

quantities of input parameters is necessary to arrive at the best suitable fluid 

combination. The genetic algorithm, a benchmark optimization technique, is used for 

multi-objective optimization of the fluid combination. The regression equations 

obtained for yield stress and the effective damping range using the response surface 

method are objective functions. The multi-objective optimization process was 

performed using the toolbox available in the MINITAB software and the genetic 

parameters were kept default as available in the toolbox. The crossover fraction was set 

to 0.8 and the stopping criteria were limited to 100 generations since no further 



131 

 

improvement was found above that. The Pareto front generated using multi-objective 

optimization is shown in Figure 5.27.  

The combined best responses and the corresponding optimal input parameters are 

provided in Table 5.8. 

Table 5.8 The optimal parameters and their response obtained by MOGA 

Response Optimal Parameters 

Yield Stress 

(Pa) 

Effective 

damping range 

Weight fraction 

(%) 

Current 

(A) 

Base oil 

viscosity 

(cSt) 

7495.372 1.909 69.999 1.399 240.8 

 

The results obtained through MOGA show that a 70% weight fraction of CIP in 240 

cSt base oil, when actuated at 1.4 A, results in yield stress of 7495.372 Pa and a ratio 

of ON-state to OFF-state as 1.9. To confirm the effectiveness of the multi-objective 

optimization, a validation experiment was carried out considering the exact input 

parameters towards the rheology and dynamic experiments. Figure 5.28 shows the 

rheological curve of the S10 sample with Silicone oil viscosity 240 cSt weight fraction 

70 % of CIP at supply current 1.4 A results yield stress of 6081 Pa. The S10 sample is 

filled into the MR damper to characterise the damper. Figure 5.29 shows the Force-
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Figure 5.27 Pareto front plot generated by multi objective optimization 
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displacement curve indicating the maximum damping force in ON-state (1.4 A) and 

OFF-state. Table 5.9 shows the closeness of the optimal parameters obtained through 

MOGA and the validation experiment. 

 

 

 

Figure 5.28  Shear curve of S16 MRF sample 
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Table 5.9 Comparison of MOGA output and validation experiment 

 

5.9  SUMMARY  

The chapter discusses designing and developing an MR damper that can be 

implemented on lathe machines to suppress tool vibration. The magnetostatic analysis 

of the flow valve and selecting the magnetic material of the piston and cylinder that 

delivers maximum flux density. The optimal dimensions of the damper are obtained 

through geometric optimization. The MR fluid is synthesised in-house with the optimal 

particle loading composition, base oil viscosity, and additives. There have been 12 fluid 

samples prepared with different combinations of particle loading and viscosity of the 

base oil.  The design of experiment is employed to reduce the number of testing. The 

fluids are tested for rheological characteristics and hysteresis curve. The developed MR 

damper is characterised by a damper testing machine with optimal and commercial fluid 

in-house. The in-house fluid performed as equally well as commercial fluid. The 

developed MR damper delivers sufficient damping force to combat chatter vibration in 

hard turning. 

 

 

Parameters Through MOGA 
Validation 

experiment 
% error 

Weight fraction (%) 69.999 70 0 

Current (A) 1.399 1.4 0 

Base oil viscosity (Pa-

s) 
240.8 cSt 240 cSt 0.3 

Yield Stress (Pa) 7495.372 6081 18.8 

Effective damping 

range 
1.909 1.8 5.71 
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CHAPTER 6 

 

 EVALUATION OF MACHINING PERFORMANCE WITH MR 

DAMPER  

 

6.1 INTRODUCTION  

This chapter discusses the machining study carried out with the augmentation 

of a Magnetorheological (MR) fluid damper to suppress tool vibration in hard tuning 

with easy installation without much structural modification. The MR fluid damper 

changes its damping coefficient with a supply of magnetic field to regulate variable 

cutting conditions. An optimal composition of MR fluid has been prepared in-house to 

be used in the damper. In-house MR fluid is compared with commercial MR fluid.  The 

L9 Taguchi design of the experiment opted to arrive at minimal machining parameters 

to evaluate the performance of the damper in machining two workpiece materials, 

namely oil-hardened nickel steel (OHNS) and high carbon high chromium (HCHCR) 

die steel. Tool wear studies are also carried out to monitor the influence of external 

damping over tool life. The stability lobe diagram is obtained analytically with 

experimental validation to mark the stability limit of the machining condition.  

MR damper is effective when it is controlled using a controller to utilise its 

adaptability effectively; hence, real-time control is implemented to control the damping 

force of the MR damper for machining applications for different cutting conditions and 

different materials. The timely activation of the damper is possible by monitoring the 

real-time acceleration signal of the tool vibration as vibration feedback.  The surface 

roughness and vibration amplitude of the tool are evaluated with and without real-time 

control.  

6.2 MACHINING STUDY WITH MR DAMPER  

The damper performance was evaluated by conducting a series of tests on rough 

turning using the design of experiments. Two workpiece materials namely, Oil 
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hardened nickel steel and high carbon high chromium die steel of 60 mm diameter and 

250 mm length, were machined using CNMG120408 insert, which PCLNR2020K12 

tool holder held. Vibration signals were acquired using NI DAQ 9234 and analyzed 

using the LabVIEW-Signal Express module.  

The piston rod of the MR damper was fastened to the bottom of the tool holder, 

and the MR damper was rigidly fitted on the lathe carriage with a unique cement bond 

adhesive. The damper provides an upward reaction force opposing tool vibration to 

suppress the displacement. An experimental setup on the lathe for evaluating the MR 

damper connected with a programmable DC power source is shown in Figure 6.1. The 

MR tool damper, when connected with a programmable DC power source (PSD 3005), 

display of it indicates the electric current (bottom row) and voltage drawn by the 

damper (top row).  

The machining performance with an MR damper is evaluated by analysing the 

acceleration signal and measuring the surface roughness, tool wear and chip 

morphology. This chapter discusses the influence of external damping on these 

responses for two different workpiece materials, namely OHNS and HCHCR D2 steel, 

with both in-house prepared MR fluid and commercial MR fluid. The stability lobe 

Figure 6.1 Experimental setup to evaluate the performance of the MR fluid 

damper 
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diagram for the said tool-workpiece conditions is also evaluated to study the influence 

of external damping on the stability limits of machining.  

Nine sets of tests were conducted with different feed rates, different depths of cut 

and different spindle speeds using the L9 Taguchi design of the experiment from a set 

of 27 populations. The levels of each factor are shown in Table 6.1. The derived 

experiment trials from DOE are tabulated in Table 6.2. Further vibration level and 

surface roughness analysis are analysed according to the cutting conditions in Table 

6.2.  

Table 6.1 Levels and factors of DOE for machining trials 

PARAMETERS 
LEVELS 

L1 L2 L3 

Speed (RPM) 192 384 572 

Feed (mm/rev) 0.046 0.093 0.156 

DOC (mm) 0.2 0.3 0.4 

 

Table 6.2 Cutting conditions derived from DOE  

Expt. No Speed (RPM Feed (mm/rev) Depth of cut (mm) 

1 192 0.046 0.2 

2 384 0.138 0.2 

3 576 0.092 0.2 

4 192 0.092 0.3 

5 384 0.046 0.3 

6 576 0.138 0.3 

7 192 0.138 0.4 

8 384 0.092 0.4 

9 576 0.046 0.4 
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6.3 EVALUATION OF TOOL VIBRATION  

Figure 6.2 compares the vibration level with increasing the damping coefficient 

of the damper by increasing the current to the damper. Plots (a)-(c) for in-house fluid 

and Plots (d)-(f) for commercial fluid. Both commercial fluid [Lord Corp. 132 DG] and 

in-house MR fluid were found to be effective in reducing the tool vibration; however, 

looking at Figure 6.3, in-house MR fluid is better than commercial fluid; however, the 

settling rate of in-house fluid is lower than commercial fluid. The settling rate of in-

house MR fluid is 0.02 ml in 24 hrs, and that of commercial fluid is 0.05 ml in 48 hrs. 

The vibration amplitude reduces linearly with increasing the current to the damper. A 

similar trend is observed while machining HCHCR D2 steel, as shown in Figure 6.4.  

