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ABSTRACT

Explicit structure of Galois group of Q(
√

a1,
√

a2, ...,
√

an) over Q was calculated by Karthick

Babu and Anirban Mukhopadhyay. Expanding this knowledge, the problem of finding an ex-

plicit Galois group of the field extension Q(
√

a1,
√

a2, ...,
√

an,ζd) over Q in terms of its action

on ζd and
√

ai for 1 ≤ i ≤ n has been studied.

Let p be an odd prime. If we have an integer g which generates a subgroup of index t in

(Z/pZ)∗, then we call g to be a t-near primitive root modulo p. Pieter Moree and Min Sha

showed that each coprime residue class contains a positive density of primes p not having g as

a t-near primitive root. In this note, for a subset {a1,a2, . . . ,an} of Z\{0}, we shall prove that

each such coprime residue class contains a positive density of primes p such that ai is not a

t-near primitive root. Additionally, ai’s satisfy certain residue pattern modulo p, for 1 ≤ i ≤ n.

Keywords: Galois Group, Multi-Quadratic Extension, Cyclotomic Extension, Residue Pattern,

Natural Density

i



ii



Contents

Abstract of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

1 INTRODUCTION 1

1.1 Number Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Primes in Arithmetic Progression . . . . . . . . . . . . . . . . . . . . . 2

1.3 Galois Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Frobenius element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 A counting problem with respect to primes in Arithmetic Progression 5

2.1 Notations and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Proof of Theorem 2.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Arithmetic Lemmas . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Some Combinatorial Lemmas and Corollaries of Theorem 2.1.1 . . . . 14

2.3.1 Some Corollaries of Theorem 2.1.1 . . . . . . . . . . . . . . . 20

2.4 A counting problem arising from Theorem 2.1.1 . . . . . . . . . . . . . 23

2.4.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Explicit Galois group of Q(
√

a1, . . . ,
√

an,ζd) over Q 29

3.1 The degree of Q(
√

a1,
√

a2, . . . ,
√

an,ζd) over Q . . . . . . . . . . . . . 29

3.2 The explicit Galois group of Q(
√

a1,
√

a2, . . . ,
√

an,ζd) over Q . . . . . 31

4 Non-primitive roots with prescribed residue pattern 35

4.1 Preliminary lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 A positive density subset of QS(t,d, f ,θ) . . . . . . . . . . . . . . . . 42

4.3 A positive density subset of RS(t,d, f ,θ) . . . . . . . . . . . . . . . . 44

5 Conclusions and Future Scope 49

iii



PUBLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

iv





Chapter 1

INTRODUCTION

Chaos is the fundamental nature of existence. The distribution of primes is as such

chaotic. Chaos Theory talks about a dynamic system where the slightest of change in

the initial conditions in any non-linear system leads to unpredictable changes in the

further stages. The current active research in this theory is about finding patterns in the

variations of the system with respect to changes made in the initial conditions. Though

the distribution of primes is not about dynamics, mathematicians tend to find patterns

in this chaotic distribution to unravel the mystery of primes.

The notion of primes itself is naturally appealing. Evidently, primes are the build-

ing blocks of the entire number system. Starting from Gauss to the present generation

number theorists, the distribution of primes has intrigued them. The beauty of seeing

patterns in nature, especially symmetries, is another deep area of observation and re-

search called Group Theory. Évariste Galois had observed a crucial interplay between

the Groups and Fields.

One of the main applications of Number Theory in today’s world is Cryptography.

To have a direct application based research in this area, there are predominantly four

tasks postulated by Zassenhaus (1987), a pioneer of computer algebra. These include

computation of the ring of integers, the unit group, the Galois group and the ideal class

group of a number field. There have been approaches in analytical, algebraic, algorith-

mic, elementary and several other ways to tackle these problems.
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1.1 Number Fields

Any field which is a finite degree field extension of the field of rationals, Q, is called

a number field. Hence number fields are always algebraic extensions. Here degree

means the dimension of the given field as a vector space over Q. Evidently, number

fields are of characteristic 0. This thesis deals with quadratic fields and their cyclotomic

extensions.

1.2 Primes in Arithmetic Progression

The Dirichlet prime number theorem states that for any n ∈ N and integer a such that

gcd(a,n) = 1, there exist infinitely many primes p such that p ≡ a (mod n). For the

case n = 1, the proof is attributed to Euclid.

Let p be an odd prime. If we have an integer g which generates an index t subgroup of

(Z/pZ)∗, then we call g to be a t-near primitive root modulo p. Using the notations of

Moree and Sha (2019), for any integer t ≥ 1 and coprime integers f ,d ≥ 1, we write

Pg(t) ={p : p ≡ 1 (mod t), p ∤ g, ordp(g) = (p−1)/t},

Pg(t,d, f ) ={p : p ≡ f (mod d), p ∈ Pg(t)}.

Further, Moree and Sha (2019) defined

Qg(t,d, f ) = {p : p ≡ f (mod d), ordp(g) ̸= (p−1)/t},

Rg(t,d, f ) = {p : p ∤ g, p ≡ f (mod d), p ≡ 1 (mod t) and ordp(g) | (p−1)/t}.

In this thesis, we consider the generalization of the above sets as we replace the

element g with a set S.

1.3 Galois Group

For a field extension E over F , the set of all automorphisms of E that fix F forms a

group G. If this extension is Galois, this group is called the Galois group of E over F .

Mathematically,

G = Gal (E/F) = Aut(E/F) = {σ ∈ Aut(E) | σ(x) = x, ∀x ∈ F}.

One can identify the algebraic structure of the field extension by studying this Galois
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group. The Galois correspondence which establishes a correspondence between sub-

fields of a Galois extension E over F and subgroups of Gal(E/F) is a powerful tool

which can be applied to diverse areas of Mathematics.

1.4 Frobenius element

Ferdinand Georg Frobenius, a German mathematician, found a way to look at the

primes, p, in Galois groups over Q in the form of conjugacy classes. A is a Dedekind

domain with fraction field K, and L/K is a finite separable extension of its fraction field

(and B is the integral closure of A in L, also a Dedekind domain). We now consider the

case where L/K is also normal, hence Galois, and let G := Gal(L/K).