 

 

Figure 6.2 Vibration produced on OHNS workpiece with damper at various current 

for (a)-(c) in-house MR fluid, (d)-(f) commercial MR fluid  
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Figure 6.3 Comparison of vibration levels at various cutting conditions when in-house 

MR fluid and lord fluids are used in the damper while machining OHNS 

Figure 6.4 Comparison of vibration level at various cutting conditions when in-house MR 

fluid and lord fluids are used in the damper while machining HCHCR D2 steel 
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Figure 6.5 Comparison of vibration level between OHNS and HCHCR D2 

steel when in-house fluid is used in the damper 

Figure 6.6 Comparison of vibration level between OHNS and HCHCR D2 

steel when commercial fluid [Lord 132 DG] MR fluid is used in the damper 
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Figure 6.5 compares the vibration between OHNS and HCHCR D2 steel for in-house 

prepared MR fluid for various cutting conditions obtained from DOE. Similarly, Figure 

6.6 shows the comparison of vibration for commercial lord fluid as is seen from both 

Figure 6.5 and Figure 6.6 that the vibration level of HCHCR D2 is more than OHNS 

due to the inherent hardness of the material. External damping has a greater influence 

in suppressing the vibration value.  

6.4 EVALUATION OF SURFACE ROUGHNESS 

Figure 6.8 shows the axis of vibration measurement (Y-axis) and Figure 6.7 

illustrates the direction of roughness measurement (X-axis). There is no concurrent 

relation between vibration and roughness because the vibration is measured in the 

lateral direction of tool deflection, whereas the roughness is measured in the 

longitudinal direction of the workpiece. 

Figure 6.9 and Figure 6.10 depicts the comparison of roughness when machining 

OHNS and HCHCR D2 steel respectively. The roughness increases with increase in 

speed for depth of cut 0.2 mm, whereas for depth of cut 0.3 and 0.4 mm it decreases 

with increase in speed. This shows that the damper is effective in producing a better 

surface finish for a higher depth of cut. The vibration level increases by 0.2 mm because 

the depth of cut is less than the nose radius, which oscillates the tool inducing the chatter 

marks on the workpiece. As the speed increases, violent vibration is induced, increasing 

surface roughness and vibration. The vibration decreases with increasing speed for 

depth of cut 0.3 mm and 0.4 mm due to process damping achieved with deeper cut 

ensuring the continuous engagement of the chip with the tool. The shear energy 

increases with increasing speed; hence the tool oscillation and surface roughness 

decrease with increasing speed. Figure 6.11 and Figure 6.12 shows the comparison of 

surface roughness between materials when in-house fluid and commercial fluid [Lord 

corp. 132 DG] used in the damper, respectively.  
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Figure 6.8 Direction of measurement 

of surface roughness  

Figure 6.10 Comparison of surface roughness between in- house MR fluid and lord 

fluid while machining HCHCR D2 steel 

Figure 6.9 Comparison of surface roughness between in-house MR fluid and 

lord fluid while machining OHNS 

Figure 6.7 Direction of measurement of 

vibration 
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Figure 6.7 Comparison of surface roughness between OHNS and HCHCR 

D2 steel when LORD fluid is used in the damper 

Figure 6.8 Comparison of surface roughness between OHNS and HCHCR 

D2 steel when in-house fluid is used in the damper 
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6.5 TOOL WEAR RATE 

Tool wear has more influence in hard turning, which is studied through life tests 

by conducting a flank wear test. The cutting condition that resulted in the least vibration 

is used for the tool wear study. Flank wear of 0.4 mm was set as the tool failure criterion 

(Astakhov 2004). These tool failure criteria can be extended in shop floor industries to 

draw a good tool life for economical production. The tool wear is measured in an optical 

microscope fitted with a micrometre.  The insert is machined till 0.4 mm flank wear is 

achieved. Figure 6.13 shows tool life without any damper, with the damper containing 

in-house fluid and LORD fluid when machining the OHNS workpiece. The wear test 

reveals that the tool life is enhanced with the damper due to external damping. The in-

house MR fluid could enhance the tool life from 23 to 28 min while commercial MR 

fluid enhanced it from 23 to 34 min. An extra 6 min tool life is observed with in-house 

fluid compared to commercial MR fluid. A similar observation of enhanced tool life 

with damper while machining HCHCR D2 steel is observed in Figure 6.14 with 

improved tool life of 2 min with commercial MR fluid and 5 min with in-house fluid. 

The cost-effective in-house prepared MR fluid can be recommended for tool vibration 

suppression and life enhancement to turn hard steels. In the experiment, the coated tool 

never failed by mechanical breakage or plastic deformation but by gradual flank wear.  

Figure 6.9 Comparison of tool life of OHNS material  
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6.6 CHIP MORPHOLOGY  

Cutting conditions are chosen in a range that does not allow built-up edge 

formation. The damper-enabled machining produces smooth continuous chips enabling 

effective heat transfer without much affecting the workpiece or tool. Minimal heat 

transfer to the tool ensures its longevity of tool life. Table 6.3 shows chips formed 

without a damper, with a damper containing in-house MR fluid and commercial fluid. 

Cutting conditions maintained are cutting speed=576 RPM, feed=0.136 mm/rev, depth 

of cut=0.3 mm. The chips appear blue, indicating maximum heat is carried away by the 

chip, which is the ideal feature for carbon alloy steel.  The chip profile shows a smooth 

edge on the long string chips with the damper, whereas there are serration edges without 

the damper. Along with the ploughing action of the tool on the workpiece, the damper 

enables the breaking of chips to dispose of the chips as short continuous chips marking 

effective chip evacuation. Long smooth continuous chips produce fewer micro-

vibrations, evidently shiny chips.  

 

 

Figure 6.10 Comparison of tool life of HCHCR D2 

steel 
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Table 6.3 Chip morphology without damper and with damper while machining OHNS 

and HCHCR D2 steel 

W
o
rk

p
ie

ce
  Without damper Damper with In-house 

fluid 

Damper with LORD 

fluid  

O
H

N
S
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C
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C
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 D

2
  

   

 

6.7 STABILITY LOBE DIAGRAM 

The stability lobe diagram (SLD) is an effective tool based on regenerative chatter 

theory to predict and control tool chatter. It represents the limiting depth of cut for 

increasing spindle speed. The interest of the machine tool designers is to increase the 

limiting depth of cut and area under the lobes. Figure 6.15 compares the SLD obtained 

with the damper and without the damper of OHNS. Yellow indicates a stable machining 

zone while black and grey regions indicate unstable cutting conditions. The damper 

increased the stable region by shifting the boundary of lobes. As the speed increases,, 

the lobe widens, leading to more space between the lobes, allowing desirable machining 

conditions. The SLD plot is obtained using Eq. 6.1 and 6.2 (Yue 2006). 

 𝑏𝑙𝑖𝑚 =
−1

2𝑘𝑠𝑅𝑒[𝐹𝑅𝐹]
 (6.1) 

 𝑅𝑒[𝐹𝑅𝐹] =
1

𝑘
[

1 − 𝑟2

(1 − 𝑟2)2 + (2𝜁𝑟)2
] (6.2) 
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Where, blim is the limiting depth of cut, ks is the cutting stiffness of the cutting tool (ks 

= 1), Re[FRF] is a real part of the frequency response function, k is static stiffness 

(k=F/x), k=10, x is the displacement of cutting tool normal to cut, r is the ratio of chatter 

frequency to the natural frequency, ζ is the ratio of damping coefficient to critical 

damping coefficient. ζ changes for a tool with MR damper, which improves the stable 

region. ζ = 0.05   the parameters used in generating the SLD are: nt = 1, and fn = 250 

Hz. The lowest points on the lobes are the minimum chip widths, a horizontal border 

line connecting these points can be formed at b=bmin, any point below this line is 

unconditionally stable, and any point inside the lobe is unstable. The region between 

bmin and lobe boundary is conditionally stable. The incorporation of a damper improves 

the bmin which shifts to the higher doc. Figure 6.16 shows bmin =0.51 mm without 

damper, bmin =0.58 mm for current 0.7 A, bmin =0.64 for current 1.4 A. The stability 

limit for machining OHNS is the same for in-house and commercial fluids.  

Experimental validation is carried out by measuring the vibration amplitude by 

machining at 384 rpm, with varying the depth of cut, keeping a constant feed rate of 

0.138 mm/rev. When b=0.48 mm (point 1), the vibration was observed to be 

unconditionally stable, and the decaying amplitude of tool vibration was observed for 

b=0.56 mm (point 2) was unstable with resonating vibration; however, when the 
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damper is activated at 0.7 A with commercial fluid or in-house fluid, the lobe shifts to 

higher value making the point from unstable to stable. 