Let E/Q be a finite Galois extension. When ℘ is a prime lying over an unramified

prime p, then there is a unique element σ ∈ Gal (E/Q) with the property

σ .x = xp (mod ℘),∀ x ∈ OE ,

which is called the Frobenius element where OE is the ring of integers of E. Varying ℘

over p changes σ to its conjugate. This collection of conjugates is called the Frobenius

conjugacy class. The cardinality of this class is used to find the density of unramified

primes satisfying the Frobenius condition as given above. This concept is encoded in

the Chebotarev Density Theorem.

Moree and Sha (2019) showed that for any integer q > 2 such that (q,2dt) = 1, the

set Qg(t,d, f ) contains infinitely many primes p with natural density (over the set of

primes) 1
[Q(ζd ,ζq,g1/q):Q]

. Further, if the set Rg(t,d, f ) is nonempty, then they showed

that for any integer q > 2 such that (q,2gdt) = 1, the set Rg(t,d, f ) contains infinitely

many primes p for which g ceases to be a t-near primitive root modulo p with natural

density 1
[Q(ζd ,ζqt ,g1/qt):Q]

. This thesis discusses generalizing their results to the set S =

{a1, . . . ,an} ⊂ Z\{−1,0,1}.

There has been progress in developing multi-quadratic and cyclotomic extensions

as separate field extensions over Q. This thesis details the progress towards calculating

the explicit structure of the Galois group of Q(
√

a1,
√

a2, . . . ,
√

an,ζd) over Q. This is

3



obtained in terms of its action on the cyclotomic part, ζd , and the quadratic part,
√

ai,

for 1 ≤ i ≤ n.

In the other portions, we find the density of primes in arithmetic progression in-

volving certain conditions. The original idea proposed by Moree and Sha (2019) have

shown the some application to Genocchi numbers, Gn = 2(1− 2n)Bn, where Bn is the

nth Bernoulli number. If a prime p > 3 divides at least one of the Genocchi numbers

G2,G4, ...,Gp−3, it is said to be G-irregular and G-regular otherwise. The G-regularity

of primes can be linked to the divisibility of certain class numbers of cyclotomic fields.
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Chapter 2

A counting problem with respect to primes in
Arithmetic Progression

Prime numbers, though, have chaotic distribution; when we see the infinitude of

primes under a particular sieve, there is more to explore. We can find the corresponding

Dedekind zeta function and its analytical properties for the number fields we are dealing

with. Though not discussed in this thesis, these are active areas of research.

2.1 Notations and Definitions

Some notations used majorly in chapters 2 and 3 are mentioned here. The definitions

will be recalled at the required places as and when needed.

We shall use the letter p for an odd prime number. Also,
(

.
p

)
represents the Jacobi

symbol.

1. Let f be a real/complex valued function and g be a real valued function for com-

parision. If f is defined on some unbounded subset of positive reals, and g be

strictly positive for large enough values of reals, then f = O(g) implies the claim

that the inequality | f | ≤ cg holds for some constant c > 0.

2. The Euler phi function is denoted by ϕ(n).

3. A function θ : S →{−1,1} denotes a choice of signs for S.

4. H = H (S) =
{

T ⊆ S : ∏s∈T s =□
}

, where □ denotes any perfect square.
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5. If
(

s
p

)
= θ(s), ∀s ∈ S, then we say that S has residue pattern θ modulo p, where(

·
p

)
is the Jacobi symbol mod p.

6. Squarefree part for any n ∈ Z\{0}, n = ∏
m
i=1 pki

i is given by sqf(n) = ∏
m
i=1 pri

i ,

where ri ∈ {0,1} such that ki ≡ ri (mod 2).

7. For T ⊆ S, we have θ(T ) := ∏s∈T θ(s).

8. S(n,θ)= {p∈P : n< p≤ 2n such that S satisfies the residue pattern θ (mod p)}.

Here P denotes the set of all primes.

9. |A| denotes the cardinality of the set A.

10. (p,B) = 1 for a set B =⇒ (p,b) = 1 ∀ b ∈ B .

11. The symmetric difference between sets A and B is represented by the symbol

A△B and A\B denotes the set difference between A and B.

12. Given a set of primes S, if the limit

δ (S) = lim
x→∞

|{p ≤ x : p ∈ S}|
|{p ≤ x}|

exists, then δ (S) is called the natural density of S.

Let S = {a1,a2, . . . ,an} be a finite subset of non-zero integers. Fried (1968) showed

the existence of infinitely many primes p for which every element of the set S will be

a quadratic residue. Additionally, he provided a criterion for ai’s to be quadratic non-

residues modulo p. The precise density of primes in Fried’s result was computed by

Balasubramanian et al. (2010) (Theorem 2.3).

Generalising the uniformity of either residues or non-residues among the elements

of S, we deal with the function θ , called the choice of signs for S.

Recently, Babu and Mukhopadhyay (2022) calculated the exact density of the col-

lection of primes for which S has residue pattern θ modulo p. Additionally, a criterion

for a choice of signs θ for S to be a residue pattern modulo p was also obtained for the

positive density of primes.
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To denote the squarefree part of n, we use the symbol sqf (n) for any non-zero integer

n. For any finite subset T ⊂ Z \ {0}, by sqf (T ) we mean sqf (∏s∈T s). Clearly, this

function is completely multiplicative.

We shall find the density of primes in S(n,θ), the set of primes, p, such that n <

p ≤ 2n and S satisfying the residue pattern θ (mod p). The closest approach would be

to find the asymptotic growth of such primes. Thus, the first result of this thesis is the

following:

Theorem 2.1.1. Let S be a finite subset of non-zero integers having θ as a choice of
signs for S. For any coprime integers f and d such that 1 ≤ f ≤ d ≤ (logn)A and a
sufficiently large integer n ≥ 3 with A > 0, we have

∑
p≡ f (mod d)

p∈S(n,θ)

log p =
n

ϕ(d)
· C(S,θ ,d)

2|S|
+O

(
n logn

exp(C1
√

logn

)
,

where C1 =C1(A,S). Here,

C(S,θ ,d) =



∑
T⊆S

sqf (T )≡1 (mod 4)
| sqf (T )| |d

θ(T )
(

sqf (T )
f

)
, when 4 ∤ d,

∑
T⊆S

sqf (T )≡1,3 (mod 4)
| sqf (T )| |d

θ(T )
(

sqf (T )
f

)
, when 4 | d & 8 ∤ d,

∑
T⊆S

| sqf (T )| |d

θ(T )
(

sqf (T )
f

)
, when 8 | d.