Similarly, the b is increased to 0.68 mm; the system behaved unstable without a damper; 

however, when the damper is activated with current 1.4 A, the system shifts to a stable 

zone (point 3). Hence the system behaviour is analogous to spindle speed variation to 

bypass or shift the chatter frequency by changing the natural frequency of the tooling 

structure. Point 4 is unconditionally unstable. A similar discussion holds good for SLD 

for HCHCR D2 steel with a limiting width of cut lesser than OHNS for all damper 

conditions.  

6.8 EVALUATION OF MACHINING PERFORMANCE WITH MR DAMPER 

BY REAL-TIME CONTROL  

Semi-active devices and controllers for vibration reduction on machine tools is 

a newly reported strategy that faces significant modelling and control challenges. The 

developed MR damper is controlled by a real-time controller considering the vibration-

limiting feedback approach. The vibration response of the cutting tool is analysed 

before and after incorporating the semi-active MR damper to identify the performance 

Figure 6.12 Stability lobe diagram for HCHCR D2 workpiece (a) Without 

damper (b) With damper 
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in machining OHNS and HCHCR D2 steel. The tool wear, surface roughness, and 

amplitude of tool vibration are evaluated with and without a semi-active MR damper.  

6.8.1 Methodology   

The control current to the damper is estimated by limiting vibration feedback. 

The vibration feedback of the cutting tool is analysed in LabVIEW to generate a digital 

pulse signal to the controller, which regulates the current from the DC power source to 

the MR damper. The influence of MR damper on surface roughness, tool wear, and 

amplitude of tool vibration in machining OHNS and HCHCR D2 are evaluated. The 

flowchart of the implementation of control to MR damper is shown in Figure 6.16. 

6.8.2 Control logic for the damper 

The control logic is formulated based on the amplitude of tool vibration. The maximum 

current flows to the damper when the acceleration level crosses the set threshold for 10 

consecutive cycles. The controller sends no current if the threshold is not reached. As 

the control logic is straightforward, a speedy control action is anticipated. 

 

𝐼 = {
𝐼𝑚𝑎𝑥 , 𝐴 > 𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝐼𝑚𝑖𝑛, 𝐴 < 𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 
} 

This control logic decides the supply of maximum current (1.4 A) or minimum current 

(0 A) by monitoring tool tip acceleration. The tool response regarding acceleration is 

the deciding factor for comparing the damper and control logic performance. Hence a 

Figure 6.13 Flowchart of implementing control to MR damper 

OHNS/HCHCR D2 steel  

Cutting tool  

Tool wear Surface roughness  Tool vibration 

Turning operation 

LABVIEW   

Controller with control 

logic  

MR damper  

Feedback    
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feedback system is developed to monitor the tool vibration with signal processing 

(RMS tracking) of real-time sensor data, which identifies the amplitude of vibration in 

the time domain signal.  

6.9  MACHINING STUDY: IMPLEMENTATION OF MR DAMPER ON 

LATHE WITH CONTROLLER 

OHNS workpiece of 60 mm diameter and 250 mm length is machined using CNMG 

120412 insert, which was held in PCLNR 2020K 12 tool holder. Vibration signals were 

acquired and analysed using NI DAQ 9230 and NI LabVIEW. Cutting force along 

tangential, radial and axial direction were recorded using Kistler 9257B dynamometer; 

however, only tangential direction was considered for designing the damper. A uniaxial 

accelerometer is placed on the tool holder to acquire the vibration in the tangential 

direction while placing it 50 mm away from the tool tip. The piston rod of the MR 

damper was connected securely at the bottom of the tool holder, and the MR damper 

was rigidly fitted on the lathe carriage to provide upward reaction force and neutralise 

the tool displacement. The block diagram of the experimental setup is illustrated in 

Figure 6.18  for a detailed understanding of the connection between data acquisition 

and damper control. A photographic image of the experimental setup showing the MR 

damper installed underneath the tool with a current controller is shown in Figure 6.19. 

The tool holder is secured on a dynamometer, and the accelerometer is on the tool 

holder to measure cutting force and vibration. The digital control signal developed in 

the LabVIEW software is sent to the current controller through a digital-to-analogue 

converter NI 9403 with a DSUB module mounted on NI cDAQ 9174.  

6.10 RESULTS AND DISCUSSION 

The machining was carried out without the damper for cutting conditions 384 rpm at 

0.046 mm/rev and 572 rpm at 0.093 mm/rev with a constant depth of cut of 0.5 mm to 

machine OHNS and HCHCR D2 steel, respectively. The tool vibration and surface 

roughness for these cutting conditions are measured and tabulated in Table 6.4. The 

tool wear is monitored considering the 0.4 mm flank wear as the tool failure criteria. 

The procedure is repeated for machining with a damper using online control.  
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Table 6.4 Tool acceleration, surface roughness and tool wear measurement with 

damper and without damper 

Expt. No. 1 2 

Workpiece Material  OHNS HCHCR D2 

Cutting speed/surface velocity  (rpm) (m/min) 384 

(72.39) 

572 (107) 

Spindle rotational frequency 6.4 Hz 9.53 Hz 

Feed rate(mm/rev) 0.046 0.093 

Tangential cutting force (N) 360 441 

RMS Acceleration of 

tool (g) 

Without damper 12.16 15.62 

With constant current 

1.4 A  

9.02 10.25 

With control ON 5.12 6.89 

Surface Roughness, Ra, 

(µm) 

Without damper 6.72 9.78 

With constant current 

1.4 A 

5.02 6.27 

With control ON 3.58 4.58 

Tool wear, VB (mm) 

Without damper 0.5 0.5 

With constant current 

1.4 A 

0.38 0.46 

With control ON 0.31 0.39 

 

Figure 6.14 Block diagram of the experimental setup  
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6.10.1 Vibration analysis of cutting tool with MR damper 

Figure 6.20 (a) shows the tool vibration measured during the turning of OHNS in the 

presence of the MR damper, and Figure 6.20 (b) depicts the control pulse signal 

generated by the controller based on a vibration limiting approach for cutting condition 

384 rpm, 0.053 mm/rev, 0.5 mm depth of cut. Similarly, Figure 21 (a) and Figure 21 

(b) are the vibration signal and control signal for HCHCR D2 steel at 0.093 mm/rev, 

and 572 rpm, respectively. The amplitude of acceleration along the tangential direction 

was reduced with the damper by timely activation by control. s 6.20 (c) and 21 (c) depict 

frequency spectrum plots for both machining circumstances.  

 

Figure 6.15 Experimental setup showing data acquisition, controller and MR 

damper 
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Figure 6.17 (a) Vibration signal of HCHCR D2 steel (b) Control pulse signal for 

HCHCR D2 (c) Spectrum plot of HCHCR D2 
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The area under the spectrum plot reveals the vibration energy, which is reduced with 

the damper at constant current and active control. The reduced amplitude of vibration 

is primarily due to the damper's higher dynamic stiffness, which improves the overall 

stability of the machining process. The average reduction in vibration level for 0.046 

mm/rev is 57.9% and 55.8% for 0.093 mm/rev.  

6.10.2 Comparison of surface roughness   

Surface roughness is an important parameter highly influenced by tool vibration in 

machining. Figure 6.22 compares the surface profile produced with control ON and 

control OFF for two cutting conditions. It is seen that the timely activation of the MR 

damper has invariably improved the surface finish for both workpiece materials.  

 

6.10.3 Comparison of tool wear of the cutting tool 

Flank wear significantly impacts the cutting process as it can change the tolerance over 

machined parts. According to ASME Standards, inserts are replaced as the maximum 

width of flank wear land reaches 0.4 mm. A tool wear test was conducted by machining 

the workpiece for 40 minutes in the presence and absence of an MR damper. The flank 

wear was measured using AXION optical microscope. 

Table 6.4 lists the comparison of flank wear of the cutting tool during the turning 

operation. The flank wear is more at high speed and feeds due to increased temperature 

Control ON Control OFF 

Control ON Control OFF 

(a) (b) 

Figure 6.18 Roughness profile produced on workpiece with control ON and 

control OFF (a) 384 RPM, 0.043 mm/rev (b) 572 RPM, 0.093 mm/rev 
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due to abrasion of the flank face with the workpiece. Decrease in tool flank wears with 

damper mainly due to reduction of tool vibration, especially at the point of contact 

between tool and workpiece. The physical measurement of flank wear without a damper 

is shown in Figure 6.23.  

 

6.11 SUMMARY  

The chapter discusses the evaluation results of the MR damper installed on the lathe. 

The machining is carried out on two hard steel rods: OHNS and HCHCR D2 die steel. 

The machining is carried out without the MR damper and with the MR damper on both 

workpiece materials. The MR damper is evaluated with both optimal MR fluid and 

commercial MR fluid. The RMS value of tool vibration, surface roughness produced 

and tool wear rate with and without MR damper are evaluated. The L9 Taguchi 

experiment design on cutting conditions of three levels and three factors have been 

considered. Tool wear study on machining OHNS and HCHCR D2 steel with and 

without damper is evaluated. The stability lobe diagram for the tool-work combination 

with and without the damper was obtained by analytical calculation with coefficients 

obtained by frequency response test.  The stability boundary of the machining increases 

with the activation of the damper enabling aggressive cutting conditions with the 

damper.  

Cutting speed is the largest factor influencing the tool life, leading to rapid flank 

wear. Feed rate has less effect than cutting speed; however, if increased, invariable can 

(a) (b) 

Figure 6.19 (a) Healthy tool and (b) Worn flank 
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lead to chip hammering, chip welding, and loss of chip control. Similarly, depth of cut 

has little effect on tool life; however, if increased than allowed, it leads to increased 

cutting force, insert breakage and high power consumption; if maintained less, it causes 

vibrations. 

The damper is implemented with real-time control to suppress chatter vibration. The 

experimental validation is carried out by machining OHNS and HCHCR D2 steel 

workpieces, commonly used in manufacturing dies and tools. Machining tests under 

various cutting conditions demonstrated that real-time control of the 

magnetorheological fluid damper could significantly improve surface finish and tool 

life compared to constant current. 
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CHAPTER 7 

 

 DEVELOPMENT OF AN NOVEL ANTI-VIBRATION TOOL 

HOLDER FEATURING MR FLUID  

 

7.1 INTRODUCTION  

Chapter 7 explores the possibilities of imbibing internally damped, controllable tool 

holders based on the insight obtained from the previous chapter about external damping. 

The internal damper is much more convenient and easy to use than the external damped 

tool holder without any structural modification to the machine tool. This chapter is the 

better version or configuration of the tool vibration control device featuring MR fluid. 

The results show the controllability and performance evaluation of the internal damped 

MR tool holder 

A novel anti-vibration cutting tool holder has been designed to combat vibration 

induced during machining—the unique tool houses an inverse cantilever beam inside 

the primary structure with MR fluid in the chamber. A lumped mass is attached to this 

inverse beam at its free end. The lumped mass is surrounded by a viscous medium 

whose viscosity can be changed by an external magnetic field, thus achieving a tunable 

damped mass damper. The passive absorber with a constant mass ratio can control the 

self-excited oscillation within a specific instability range. For the higher intensity of 

instability, the parameters of the absorber are changed, such as the inverse beam's 

damping coefficient by changing the fluid's viscosity around the suspended mass. The 

vibration induced in the tool tip gets attenuated by the inertial movement of suspended 

mass. The dynamic characteristics of the unique tool holder are evaluated by conducting 

free and forced vibration tests to arrive at the shortest settling time and the highest 

resistance to chatter vibration. The machining performance of the unique tool holder is 
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comprehended with improvement in surface finish and a reduction in the amplitude of 

vibration signals.  

7.2 DESIGN OF TOOL HOLDER 

The tunable tool holder has a simple configuration that makes it simple to build and 

install. The tool holder comprises a hollow section at the axial centre with a suspended 

mass attached to a slender cantilever. The tool is modelled as shown in Figure 7.1; the 

outer structure of the holder has a shank size of 25x25 mm and an effective length of 

175 mm. A slender beam supports the mass. The slender portion is wound with copper 

coil. The coil leads are taken through the opening in the end cap with sealant. Numerical 

symbols denote all significant damper components.   

The oscillation frequency of the suspended mass is adjusted to a structural frequency, 

and when that frequency is triggered, the damper resonates out of phase with the 

structural motion. This happens when the tool chatters. The inertia force exerted by the 

mass on the primary structure dissipates energy. The suspended mass generates a 

reaction force proportionate to the tool holder's vibration amplitude, enabling dynamic 

vibration absorption.  

Figure 7.1 Parts label of the tool holder (1) outer tool body (2) slender bar (3) 

end cap (4) copper coil (5) fluid volume inside tool body (6) suspended mass 

(7) Insert   
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To enhance the vibration-damping ability of the suspended mass, the MR fluid is 

introduced into the hollow space between the slender bar and the tool holder's inner 

peripheral walls.  A copper coil is wound around the slender bar to induce the magnetic 

field in the oscillating path of suspended mass. The dynamic vibration absorber is 

designed to dampen the resonance between the tool holder and the weight member, 

attenuate the vibration induced at the tooltip, and reduce the chatter vibration of the tool 

holder. The damping performance can be steadily maintained by changing the viscosity 

of the MR fluid. 

7.3 NUMERICAL CALCULATION FOR DESIGNING THE TOOL MASS 

DAMPER FOR UN-DAMPED STRUCTURE 

The system of a single degree of freedom transforms into two degrees of freedom by 

incorporating the vibration damping technique.  

The system vibrates at resonance when the exciting frequency (ω) coincides with the 

resonance frequency (ωn) of the system  

𝜔 = 𝜔𝑛 = √
𝑘𝑝

𝑚𝑝
 (7.1) 

An additional spring mass (ms , ks ) system is coupled to the primary structure, which 

acts as the vibration absorber to dampen the vibration of the mass, mp. 

If the excitation frequency is equal to the natural frequency (which is also chatter 

frequency)  

𝜔 = √
𝑘𝑠

𝑚𝑠
 (7.2) 

 Thus  
𝑚𝑠

𝑘𝑠
=

𝑚𝑝

𝑘𝑝
  

Achieving this condition is called a tuned mass absorber—the system of single degrees 

changes to two degrees of freedom.  

𝑚𝑝𝑥�̈� + 𝑘𝑝𝑥𝑝 + 𝑘𝑠(𝑥𝑝 − 𝑥𝑠) = 𝐹𝑠𝑖𝑛𝜔𝑡 (7.3) 
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𝑚𝑠𝑥�̈� + 𝑘𝑠(𝑥𝑠 − 𝑥𝑝) = 0 (7.4) 

 Solution assumed is  

𝑥𝑝 = 𝐴1𝑠𝑖𝑛𝜔𝑡 ;  𝑥𝑠 = 𝐴2𝑠𝑖𝑛𝜔𝑡 (7.5) 

Since  
�̈�𝑝 = −𝜔𝐴1𝑠𝑖𝑛𝜔𝑡 ;  �̈�𝑠 = −𝜔𝐴2𝑠𝑖𝑛𝜔𝑡  

(7.6) 

 Substituting these in Eq. 7.3 and 7.4  

(𝑘𝑝 + 𝑘𝑠 − 𝑚𝑝𝜔2)𝐴1 − 𝑘𝑠𝐴2 = 𝐹 (7.7) 

−𝑘𝑠𝐴1 + (𝑘𝑠 − 𝑚𝑠𝜔2)𝐴2 = 0 (7.8) 

  Solving the above equations, we get  

𝐴1 =
𝑘𝑠 − 𝑚𝑠𝜔2

𝛽
   ;    𝐴2 =

𝑘𝑠𝐹

𝛽
 (7.9) 

 Where  

𝛽 = [𝑚𝑝𝑚𝑠𝜔4 − {𝑚𝑝𝑘𝑠 + 𝑚𝑠(𝑘𝑝 + 𝑘𝑠)}𝜔2 + 𝑘𝑝𝑘𝑠] (7.10) 

 To get the amplitude of mass mp=0 equate the Eq. (7.9 to zero  

𝐴1 =
(𝑘𝑠 − 𝑚𝑠𝜔)2

𝛽
= 0 (7.11) 

 𝜔 = √
𝑘𝑠

𝑚𝑠
= 𝜔𝑛 (7.12) 

  

From equation 7.12, it is found that the amplitude of the secondary mass is larger than 

the primary mass. Thus, the design should accommodate a large amplitude of mass. 