(2.1.1)

Let S = {−10}, θ(−10) =−1, f = 3, d = 8, n = 106. Clearly 8|d.

S(n,θ) = S(106,θ) = {p : 106 < p ≤ 2 ·106 and
(−10

p

)
= θ(−10)}

∑
p≡3 (mod 8)
p∈S(106,θ)

log p =
106

φ(8)
C({−10},θ ,8)

2|{−10}| +O
( 106 log(106)

exp(C1
√

log(106)

)

C({−10},θ ,8) = 0.

Hence,

∑
p≡3 (mod 8)
p∈S(106,θ)

log p = O
( 106 ·6

exp(C1
√

6

)
≈ O

( 6 ·106

11.58C1

)

Outline of this chapter:

We will discuss the proof of the above Theorem in section 2.2. Analysis of C(S,θ ,d)
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will solve a counting problem. In section 2.3, we prove several combinatorial Lemmas,

and as an application of those Lemmas, we discuss the positivity of C(S,θ ,d) in Lemma

2.3.5.

Further, we discuss some Corollaries of the above Theorem in section 2.3. Especially in

the Corollary 4.1.8, in order for S to be a residue pattern modulo p for an infinite number

of primes p of the type p ≡ f (mod d), we shall present a necessary and sufficient

condition for a choice of signs θ .

In section 2.4, we will calculate the number of choice of signs for S that allow S

to have a residue pattern of θ modulo p for infinitely many primes p in an arithmetic

progression.

2.2 Proof of Theorem 2.1.1

2.2.1 Arithmetic Lemmas

Recalling some basic results on Dirichlet characters which will be used for quadratic

characters.

Lemma 2.2.1. Let χ1 and χ2 be Dirichlet characters modulo coprime integers d1 and
d2 respectively. We define χ = χ1χ2 as a character modulo d, where d = d1d2. Then χ

is principal modulo d if and only if χ1,χ2 are principal modulo d1,d2 respectively.

Proof: If χ1 and χ2 are principal characters as given, then it is easy to see that χ is

principal modulo d.

Conversely, let χ = χ1.χ2 be the principal character modulo d. Then χ2(n) = χ1(n)

holds by definition, if (n,d1d2)= 1. Suppose r2 ̸= 1 is a reduced residue class modulo d2

such that (r2,d2) = 1. Since d1 and d2 are coprime, there exists a positive m satisfying

r2 +md2 ≡ 1 (mod d1). Therefore, for any r2 < d2 and (r2,d2) = 1, we have

1 = χ1(1) = χ2(r2 +md2) = χ2(r2)

Thus χ2 is principal modulo d2.

In a similar way, we can show that χ1 is the principal character modulo d1.

Remark 2.2.2. If (d1,d2) > 2, The above Lemma need not hold. For example, con-
sider the non-principal Dirichlet characters χ6 and χ9 of modulus 6 and modulus 9
respectively, with the character tables as below:

8



n 0 1 2 3 4 5 6 7 8
χ9(n) 0 1 -1 0 1 -1 0 1 -1

n 0 1 2 3 4 5
χ6(n) 0 1 0 0 0 -1

The character χ = χ6χ9 is principal modulo 18. We can see that both of these
characters χ6 and χ9 are induced by some non-principal character modulo (d1,d2) = 3.

Further, if d1 and d2 are not coprime and χ1χ2 is principal modulo [d1,d2], then
χ1andχ2 both are induced by some character modulo t, where t|(d1,d2). To prove this,
it is enough to show that

χ2(k) = 1, for any k ≡ 1 (mod (d1,d2)), and (k,d2) = 1.

Since k ≡ 1 (mod (d1,d2)) we have k = 1+ l(d1,d2) for some positive integer l.
Also, by the linearity of gcd, there exists m ∈ Z+ which satisfies 1+ l(d1,d2)+md2 ≡
1 (mod d1). This implies

χ2(k) = χ2(1+ l(d1,d2)) = χ2(1+ l(d1,d2)+md2) = χ1(1) = 1.

In a similar way, χ1 is also induced by a character modulo t such that t|(d1,d2).
Since there are no non-principal characters modulo 2, Lemma 2.2.1 holds if we were to
assume (d1,d2) = 2.

Corollary of Lemma 2.2.1:

Corollary 2.2.3. Let χ1 and χ2 be two characters modulo d1 and d2 respectively such
that d1 < d2 and d1 ∤ d2. If either χ1 or χ2 is primitive, then χ1χ2 cannot be principal
character modulo [d1,d2].

Remark 2.2.4 (Ch.5, Davenport (2000)). The Kronecker symbol χm =
(m
·
)
, for every

fundamental discriminant m, is a primitive quadratic character with conductor |m|.

Conversely, if χ is a primitive quadratic character, a unique fundamental discrimi-
nant s exists so that χ = χs. Also, if s is not a fundamental discriminant, it is possible
that χs be primitive (e.g., χ2), nonprimitive (e.g., χ4) or not even a character (e.g., χ3).

Therefore, we shall make use of the law of reciprocity and convert Kronecker symbol(m
·
)

into Jacobi symbol
( ·

m

)
in the following lemma. This Jacobi symbol is a Dirichlet

character modulo m.

Lemma 2.2.5. Let A and B be positive real numbers, and n ≥ 3 be a positive integer.
Let s be a squarefree integer s ≤ logB n such that s ∤ d. Then for any positive coprime
integers, f , d satisfying 1 ≤ f ≤ d ≤ logA n, there exists C =C(A,B)> 0 such that

∑
n<p≤2n

p≡ f (mod d)

(
s
p

)
≪ n · exp(−C

√
logn)

holds.

9



Proof: Let s be odd. Then we can analyse the following two cases.

Case I : When s ≡ 1 (mod 4). Applying the quadratic reciprocity law, we have

∑
p≡ f (mod d)

n<p≤2n

(
s
p

)
= ∑

p≡ f (mod d)
n<p≤2n

( p
s

)
=

1
ϕ(d) ∑

ψ (mod d)
ψ( f ) ∑

n<p≤2n

( p
s

)
ψ(p),

where the first summation runs across the set of all Dirichlet characters taken mod-

ulo d. Also, since s is an odd positive squarefree integer, the Jacobi symbol
(
.
s

)
is

primitive, taken modulo s. By Corollary 2.2.3, as s ∤ d,
(
.
s

)
ψ is a non-principal char-

acter modulo [d,s]. Applying Siegel’s Theorem [Ch. 22, Davenport (2000)] we obtain

the required result.