However, the space around the secondary mass is filled with viscous fluid due to 

constricted space in the tool holder. Further, to improve the damping of the secondary 

mass oscillation, MR fluid is used, whose viscosity can be changed by applying a 

magnetic field. The magnetic field induced in the fluid chamber is made possible by 

winding the inverse cantilever beam with a copper coil. The field lines pass through the 

suspended mass, thus changing the fluid's viscosity in the direction of oscillation of the 

mass.  
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7.4 DEVELOPMENT OF MR TOOL HOLDER  

7.4.1 Magnetostatic analysis 

Figure 7.2 is the magnetostatic analysis of the MR tool holder, which reveals the flux 

density produced at the working gap. It is the basis for the design of the MR tool holder. 

The number of turns, the AWG of the wire, the power supply and rheological properties 

are decided based on the magnetostatic analysis. The suspended mass in the primary 

structure oscillates more than the primary mass (tooltip), which must be damped by 

enclosing it using the viscous fluid with variable viscosity. If we could measure the 

magnetic flux density produced at the gap between suspended mass and inner walls of 

the primary structure through magnetostatic analysis, then by rheological data of MR 

fluid, we can estimate the viscosity value corresponding to the magnetic field. Thus a 

changing viscosity gives a variable damping coefficient. The viscosity values are 

inserted in finite element harmonic analysis to analyse the system's response for 

variable viscosity and input excitation.    

 

Figure 7.2 (a) Schematic of cross sectional view of MR tool holder 1-insert, 2-outer 

structure,3-MR fluid, 4-suspended mass, 5-copper coil, 6-inverse beam (b) 3D cross 

sectional view of MR tool holder (c) Magnetostatic analysis of active region in tool 

holder  
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The schematic of the cross-sectional view of the MR tool holder is shown in Figure 7.2 

(a), indicating its parts and labels as the numerical designation. The vivid isometric 

cross-sectional view is also shown in Figure 7.2 (b). The red colour is a copper coil, 

and the blue colour is MR fluid. First, an axisymmetric FE model of the damper is 

created. The model used finite linear elements based on the modified magnetic potential 

technique. The flux lines and flux density produced at the oscillating path are shown 

through the finite element method magnetics (FEMM) tool in Figure 7.2 (c). The flux 

density produced at the fluid gap is 0.07966 T when 28 AWG of 100 turns is used as 

the electromagnetic coil at a supply current of 1.4 A, 12 V DC supply.  The figure also 

shows that there aren't many secondary flux leakage paths that cross the functioning 

gap of the damper. One main objective was to produce a suitable amount of 

homogeneous flux density in the damper's working gap and to guarantee a functional 

performance range. The properties of commercial MR fluid MRF 132 DG from Lord 

Corp. were used in the tool holder.  

7.4.2 Structural analysis of the MR tool holder  

 The tool holder with a damping system is modelled in ANSYS, as shown in Figure 7.3. 

The tool is fixed at the end face, and harmonic excitation is applied at the tooltip. The 

response of the tool tip is recorded as shown in Figure 7.4. The damping ratio of the 

tool changed with the change in the viscosity of the MR fluid.  The amplitude of the 

tool response damped with the increase in current. 

Figure 7.3 ANSYS model of the tool holder showing hidden parts and outer structure  
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Figure 7.4 Harmonic response of the tool holder modelled in ANSYS for different 

damping ratio   

Comparison of solid shank with new MR tool holder is modelled as shown in Figure 

7.5 and compared experimentally for weight and natural frequency.  
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Figure 7.5 Solid model of (a) Solid shank tool holder and (b) MR tool 

holder 
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7.4.3 Fabrication of the tool holder  

The tool holder is fabricated to the design configuration mentioned in the previous 

section. The parts of the developed tool holder are shown in Figure 7.6. The outer 

structure houses the tool insert at one end and an opening at the other. The tool tip's 

relief and clearance angles are provided as per the standard tool designation. The size 

of the rectangular shank is 25x25 mm, designed as the right-hand tool with a functional 

length of 150 mm, width of 25 mm and height of 25 mm. The body material is a tool 

steel. The tool can accommodate the insert of type CNMG. The insert is assembled with 

standard components of PCLNR 2020K 12, such as a lever, screw, shim, shim pin and 

an Allen key. The secondary structure is attached to the primary structure at the axial 

wall with a copper coil wound over it. The hollow space is filled with MR fluid. The 

end of the tool closed with the end cap. The copper leads come out through the hole in 

the end cap. The assembled image of the tool holder is shown in Figure 7.7. The mass 

of the solid shank tool holder was 0.37 kg, whereas the mass of the MR tool holder was 

0.52 kg. 

 

Figure 7.6 Dismantled components of MR tool holder 

fabricated 



167 

 

The tool holder is analysed for its frequency response for impulse excitation, which 

helps identify the natural frequency and tool damping ability. The free vibration is 

carried out for the overhanging length of 67 mm when the tool holder is held at its 

end. The overhanging of 67 mm is set to bring the advantage of primary oscillation. 

If not maintained, additional overhanging of the MR tool holder may not be 

effective. The tool holder works fine for extended overhanging to machine parts 

that require overhanging, such as flange, shoulder and deep grooves.  

The experimental setup showing the impact hammer and data acquisition system to 

obtain the frequency response using the LABVIEW program is shown in Figure 

7.8. The electric current supply to the electromagnetic coil induces the magnetic 

field in the tool holder using the programmable DC power supply (0 - 2.0 A in steps 

of 0.4 A). The frequency response depicts the natural peak frequency at 968 Hz and 

1400 Hz. The maximum peak amplitude at 1400 Hz reduced from 1.425 g/N to 

1.317 g/N (8.2 %), as shown in Figure 7.10. The frequency response of the solid 

Figure 7.7 Assembled image of the fabricated tool holder 
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tool is shown in Figure 7.9, indicating the peak at 2981 Hz. The natural frequency 

of the new tool holder is reduced due to the hollow portion in the shank; however, 

the damping capability is improved. The damping ratio of the tool holder with MRD 

was estimated by the 3 dB method using Eq. 7.1. The values of the damping ratio 

are tabulated in Table 7.1. The FRF plot appreciates the viscoelastic behaviour of 

MR fluid. The amplitude of frequency response reduces with the external damper. 

The frequency shift observed is marginal, indicating no change in the stiffness of 

Figure 7.8 Experimental setup showing the free vibration study   
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the tool holder; however, there is a reduction of amplitude in the frequency response 

plot indicating damping due to the damper. Similarly, calculating the damping ratio 

from Figure 7.11 for the internal damped MR tool holder, the damping ratio 

achieved is 3.75, almost the same as external damping (3.43).   

 Q =
𝑓0

𝑓2 − 𝑓1
;  damping ratio, ζ =  (1/2Q) (7.1) 

 

Table 7.1 Estimation of damping ratio with damper 

Condition Damping 

factor (Q) 

Damping 

Ratio (ζ (%)) 

The solid tool holder (WOD) 29.05 1.72 

The tool with external damping 14.42 3.43 

The tool with internal. Damping 13.31 3.75 
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7.5 FORCED VIBRATION STUDY  

Experimental setup of the forced vibration testing of the magnetorheological tool 

holder, which consists of a power amplifier,  electrodynamic shaker,  data acquisition 

device (NI 9234, Make: National Instruments), accelerometer (Make: PCB 

Piezotronics), impedance sensor, programmable DC power source and stinger with 

fixture for holding the tool holder as shown in Figure 7.12.  

A LabVIEW program was interfaced with sensors using DAQ. The tool was subjected 

to sinusoidal excitation at a natural frequency of 968 Hz, and the RMS acceleration at 

the tooltip at no current and at current 2.0 A reduced from 4.03 g to 1.145 g, as seen in 

Figure 7.13.  

 

 

 

Figure 7.11 Frequency response of MR tool holder 
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Figure 7.13 Acceleration response to forced excitation frequency of 968 Hz 

Figure 7.12 Experimental setup of the forced excitation study 
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7.6 MACHINING WITH MR TOOL HOLDER  

 The machining with the developed tool holder is carried out on a conventional lathe. 