Case II : When s ≡ 3 (mod 4).

If 4 | d, all the primes are of the form p ≡ f (mod d) are of the form 1 or 3 (mod 4).

Therefore, similar to the above case, we get

∑
p≡ f (mod d)

n<p≤2n

(
s
p

)
=

∣∣∣∣ ∑
p≡ f (mod d)

n<p≤2n

( p
s

)∣∣∣∣≪ n · exp(−C1
√

logn).

If 4 ∤ d, then by applying the reciprocity law, we have

∑
p≡ f (mod d)

n<p≤2n

(
s
p

)
= ∑

p≡ f (mod d)
n<p≤2n

p≡1 (mod 4)

( p
s

)
− ∑

p≡ f (mod d)
n<p≤2n

p≡3 (mod 4)

( p
s

)

=
1

2ϕ(d)

(
∑

ψ (mod d)
ψ( f )

(
∑

χ (mod 4)
χ(1) ∑

n<p≤2n

( p
s

)
ψ(p)χ(p)

− ∑
χ (mod 4)

χ(3) ∑
n<p≤2n

( p
s

)
ψ(p)χ(p)

))
.

By Corollary 2.2.3, as 4s ∤ d,
(
.
s

)
ψ · χ is a non-principal character modulo [d,4s].

10



Thus applying Siegel’s Theorem [Ch. 22, Davenport (2000)] we obtain the required

result.

Now, when s is even, we can write s = 2k for a squarefree and odd integer k. Then, we

have

∑
n<p≤2n

p≡ f (mod d)

(
s
p

)
= ∑

n<p≤2n
p≡ f (mod d)

p≡±1 (mod 8)

(
k
p

)
− ∑

n<p≤2n
p≡ f (mod d)

p≡±3 (mod 8)

(
k
p

)
. (2.2.1)

We use similar arguments as discussed for odd case to estimate the two sums in

(2.2.1), from which we obtain the required result in the even case of s.

The following Lemma treats the same character sum when s divides d; as expected,

we get the main term.

Lemma 2.2.6. Let n ≥ 3 be an integer and A be a positive real number. Then for a
squarefree integer s such that s | d, there exists a positive real constant C =C(A) such
that for positive coprime integers f ,d satisfying 1 ≤ f ≤ d ≤ logA n, we have

∑
p≡ f (mod d)

n<p≤2n

(
s
p

)
=



(
s
f

)
∑p≡ f (mod d)

n<p≤2n
1 if s ≡ 1 (mod 4),(

s
f

)
∑p≡ f (mod d)

n<p≤2n
1 if s ≡ 3 (mod 4) and 4 | d,(

s
f

)
∑p≡ f (mod d)

n<p≤2n
1 if s ≡ 2 (mod 4) and 8 | d,

O(n · exp(−C
√

logn), otherwise.

Proof: When s ≡ 1 (mod 4). Since s | d and p ≡ f (mod d) implies p ≡ f (mod s).

Applying the law of quadratic reciprocity, we have

∑
p≡ f (mod d)

n<p≤2n

(
s
p

)
= ∑

p≡ f (mod d)
n<p≤2n

( p
s

)
=

(
f
s

)
∑

p≡ f (mod d)
n<p≤2n

1 =

(
s
f

)
∑

p≡ f (mod d)
n<p≤2n

1.

Now, when s ≡ 3 (mod 4). Suppose 4 | d then all primes p ≡ f (mod d) are of the form

1 or 3 (mod 4). Since s | d and p ≡ f (mod d) implies p ≡ f (mod s), applying the law

of quadratic reciprocity, we have
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∑
p≡ f (mod d)

n<p≤2n

(
s
p

)
= ∑

p≡ f (mod d)
n<p≤2n

(−1)
p−1

2

( p
s

)
=

(
f
s

)
∑

p≡ f (mod d)
n<p≤2n

(−1)
f−1

2 =

(
s
f

)
∑

p≡ f (mod d)
n<p≤2n

1.

If 4 ∤ d, we use similar arguments as in Lemma 2.2.5 to obtain the required result.

The proof again makes use the Reciprocity law and Siegel’s Theorem as in the above

case when s ≡ 2 (mod 4). Thus, we omit the proof.

The Proof of Theorem 2.1.1:

Since S(n,θ) is the set of primes, p, such that n < p ≤ 2n and S satisfies the residue

pattern θ (mod p), by the definition of the Legendre symbol, we can write

∑
p∈S(n,θ)

p≡ f (mod d)

log p =
1

2|S| ∑
n<p≤2n
(p,S)=1

p≡ f (mod d)

log p∏
s∈S

(
1+θ(s)

(
s
p

))
.

For sufficiently large values of n, the condition (p,S) = 1 can be skipped as we can

consider (logn)B > ∏s∈S s for some B > 0.

We write

∏
s∈S

(
1+θ(s)

(
s
p

))
= 1+ ∑

φ ̸=T⊆S
∏
s∈T

θ(s)
(

s
p

)
= 1+ ∑

T∈H ∗
θ(T )+ ∑

T⊆S
T /∈H

θ(T )∏
s∈T

(
s
p

)
,

(2.2.2)

where H is the set of subsets T of S such that product of elements of T is a perfect

square. Also, denoting H ∗ = H \{φ}.

By convention, the empty product is 1, hence, we rewrite (2.2.2) as

∏
s∈S

(
1+θ(s)

(
s
p

))
= ∑

T⊆S
T /∈H

θ(T )∏
s∈T

(
s
p

)
+ ∑

T∈H

θ(T ).

12



Therefore, by substituting,
1

2|S| ∑
φ ̸=T⊆S
T /∈H

θ(T ) ∑
n<p≤2n

p≡ f (mod d)

∏
s∈T

(
s
p

)
log p =

∑T∈H θ(T )
2|S| ∑

n<p≤2n
p≡ f (mod d)

log p.