The tool is connected to a DC power source which supplies variable current to the 

electromagnetic coil in the tool holder. The whole experimental setup with data 

acquisition and power supply is shown in Figure 7.14. An accelerometer is mounted at 

the bottom of the tooltip, as shown in the close-up view in Figure 7.15, to measure the 

tooltip vibration. The mounting of the sensor at the tooltip base ensures safety from the 

chip. The machining of oil-hardened nickel steel workpiece at cutting condition 378 

RPM, 0.5 mm depth of cut and 0.08 mm/rev feed is carried out. The vibration signals 

are recorded during machining to measure the level of acceleration. If violent vibration 

is observed, the current is supplied to the coil in incremental steps till the vibration level 

is reduced. Figure 7.16 shows the vibration signal of the machining described above, 

which is reduced with the supply of electric current to the tool holder. The tool 

vibration, which was ±9 g, was reduced to ±4 g with the damper activated at 0.5 A, 

which was further reduced to ±2.5 g with activation of 1.0 A current.    

The surface roughness produced on the workpiece using the MR tool holder for cutting 

condition (speed: 576 RPM, feed:0.053 mm/rev and depth of cut: 0.3 mm)  without 

activation is 6.02 μm,  with 0.5 A supply current roughness reduced to   4.52 μm further 

Figure 7.14 Experimental setup showing the vibration acquisition setup and DC 

power source to supply current to the tool holder 
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increasing to 1.0 A roughness values reduced to 3.25 μm.  The vibration level and 

surface roughness values for a solid shank tool holder are ± 7.88 g and 5.98 μm, 

respectively. The plot in Figure 7.16 compares the vibration level of the new MR tool 

holder with the solid shank tool. The vibration level and surface roughness values of 

the MR tool holder at 0 A are more than solid shank tools due to reduced stiffness; 

however, the vibration reduces with an increase in a magnetic field.    
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Figure 7.16 Vibration during machining with solid shank tool and 
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Figure 7.15 Close-up view of the tool holder secured on the lathe, accelerometer 

mounted under tooltip to acquire tool vibration. 
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7.7 SUMMARY  

A new tool holder with an inverse cantilever beam containing MR fluid is designed and 

developed to improve the tool holder's vibration suppression capability with variable 

damping and stiffness. The free vibration force vibration study is carried out to measure 

the natural frequency and damping ratio without activation and with activation. The 

tool holder is installed on the lathe to conduct machining, and the vibration amplitude 

reduces with the supply of current due to increased dynamic stiffness and improved 

internal damping by the magnetorheological effect.  
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CHAPTER 8 

 

 SUMMARY AND CONCLUSION   

 

8.1 SUMMARY  

The tool fault identification and diagnosis were carried out using signal 

processing and machine learning techniques, using vibrational and cutting force signals. 

The tool faults were diagnosed using the statistical parameters and visual inspection of 

the time domain signal. The spindle rotational and chatter frequency components were 

identified, and their amplitude was tracked using the frequency domain analysis. 

Wavelet analysis revealed both time localisation and frequency resolution of the tool 

fault, making it the best to identify the time of occurrence of the tool fault and the nature 

of the tool fault.  

The current study uses supervised machine learning with a labelled data set to 

train and test the vibrational and cutting force signals. Statistical features and wavelet 

features were extracted for classification. Significant features were selected from the 

J48 decision tree algorithm. Random forest, rotation forest, and Naïve Bayes algorithm 

were employed as the classifier; their classification accuracy was compared. The 

comparison shows that the vibration signal gives better classification accuracy than the 

cutting force signal; moreover, mounting the accelerometer and acquiring the 

vibrational signal is much easier, portable and versatile.  

As seen in fault diagnosis, a faulty tool produces a poor surface finish; similarly, 

machining at aggressive cutting conditions results in chatter vibration. These vibrations 

were controlled by employing a variable viscosity damper to change its damping 

coefficient based on the applied magnetic field.  The damper was designed based on 

vibration level and cutting force to calculate the amount of damping force and operating 

frequency of the damper. The flow valve of the damper was modelled in ANSYS 



176 

 

magnetostatic to obtain magnetic flux density achieved at the fluid flow gap. Various 

magnetic materials were assigned to the model to identify the maximum flux density in 

the fluid gap. The damper was characterised by a damper testing machine to evaluate 

its dynamic behaviour and maximum damping force. The optimal composition of the 

MR fluid for the MR damper was obtained by designing the experiment with particle 

loading of the carbonyl iron particle, viscosity of the base oil and the activation 

magnetic field as factors with three levels. The optimal composition was identified by 

employing ANOVA multi-objective optimization. The optimal composition delivered 

by the ANOVA was validated by further preparing the MR fluid and characterising it 

in the MR damper with good agreement between predicted values and validation 

results.     

The developed damper was implemented on the lathe to evaluate its 

performance in suppressing the tool vibration and its influence on surface roughness. 

The damper was evaluated with optimal in-house MR fluid as well as commercial MR 

fluid [MRF 132 DG Lord Corp.]. Two workpiece materials were chosen for machining: 

OHNS and HCHCR D2 steel. A stability lobe diagram was constructed to mark the 

limiting depth of cut with and without the MR damper. Flank wear of 0.4 mm was 

considered a failure criterion to evaluate tool life. Cutting conditions of three levels of 

feed, speed and depth of cut were considered for evaluation; however, to reduce the 

number of test samples, Taguchi L15 design of the experiment was followed.  An 

ON/OFF controller was implemented to control the damper in real-time by monitoring 

the tool vibration using vibration-limiting feedback. The pulse signal was generated 

when the limiting vibration crossed the set threshold level to activate the damper, 

making it an effective, efficient damper compared to the constant current to the damper.  

In addition, an internally damped tool holder was designed and developed to 

improve the design configuration and easy installation with a built-in magnetic circuit. 

The novel MR tool holder was effective in controllability and reducing tool vibration. 
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8.2 CONCLUSIONS 

8.2.1 Signal processing technique  

Identifying the tool faults based on the signal processing applied to vibration 

and cutting force are listed as follows   

 The state of the cutting tool is identified by the statistical parameters such as 

standard deviation, range, and maximum in the time domain signals. These 

statistical values were seen to be increasing by the fault conditions. The level 

of vibration for healthy was ± 1 g; for overhang ± 2 g; for flank wear ± 4 g 

and for the broken tool, it was ± 6 g. Similarly, the standard deviation for the 

cutting force signal for healthy was 49 N; overhang was 92 N; flank wear 

was 50 N, and the broken tool was 320 N. The process of damping due to 

flank wear land reduces the cutting force value.  

 The dominant peak value appears at spindle frequency (SF), 48 Hz and its 

harmonics 100 Hz (approx. 2x). When tool fault changes, higher harmonics 

of SF appear. Maximum amplitude occurs at 48 Hz. The spectrum of the 

faulty tool contains many sidebands with a spacing of approximately 20 Hz. 

The spectrum shows the presence of additional frequencies, such as newly 

occurred frequencies that differ from multiplies of SF corresponding to 

chattering; hence, chatter occurred for broken and worn flank tools. The level 

of flank wear is seen reduced due to process damping achieved with flank 

wear land. 

 The CWT plot of the broken tool has only low frequency but high amplitude 

due to the sharp edge formed after breakage. These sharp edges get blunt and 

form newer sharp edges, which is evident from the reduction of amplitude 

from 0 to 0.6 s and increases from 0.6 s to 1 s.  

The spectrum and wavelet analysis of the vibrational signals revealed better fault 

information than the cutting force signals. 
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8.2.2 Fault diagnosis by machine learning  

Comparison of the classification accuracy of all the three classifiers employed 

for both vibration and cutting force signal by utilising DWT and statistical features 

showed that the classification accuracy of the vibration signal is superior to that of the 

cutting force signal. However, Naive Bayes provides good classification accuracy of 

96.6 % using DWT features, whereas Rotation Forest provides good accuracy of 95 % 

using statistical features using vibration signals. 

The level of cutting force and vibration signal for healthy and faulty tools mark 

the input parameters for designing the MR damper. The damping force required in 

healthy conditions and the required in the faulty tool is estimated. The damper is 

designed for this range of damping force using the optimal composition of MR fluid.   

8.2.3 MR fluid preparation and characterisation  

Nine samples of different viscosity and weight fractions of CIP were prepared. 