+
1

2|S| ∑
n<p≤2n

p≡ f (mod d)

log p∏
s∈S

(
1+θ(s)

(
s
p

))

As both d and ∏s∈S s are both bounded by certain powers of logn, we have the

following cases:

Case I: When 4 ∤ d, then by using Lemma 2.2.5 along with Lemma 2.2.6 and ap-

plying partial summation formula, we obtain

∑
p∈S(n,θ)

p≡ f (mod d)

log p =
1

2|S| ∑
T /∈H

| sqf (T )| |d
sqf (T )≡1 (mod 4)

(
sqf (T )

f

)
θ(T ) ∑

n<p≤2n
p≡ f (mod d)

log p

+
1

2|S| ∑
T∈H

θ(T ) ∑
n<p≤2n

p≡ f (mod d)

log p+O
(

n logn
exp(C1

√
logn

)
. (2.2.3)

Also, if we write the squarefree part of a perfect square to be 1 by convention, then

equation (2.2.3) can be rewritten as

∑
p∈S(n,θ)

p≡ f (mod d)

log p =
1

2|S| ∑
T⊆S

| sqf (T )| |d
sqf (T )≡1 (mod 4)

(
sqf (T )

f

)
θ(T ) ∑

n<p≤2n
p≡ f (mod d)

log p+O
(

n logn
exp(C1

√
logn

)
.

Case II: When 4 | d and 8 ∤ d, then by using Lemma 2.2.5 along with Lemma 2.2.6

and applying partial summation formula, we obtain

∑
p∈S(n,θ)

p≡ f (mod d)

log p =
1

2|S| ∑
T⊆S

| sqf (T )| |d
sqf (T )≡1,3 (mod 4)

(
sqf (T )

f

)
θ(T ) ∑

n<p≤2n
p≡ f (mod d)

log p+O
(

n logn
exp(C1

√
logn

)
.
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Case III: When 8 | d, similar to the above cases, by using Lemma 2.2.5 along with

Lemma 2.2.6 and applying partial summation formula, we obtain

∑
p∈S(n,θ)

p≡ f (mod d)

log p =
1

2|S| ∑
T⊆S

| sqf (T )| |d

(
sqf (T )

f

)
θ(T ) ∑

n<p≤2n
p≡ f (mod d)

log p+O
(

n logn
exp(C1

√
logn

)
.

Also, since d ≤ (logn)A for A > 0, we make use of Siegel-Walfisz Theorem to

obtain,

∑
p∈S(n,θ)

p≡ f (mod d)

log p =
C(S,θ ,d)

2|S|
· n

ϕ(d)
+O

(
n logn

exp(C1
√

logn

)
,

where C(S,θ ,d) is defined as in (2.1.1). This completes the proof of Theorem

2.1.1.

2.3 Some Combinatorial Lemmas and Corollaries of Theorem 2.1.1

Let S ∈Z{0}, and P(S) be the power set of S. We know that (P(S),△,∩) is a commuta-

tive ring (in fact a Boolean ring). Also, (P(S),△) is an Abelian group with φ , the empty

set, being the identity element. (P(S),△) is isomorphic to F2 ×·· ·×F2 (|S| times).

Let H = H (S), as earlier, be the function that captures perfect square kind of

behaviour in the set S, namely

H = H (S) =
{

T ⊆ S : ∏
s∈T

s =□
}
. (2.3.1)

Also, we can see that φ ∈ H (S) by the convention that the empty product equals 1.

Here henceforth, □ would be used to denote non-specific perfect squares. The subset

H (S) of P(S) is closed under the symmetric difference. Indeed if S1, S2 ∈H (S), then(
∏

s∈S1△S2

s

)
=

(
∏
s∈S1

s

)(
∏
s∈S2

s

)(
∏

s∈S1∩S2

s

)2

=□=

(
∏
s∈S1

s

)(
∏
s∈S2

s

)
=

(
∏

s∈S1∩S2

s

)2

.

Since S is a finite set, we have (H (S),△)≤ (P(S),△).
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In the following Lemmas, we will discuss some properties of the subgroup H (S)

and cosets of H (S) in P(S) will be discussed in the following lemmas. For any A ⊆ S,

we use A to denote the coset A ·H (S).

Lemma 2.3.1. Let S be a finite set of non-zero integers. For any S1 ∈ P(S)\H (S), the
left coset S1 ·H (S) is of the form

S1 = {T ∈ P(S) : sqf (T ) = sqf (S1)} .

In other words, there are precisely |H (S)| elements of P(S) such that the squarefree
component of the product of all the elements of those subsets is the same.

Proof: Let S′ be a nonempty subset of S such that S′ ⊈ H (S). Consider

S′ ·H (S) = {S′△T : T ∈ H (S) }.

Since H (S) is closed under symmetric difference, we observe that

sqf

(
∏

s∈S1△T
s

)
= sqf

(
∏
s∈S1

s

)
,

for all T ∈ H (S). Thus, S1 ·H (S)⊆ S1 holds.

Suppose S2 ∈ S1 with S2 ̸= S1. We would want to show that there exists T ∈H (S) such

that S1△T = S2. Consider

∏
s∈S1△S2

s =

(
∏s∈S1△S2 s

)(
∏s∈S1∩S2 s

)2(
∏s∈S1∩S2 s

)2 =

(
∏s∈S1 s

)(
∏s∈S2 s

)(
∏s∈S1∩S2 s

)2 =□.

This implies S1△S2 ∈H (S). By choosing T = S1△S2, we have S1△T = S1△(S1△S2)=

S2. Hence, the converse holds: S1 ⊆ S1 ·H (S).

For every U ⊆ S, we define odd and even set partition of set H (S):

OU(S) ={T ∈ H (S) : |T ∩U | is odd}

EU(S) ={T ∈ H (S) : |T ∩U | is even}.

Here we use the convention that zero is even. Hence we assume φ ∈ EA(S).

15



Lemma 2.3.2. EA(S) is a subgroup of H (S). Further, if OA(S) ̸= φ , then EA(S) is an
index 2 subgroup of H (S), or equivalently |OA(S)|=|EA(S)|

Proof: For any A ⊂ S, define a map

φA : H (S)→ (Z2,⊕2) by φA(T ) = |T ∩A| (mod 2).

For any T1,T2 ∈ H (S), we have

φA(T1△T2) =|(T1△T2)∩A| (mod 2) = (|T1 ∩A|+ |T2 ∩A|−2|T1 ∩T2 ∩A|) (mod 2)

=|T1 ∩A| (mod 2)⊕2 |T2 ∩A| (mod 2) = φA(T1)⊕2 φA(T2).