The maximum ON-state damping force is obtained for a higher viscosity (350 cSt) 

carrier fluid at 70% concentration of particles than the hydraulic oil (52 cSt) carrier 

fluid. It is also observed that increased particle concentration increases the MRF's 

dynamic yield stress, which has an inverse effect on the ratio of ON-state to OFF-state 

damping force. A carrier fluid viscosity of 240 cSt and a particle loading of 70 % 

resulted in the higher yield stress and the maximum effective damping range.  

8.2.4 Development of MR damper  

The machining was performed by installing the damper on a lathe by fastening 

the piston rod to the tool holder and cylinder base to the saddle.  

 The MR damper with in-house MR fluid delivers the desired damping force of 

350 N at 1.4 a current, and commercial MR fluid (Make: 132 DG, Lord Corp.) 

fluid delivers 300 N at 1.4 A, which is sufficient to suppress the unstable cutting 

force 
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 The MR damper works effectively in suppressing the tool vibration at a higher 

depths of cut by increasing the current to the damper. The amplitude of tool 

vibration in the presence of the MR damper was 30 % lesser with the damper  

 The MR damper improves the surface finish enabling aggressive cutting 

conditions with increased depth of cut both for the OHNS material and HCHCR 

D2 steel 

 The tool life was enhanced with MR damper at a maximum of 9 min when 

machining OHNS workpiece and 5 min when machining HCHCR D2 steel 

 The MR damper improved the chip morphology with the formation of 

continuous serration-free smooth edge chips enabling easy evacuation of chips 

and reducing abrasion of serrated chips  

 Experimental verification via stability lobe diagram reveals the improvement of 

the limiting depth of cut from 0.51 mm to 0.64 mm for OHNS workpiece and 

improvement from 0.35 mm to 0.51 mm for machining HCHCR D2 steel 

Real-time control allowed for the reduction of the surface roughness by 

approximately 46.7% for a cutting speed of 384 RPM and approximately 53.17% for 

572 RPM. Additionally, the chatter marks on the machined surfaces were removed 

completely. 

 In addition, the time domain signal and their frequency spectrum of tool 

vibration show that chatter is effectively damped by the MR damper at both 

normal and high-speed cutting parameters with real-time activation of the 

damper.  

 The flank wear of the tool was reduced by 38 % when machined at feed 0.046 

mm/rev and 22 % for feed 0.093 mm/rev with the timely activation of the 

control keeping the depth of cut and speed the same.  

8.3 SCOPE FOR FUTURE WORK 

 The fault diagnosis of the cutting tool can be extended to real-time signal 

processing with online monitoring of the machining process by using an 

acoustic emission signal, sound signal, a current signal, temperature 

measurement and residual surface stresses 
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 The machine learning followed in the present study is supervised learning which 

can be extended to unsupervised learning 

 The shear mode MR damper has been considered for the current study, which 

could be realised with a magnetorheological mount in place of a damper 

 Other modes of damper, such as flow mode and squeeze mode, could be 

explored for their effectiveness  
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APPENDIX 

 

1. Panther all-geared precision lathe 

Parameter  Specification  

Model  1350/1 

Height for centres  177 mm 

Dist between centres  540 

Spindle bore  42 mm 

Spindle diameter  45 mm 

Travel of tool slide  130 

Tool shank section  16 x 16 

No of speeds  8 / 16 

Range RPM  45 – 938 / 30 – 1250  

No of feeds  65 

Longitudinal feed  0.05 to 0.8 mm/rev 

Transverse feed   0.03 to 0.48 mm/rev  

Main motor  2 HP 

Power supply  3 phase  

IMAGE  
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2. Cutting tool dynamometer (piezoelectric) 

 

Technical data  Type  9257 B 

Measuring range  Fx, Fy kN -5….5 

Fz kN  -5…..10 

Calibrated 

measuring range   

Fx, Fy kN 0….5 

Fz kN 0….10 

Sensitivity  Fx, Fy pC/N ~ - 7.5  

Fz pC/N ~ - 3.7  

Natural frequency  Fn(x), Fn(y) kHz ~ 2.3  

Fn(z) kHz ~ 3.5  

Pretensioning    Vertical  

LxWxH  mm 170x100x60 

Weight   Kg  7.3  

IMAGE  
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3. FESEM (Field emission scanning electron Microscope) ( Make: Carl 

Zeiss-sigma) 

Parameter  Specification  

Electron Source Schottky Thermal Field Emitter 

Resolution* at 30 kV (STEM):   1.0 nm 

Resolution* at 15 kV :  1.0 nm 

Resolution* at 1 kV:   1.6 nm 

Resolution* at 30 kV (VP Mode) : 2.0 nm 

Maximum Scan Speed : 50 ns/pixel 

Accelerating Voltage : 0.02 – 30 kV 

Magnification:  10× – 1,000,000× 

Probe Current:  3 pA - 20 nA (100 nA (optional) 

Image Frame store  32 k × 24 k pixels 

IMAGE 
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4. CILAS 1064 Particle size analyser 

Parameter  Specification  

Particle size range:  0.04 to 500 µm 

Number of lasers: 2 

Laser source:  Fibre and collimated laser diodes 

Wavelength :  635 and 830 nm 

Power : 3/7 Mw 

Beam diameter:  2 and 20 mm 

Repeatability  ± 0.5 % 

Reproducibility:  < 2 % 

IMAGE 

 

5. Lakeshore:7407- Vibration sample Magnetometer (VSM) 

Parameter  Specification  

Make and Model:  Lakeshore, USA, 

Model  7407 

Max. Magnetic field  2.5 T 

Dynamic moment range:  1x10e-6emu – 10e3emu 

Vibrating Sample magnetometer feasible measurements 

 M Versus H at Room Temperature. 

 M Versus T at constant H ( Selected Field) M Versus H at constant Temperature (Low 

Temperature range 20-300K and High Temperature range 300 -1270K 
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IMAGE 

 

6. Weighing balance  

Parameter  Specification  

Maximum capacity  1 kg 

Accuracy  0.1 g 

Power  ~230 V , 50 Hz 

IMAGE 
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7. Mechanical stirrer (Make: Remitek) 

Parameter  Specification  

Max. Capacity:  5 litres 

Speed range: 50-1500 rpm 

Power, Voltage, frequency:  10 W, 220-240 V, 50 Hz 

IMAGE  

 

 

8. Rheometer MCR 702 (Make: Anton-Paar, Austria)  

Parameter  Specification  

Minimum torque, rotation:  1nNm 

Maximum torque, rotation:  230mNm 

Minimum torque, oscillation:  0.5nNm 

Maximum angular frequency:  628 rad/s 

Normal force:  0.005 to 50 N 

Maximum temperature: 160°C to 1000°C 

Pressure:  up to 1000bar 

Rheometer Software:  RheoCompass, 

MRD Cell:  1Tesla 

Oil free Motor Power:  0.55 kW 

Output (5 bar):  55 l/min max 
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Temperature range:  -10 to 170°C (Peltier Heating/Cooling), 

Pressure:  8 bar, 

Cooling Tank Volume:  10 L 

Weight:  59 kg 

Power Supply Magneto Cell  230V HCP 14-12500,12.5,1 mA 

IMAGE  

 

 

9. Damper testing machine (DTM)(Make: Heico India) 

Parameter  Specification Image 

Actuator  

Capacity +/- 20 kN 

Stroke:  150 mm (+/- 75 

mm) Max., 

Working pressure:  210 bar Max 

Velocity:  0.8 m/s- 1.2 m/s, 

Servo valve:  63LPM 

Pressure line filter  180 LPM 
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Accumulator (2 

No.)  

0.36 ltr. Capacity 

Displacement sensor 
 

 

 

 

Range  200 mm 

Full scale output  10 volts 

sampling rate:  2 kHz, 

Operating 

temperature:  

-30 to +75 deg. C 

Load cell  

Load cell:  

Capacity  

+/- 30kN, 

Resolution:  0.001kN, 

Excitation Voltage  10 Volts DC 

Operating 

temperature  

0 to +60 deg. C 

Moog controller 

 

Auto PID operation, Digital signal 

processing based closed loop servo 

controller with 10 kHz.  