Therefore, φA is a homomorphism whose kernel is EA(S). Suppose OA(S) is a non-

empty, then φA is surjective. Thus, EA(S) is an index 2 subgroup of H (S) (equivalently,

|OA(S)|= |EA(S)|).

Consider the quotient group P(S) = P(S)/H (S) with a binary operation S1 · S2 =

S1△S2 for S1,S2 ∈ P(S). It follows from Lemma 2.3.1 that any two subsets of S have

the same squarefree part if and only if they lie in the same coset of the subgroup H (S).

Thus, sqf (T ) is well defined and equal to sqf (T ) for every T ∈ P(S).

Conventionally, we write the squarefree part of a perfect square is 1. Hence we

assume sqf (φ) = 1.

For any given positive integer d, we define the followings subsets of P(S).

D0 =
{

T ∈ P(S) : | sqf (T )| | d
}

D1 =
{

T ∈ P(S) : | sqf (T )| | d and sqf (T )≡ 1 or 3 (mod 4)
}

D2 =
{

T ∈ P(S) : | sqf (T )| | d and sqf (T )≡ 1 (mod 4)
}
. (2.3.2)

Note that D2 ⊆ D1 ⊆ D0. In the following Lemma, we prove that D0,D1 and D2

are subgroups of P(S).

Lemma 2.3.3. D0,D1 and D2 are subgroups of P(S). Moreover, if there exists T1 ∈P(S)
such that sqf (T1) ≡ 2 (mod 4) then D1 is an index 2 subgroup of D0. Also, if there
exists T1 ∈ P(S) such that sqf (T1)≡ 3 (mod 4) then D2 is an index 2 subgroup of D1.
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Proof: For any S1,S2 ∈ P(S), we observe that

sqf (S1△S2) = sqf ( sqf (S1) · sqf (S2)). (2.3.3)

Let S1,S2 ∈ D0. Equivalently, | sqf (S1)| | d and | sqf (S2)| | d. Then by (2.3.3) it

follows that | sqf (S1△S2)| | d. Thus D0 is a subgroup of P(S).

Now we define a map τ1 : D0 →{1,−1} by

τ1(T ) =

1 if sqf (T ) is odd

−1 if sqf (T ) is even.

For any T1,T2 ∈ D0, using (2.3.3) we obtain τ1(T1△T2) = 1 if either both sqf (T1)

and sqf (T2) are even or both are odd and τ1(T1△T2) = −1 if one of sqf (T1) and

sqf (T2) is even and other one is odd. Thus τ1(T1△T2) = τ1(T1) · τ1(T2) for every

T1,T2 ∈ D0. Therefore, τ1 is a homomorphism with the kernel D1.

Suppose there exists T1 ∈P(S) such that sqf (T1)≡ 2 (mod 4), then τ1 is a surjective

homomorphism. Thus D1 is an index 2 subgroup of D0.

Define a map τ2 : D1 → (Z∗
4,⊙4) by τ2(T ) = sqf (T ) (mod 4). For any T1,T2 ∈ D1, by

(2.3.3) we have,

τ2(T1△T2) = sqf ( sqf (T1) · sqf (T2)) (mod 4) = sqf (T1) sqf (T2)

(
∏

p| sqf (T1)
p| sqf (T2)

p
)−2

(mod 4)

= sqf (T1) (mod 4)⊙4 sqf (T2) (mod 4) = τ2(T1)⊙4 τ2(T2).

Therefore, τ2 is a homomorphism with the kernel D2. Suppose there exists T1 ∈P(S)

such that sqf (T1) ≡ 3 (mod 4), then τ2 is a surjective homomorphism. Thus D2 is an

index 2 subgroup of D2.

Given θ : S →{−1,1}, we also define

Nθ = Nθ (S) = {s ∈ S : θ(s) =−1}. (2.3.4)
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Lemma 2.3.4. Let S be a finite set of non-zero integers with a choice of signs θ for S.
For a squarefree positive integer f such that ( f , sqf (T )) = 1 for every T ∈ P(S), define

µ
θ
f : P(S)→{1,−1} by µ

θ
f (T ) = θ(T ) ·

(
sqf (T )

f

)
.

Then µθ
f is a homomorphism.

Suppose ONθ
(S) = φ , then the map

µθ
f : P(S)→{1,−1} defined by µθ

f (T ) = θ(T ) ·
(

sqf (T )
f

)
is well-defined and a homomorphism.

Proof: For any T1,T2 ∈ P(S), we observe that

θ(T1△T2)= ∏
s∈T1△T2

θ(s)=

(
∏
s∈T1

θ(s)

)(
∏
s∈T2

θ(s)

)(
∏

s∈T1∩T2

(θ(s))2

)−1

= θ(T1)θ(T2).

(2.3.5)

Also, by the completely multiplicative property of the Jacobi symbol, we have

(
sqf (T1)

f

)
·
(

sqf (T2)

f

)
=

(
sqf (T1) sqf (T2)

f

)
=

(
sqf ( sqf (T1) sqf (T2))

f

)
=

(
sqf (T1△T2)

f

)
.

Thus, µθ
f (T1△T2) = µθ

f (T1) · µθ
f (T2) holds for every T1,T2 ∈ P(S). Hence µθ

f is a

homomorphism.

Suppose ONθ
(S) = φ , then θ(T ) = 1 for every T ∈ H (S). Also, by definition

of H (S) it follows that
(

sqf (T )
f

)
=
(

1
f

)
= 1 for every T ∈ H (S). Thus we obtain

H (S)⊆ ker(µθ
f ). Therefore, the map µθ

f : P(S)→{1,−1} defined by µθ
f (T ) = θ(T ) ·(

sqf (T )
f

)
is well-defined and a homomorphism.

As C(S,θ ,d) contributes to counting, it is natural to think about its non-negativity.

In the following Lemma, we show that C(S,θ ,d) ≥ 0 and discuss criteria for its strict

positivity.

Lemma 2.3.5. Let S, θ , f and d be stated as in Theorem 2.1.1. Let D0,D1 and D2 be
subsets of quotient group P(S) as defined in 2.3.2.

Then the constant C(S,θ ,d) in the main term of Theorem 2.1.1 is always greater or
equal to 0. Also,

(i) If 4 ∤ d, then C(S,θ ,d)> 0 holds iff θ(T ) =
(

sqf (T )
f

)
and ONθ

(S) = φ for every

T ∈ D2.
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(ii) If 4 | d and 8 ∤ d, then C(S,θ ,d)> 0 holds iff θ(T ) =
(

sqf (T )
f

)
and ONθ

(S) = φ

for every T ∈ D1.

(iii) If 8 | d, then C(S,θ ,d)> 0 holds iff θ(T ) =
(

sqf (T )
f

)
and ONθ

(S) = φ for every

T ∈ D0.

Proof: It follows from Lemma 2.3.1 that any two subsets of S have the same squarefree

part if and only if they lie in the same coset of the subgroup H (S). Then by using

(2.3.2), we rewrite (2.1.1) as

C(S,θ ,d) =



∑

T∈D2

(
sqf (T )

f

)
∑

U∈H
θ(T△U) if 4 ∤ d,

∑

T∈D1

(
sqf (T )

f

)
∑

U∈H
θ(T△U) if 4 | d,8 ∤ d,

∑

T∈D0

(
sqf (T )

f

)
∑

U∈H
θ(T△U) if 8 | d.

(2.3.6)

For any S′ ⊆ S, we observe that

|(S′△U)∩Nθ (S)|= |(S′∩Nθ (S))|+ |(U ∩Nθ (S))|−2|(S′∩U)∩Nθ (S)| for U ∈H (S)

Thus, depending on whether |S′∩Nθ (S)| is odd or even, |Nθ (S)∩(S′△U)| and |Nθ (S)∩

U | have opposite or same parity, respectively, for all U ∈H (S). Therefore, if ONθ
(S) ̸=

φ , then by Lemma 2.3.2 we obtain ∑
U∈H

θ(S′△U) = 0 for any S′ ⊆ S.

Thus it follows from (2.3.6) that if ONθ
(S) ̸= φ , then C(S,θ ,d) = 0. Thus for

C(S,θ ,d) to be positve, it is necessary to have ONθ
(S) = φ .

Hence, now we assume ONθ
(S) to be empty (equivalently, θ(U) = 1 for every U ∈

H (S)). Then by using (2.3.5), we rewrite (2.3.6) as

C(S,θ ,d) =



|H (S)|
(

∑

T∈D2

(
sqf (T )

f

)
θ(T )

)
if 4 ∤ d,

|H (S)|
(

∑

T∈D1

(
sqf (T )

f

)
θ(T )

)
if 4 | d,8 ∤ d,

|H (S)|
(

∑

T∈D0

(
sqf (T )

f

)
θ(T )

)
if 8 | d.

(2.3.7)
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By Lemma 2.3.3, we know that D0, D1 and D2 are subgroups of P(S). Since

ONθ
(S) = φ , by Lemma 2.3.4, we have µθ

f : P(S)→ {1,−1} is a homomorphism and

hence the restriction of µθ
f to the subgroups D0,D1 and D2 is also a homomorphism.

Thus, C(S,θ ,d)≥ 0 always holds.

In each case, the corresponding sum in (2.3.7) is positive if and only if θ(T ) =(
sqf (T )

f

)
for every T in the respective subgroup. Thus, in each case C(S,θ ,d) > 0

holds if and only if ONθ
(S) = φ and θ(T ) =

(
sqf (T )

f

)
for every T in the respective

subgroup. This completes the proof.

2.3.1 Some Corollaries of Theorem 2.1.1

From (Theorem 1, Babu and Mukhopadhyay (2022)), it follows that there exist infinitely

many primes p such that S has residue pattern θ modulo p iff H (S) does not contain a

subset T satisfying θ(T ) =−1.

Remark 2.3.6. Given S ⊆ Z \ {0} with a choice of signs θ for S and positive integers
f ,d with 1 ≤ f ≤ d and ( f ,d) = 1. Suppose 4 ∤ d and there is a subset T ⊆ S such that
θ(T ) ̸=

(
sqf (T )

f

)
,| sqf (T )| | d and sqf (T ) ≡ 1 (mod 4), then there is no prime p of

the form p ≡ f (mod d) such that S has residue pattern θ modulo p.

If such a prime p ≡ f (mod d) exists, then from the proof of Lemma 2.2.6, we can
see that

−1 = θ(T )
(

sqf (T )
f

)
=∏

s∈T
θ(s)

(
sqf (T )

f

)
=

(
sqf (T )

f

)
∏
s∈T

(
s
p

)
=

(
sqf (T )

f

)(
sqf (T )

p

)
=

(
sqf (T )

f

)2

= 1,

which is absurd.
For the other two cases, one can similarly show that there exists a prime p of the

form p ≡ f (mod d) such that S has residue pattern θ modulo p only if the sufficient
condition stated in Lemma 2.3.5 holds.

Thus, we have the following Corollary by using Theorem 2.1.1 and Lemma 2.3.5.
Corollary 2.3.7. Let S be a finite set of non-zero integers with a choice of signs θ for
S. Let f ,d be positive coprime integers with f ≤ d.
Case 1 4 ∤ d

There exist infinitely many primes p of the form p ≡ f (mod d) such that S has
residue pattern θ modulo p if and only if ONθ

(S) = φ and θ(T ) =
(

sqf (T )
f

)
for

every T ∈ D2. In this case, the asymptotic density
1
n
|S(n,θ)| → |D2| · |H (S)|

ϕ(d)2|S|
as n → ∞.
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Case 2 4 | d and 8 ∤ d
There exist infinitely many primes p of the form p ≡ f (mod d) such that S has
residue pattern θ modulo p if and only if ONθ

(S) = φ and θ(T ) =
(

sqf (T )
f

)
for

every T ∈ D1. In this case, the asymptotic density
1
n
|S(n,θ)| → |D1| · |H (S)|

ϕ(d)2|S|
as n → ∞.

Case 3 8 | d
There exist infinitely many primes p of the form p ≡ f (mod d) such that S has
residue pattern θ modulo p if and only if ONθ

(S) = φ and θ(T ) =
(

sqf (T )
f

)
, for

every T ∈ D0. In this case, the asymptotic density
1
n
|S(n,θ)| → |D0| · |H (S)|

ϕ(d)2|S|
as n → ∞.

When does a set S support all residue patterns with the mentioned conditions? The

following Corollary gives a necessary and sufficient condition for it.