Number of control 

channels  

4 

Demand wave 

generation  

Sine, Triangular, 

Square and ramp 

Hydraulic power pack with radiator  

Flow rate: 

Operating  

64 Litres/min 

Pressure:  210 bar,  

Capacity:  200 litres 

power supply:  440 V 
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IMAGE  

Damper testing machine 

10. DC power supply 

Parameter  Specification  

Output  0-30 V / 5 A 

Resolution  10 mV 

Current  5 mV 

Load regulation  ≤± (0.05 %+10 mV) 

Input supply  230  AC± 10 % / 50-60 Hz  

Resistance  ≤ 10 m Ohms 

IMAGE  
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DC power supply  

 

11. Surface roughness tester  

Parameter  Specification  

Model  Mitutoyo, Talysurf SJ310 

Measuring force, Stylus tip radius, Tip 

angle  

4 mN, 5 µm, 90° 

Cut off length  0.08, 0.25, 0.8, 2.5, 8 mm 

Sampling length  2.5, 8 μm 

No of sampling length  x1 to x10 

IMAGE  
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12. NI 9234  DAQ 

Parameter  Specification  

IEPE channels 4-channel sound and vibration input  

Resolution  24 bit 

Operating range ±5 V,  0-20 mA input range  

Connectivity  BNC only  

Sampling rate  51.2 kS/s  

IMAGE  

 

 

13. NI 9403 with DSUB 32 Ch, TTL Digital Input/Output Module 

Parameter  Specification  

Module type 5V, TTL digital I/O 

No. of input output channels 32 - Channel 

Speed of operation 7μ S 

Isolation 60 VDC, CAT I 

Operational Temperature -40 °C to 70 °C 

Operating Acceleration 5 g vibration, 50 g shock 

IMAGE 
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NI 9403 with DSUB 32 Ch, TTL Digital Input/Output Module 

 

14. NI C DAQ 9174 

Parameter  Specification  

Input FIFO size  127 samples per slot 

Timing frequency  50 ppm sample rate  

Timing resolution  12.5 ns 

Resolution (timers and counters) 32 bits  

No of slots per module  4 

IMAGE 
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15. Triaxial accelerometer  

Parameter  Specification  

Make and model  PCB PIEZOTRONICS, 356A09 

Sensitivity  10 mV/g 

Measuring range  ±500 g pk 

Frequency range  2 to 8000 Hz (y or z axis), 2 to 5000 Hz 

(x) 

Resonant frequency  >50 kHz 

Overload limit ±5000 g pk  

Excitation voltage  22 to 30 VDC 

Constant current excitation  2 to 20 mA  

Output impedance  ≤200 Ohm  

Output bias  9 to 16 VDC 

Size  6.35x6.35x6.35 mm 

Mounting  Adhesive  

IMAGE 

 

16. Impact hammer  

Parameter  Specification  

Make and model  PCB PIEZOTRONICS, TLD086C03 

Sensitivity  2.25 mV/N 

Measurement range  ±2000 N pk 

Hammer mass  0.16 kg  

Excitation voltage  20-30 V DC 
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Constant current excitation  2-20m A 

Output impedance  <100 m Ohm 

Sensing element  Quartz  

Electrical connector  BNC Jack  

IMAGE  

 

 

17. MRF 132 DG MR fluid 

Parameter  Specification  

Make  Lord corporation ltd.  

Appearance  Dark gray liquid  

Viscosity, Calculated as slope 800-1200 

sec-1, Pa-s @ 40°C (104°F) 

0.112 ± 0.02 

Density, g/cm3 (lb/gal) 2.95-3.15 (24.6-26.3) 

Flash Point, °C (°F) >150 (>302) 

Operating Temperature, °C (°F) -40 to +130 (-40 to +266) 
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18. Software 

Name of software  Version  Licensed  

MATLAB/SIMULINK (Mathworks) R2018b to R2022a NITK 

FEMM 4.2 Open-source 

ANSYS 2022 Student trial version 

LabVIEW (National instruments ) 2017  NITK 

Signal express (National instruments)  2017 NITK  

Origin (OriginLab) 2021 Learning edition 

(free) 

MINITAB 2018 Trial version  

WEKA  machine learning  3.6.9 Open-source  

 

 





211 

 

LIST OF PUBLICATIONS 

 

 International journals 

1. Aralikatti, S. S. and Hemantha Kumar, “Tool Vibration Isolation in Hard 

Turning Process with Magnetorheological Fluid Damper” Journal of 

Manufacturing Processes, Elsevier,  (Scopus and SCIE, IF 5.684, Q1) 

https://doi.org/10.1016/j.jmapro.2023.01.044    

2. Aralikatti, S. S., Ravikumar K. N., Kumar, H.,  Nayaka H. S., and Sugumaran, 

V. “Comparative Study on Tool Fault Diagnosis Using Vibration Signals and 

Cutting Force Signals by Machine Learning Technique.” Structural Durability 

and Health Monitoring, Tech Science Press.  (Scopus indexed), 

https://doi.org/10.32604/sdhm.2020.07595     

3. Aralikatti, S.S., Ravikumar, K.N. and Kumar, H. (2019) “Fault diagnosis of 

single-point cutting tool using vibration signal by rotation forest algorithm.” SN 

Applied. Sciences 1: 1017. Springer Nature publications. (Scopus indexed and 

ESCI) (Q2), https://doi.org/10.1007/s42452-019-1028-9  

4. Aralikatti, S. S., N. P. Puneet, and Hemantha Kumar, “Determining the Optimal 

Composition of Magnetorheological Fluid for a Short-Stroke 

Magnetorheological Damper” Sadhana, Springer publication, SADH-D 

2201052, (Review submitted) (Scopus indexed and SCIE, IF 1.214, Q2 ) 

5. Aralikatti, S. S. and Hemantha Kumar, “ Real-Time Control of Tool Vibration 

in Hard Turning using Magneto-rheological damper” SCIENTIA IRANICA, 

SCI-2211-7333, (Under Review) (Scopus indexed and SCI, IF 1.416, Q2) 

 

International conferences 

 
6. Aralikatti, S. S., Ravikumar K. N., and Hemantha Kumar. “Fault Diagnosis of 

Single Point Cutting Tool Using Spectrum, Cepstrum and Wavelet Analysis.” 

1st International Conference Manufacturing, Materials Science and 

Engineering (ICMMSE 2019), August - 2019, CMR Institute of Technology, 

https://doi.org/10.1016/j.jmapro.2023.01.044
https://doi.org/10.32604/sdhm.2020.07595
https://doi.org/10.1007/s42452-019-1028-9


212 

 

Hyderabad, India.  AIP Conference Proceedings (Indexed in Scopus and 

Web of science). https://doi.org/10.1063/1.5141218  

7. Aralikatti, S. S., and Hemantha Kumar. “Magnetostatic Analysis of 

Magnetorheological Damper for Tool Vibration Control Application.” 7th 

International Congress on Computational Mechanics and Simulation (ICCMS 

2019), 11-13 December 2019, IIT Mandi, India 

Patent  

1. Title: Magnetorheological Fluid Based Tunable Tool Holder in Chatter 

Vibration Control of a Cutting Tool during Turning Operation. Inventors: Suhas 

S. Aralikatti and Hemantha Kumar. (Status: Filing in-process, cleared 

patentability search)  

 

 

  

https://doi.org/10.1063/1.5141218


213 

 

BIO-DATA 

 

1. Name:    Suhas S. Aralikatti  

2. Date of Birth:   31/07/1991 

3. Nationality:   Indian  

4. Address:    # 07 Renuka Nagar 

Gokul Road, Hubballi - 30 

5. Mobile No.:  +91 90087 88182 

6. Email ID:   amsuhas@gmail.com  

7. Educational Qualification: 

Qualification  Institute  Passing  Score  

PhD in Mechanical Engineering NITK Surathkal, KA, IN 2023 Pass 

M.Tech. in Manufacturing 

Engineering,  

Supervisor: Dr. M. Amarnath 

IIITDM Jabalpur, MP, 

IN  

2017 8.10/10 

BE in Mechanical Engineering  KLE Technological 

University, Hubballi, IN  

2013 8.02/10 

8. Experience:   

Graduate Engineer Trainee (GET), ‘Operations’ at MSPL PELLET 

PLANT, A flagship of BALDOTA GROUP OF COMPANIES, Hospet, KA, IN  

 

 

I declare that the above information is true and correct to the best of my knowledge and 

belief 

 

(Suhas S. Aralikatti) 

mailto:amsuhas@gmail.com