Corollary 2.3.8. Let f ,d be positive integers with 1 ≤ f ≤ d and ( f ,d) = 1.

Case 1 4 ∤ d
A nonempty finite set S ⊂ Z\{0} supports all residue patterns for infinitely many
primes p of the form p ≡ f (mod d) if and only if H (S) = {φ} and D2 = {φ}.

Case 2 4 | d and 8 ∤ d
A nonempty finite set S ⊂ Z\{0} supports all residue patterns for infinitely many
primes p of the form p ≡ f (mod d) if and only if H (S) = {φ} and D1 = {φ}.

Case 3 8 | d
A nonempty finite set S ⊂ Z\{0} supports all residue patterns for infinitely many
primes p of the form p ≡ f (mod d) if and only if H (S) = {φ} and D0 = {φ}.

In each case, for every choice of signs θ : S → {−1,1} the density of the set S(n,θ) is
1

ϕ(d)2|S|
.

For example, let S be a nonempty finite set of primes that does not divide d, then it

is easy to see that H (S) = {φ} and D0 = {φ}. Therefore, every nonempty finite set of

primes that does not divide d supports all residue patterns for infinitely many primes p

of the form p ≡ f (mod d). Here, we mention that the Corollary 2.3.8 is an analogue of

primes in the arithmetic progression of (Theorem 2, M. Filaseta (1989)) and (Theorem

4.3 of Wright (2007)).

Specifically looking at the cases when the set S satisfies being quadratic residues

and non-residues, respectively, we have the following Corollaries.
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Corollary 2.3.9. Let f ,d be coprime positive integers with 1 ≤ f ≤ d. Necessary and
sufficient condition for a nonempty finite set S ⊂ Z\{0} to be a set of quadratic residue
for infinitely many primes of the form p ≡ f (mod d) is given below for each case.

Case 1 4 ∤ d
θ(T ) =

(
sqf (T )

f

)
, for every T ∈ D2.

Case 2 4 | d and 8 ∤ d
θ(T ) =

(
sqf (T )

f

)
, for every T ∈ D1.

Case 3 8 | d
θ(T ) =

(
sqf (T )

f

)
, for every T ∈ D0.

The asymptotic density of primes of the form p ≡ f (mod d) for which all the ele-
ments of S are quadratic residues modulo p is

|D2| · |H (S)|
ϕ(d)2|S|

if 4 ∤ d,
|D1| · |H (S)|

ϕ(d)2|S|
if 4 | d, 8 ∤ d and

|D0| · |H (S)|
ϕ(d)2|S|

if 8 | d. (2.3.8)

Proof: Since we expect every element of S to be quadratic residue, the choice of signs

is θ ≡ 1. Therefore, the proof of Corollary 2.3.9 follows from Theorem 2.1.1, with

Nθ (S) = φ .

Corollary 2.3.10. Let f ,d be positive integers with 1≤ f ≤ d and ( f ,d) = 1. Necessary
and sufficient condition for a nonempty finite set S ⊂ Z \ {0} to be a set of quadratic
non-residue for infinitely many primes of the form p ≡ f (mod d) is given below for
each case.

Case 1 4 ∤ d
H (S) does not contain a subset of odd cardinality and θ(T ) =

(
sqf (T )

f

)
, for

every T ∈ D2.

Case 2 4 | d and 8 ∤ d
H (S) does not contain a subset of odd cardinality and θ(T ) =

(
sqf (T )

f

)
, for

every T ∈ D1.

Case 3 8 | d
H (S) does not contain a subset of odd cardinality and θ(T ) =

(
sqf (T )

f

)
, for

every T ∈ D0.

In each case, the asymptotic density of primes for which all the elements of S are
quadratic nonresidues modulo p is stated as in (2.3.8).
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Proof: Since we expect every element of S to be quadratic nonresidue, the choice of

signs is θ ≡−1. Therefore, the proof of Corollary 2.3.10 follows from Theorem 2.1.1,

with Nθ (S) = S.

2.4 A counting problem arising from Theorem 2.1.1

We gather the inputs necessarily required for cyclotomic and multi-quadratic field ex-

tensions. For multi-quadratic part, let F(S) denote the set of all choice of signs θ on S,

which is an Abelian group under pointwise multiplication for any θ1,θ2 ∈ F(S)

θ1 ·θ2(s) = θ1(s) ·θ2(s), for every s ∈ S.

Let

C(S) = {θ ∈ F(S) : ONθ
(S) = φ}. (2.4.1)

It follows from (Theorem 2, Babu and Mukhopadhyay (2022)) and (Lemma 2, Babu

and Mukhopadhyay (2022)) that C(S) is a subgroup of F(S) of order 2|S|
|H (S)| .

For cyclotomic part, for a positive integer d,

Z∗
d = {1 ≤ f < d : ( f ,d) = 1}

is a group of units of the ring Zd of order ϕ(d).

We expect the multi-quadratic and their cyclotomic extensions to interact as direct

products. Also, it follows from Lemma 2.3.4 that µθ
f is a well-defined map for all

θ ∈ C(S), hence we define the following subsets

Di(S) =
{
( f ,θ) ∈ Z∗

d ×C(S) : µθ
f (T ) = θ(T )

(
sqf (T )

f

)
= 1, ∀ T ∈ Di

}
(2.4.2)

of the direct product Z∗
d ×C(S) of the groups Z∗

d and C(S), where for i = 0,1 and 2, Di

is defined as in (2.3.3).

It turns out that the subsets Di(S) are actually subgroups of Z∗
d ×C(S) for i = 0,1,2.

Lemma 2.4.1. Di(S) is a subgroup of Z∗
d ×C(S), for i = 0,1,2.
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Proof: Here, we prove that D0(S) is a subgroup of Z∗
d ×C(S). The proof for D1(S) and

D2(S) being the subgroups follows similarly.

Suppose ( f1,θ1),( f2,θ2) ∈ D0(S), then µ
θ1
f1
(T ) = 1 and µ

θ2
f2
(T ) = 1 holds, for all

T ∈ D0. Let f ≡ f1 f2 (mod d). Since sqf (T ) | d for every T ∈ D0, we have f ≡

f1 f2 (mod sqf (T )) for every T ∈ D0.

Therefore,

µ
θ1θ2
f (T ) = θ1(T )θ2(T )

(
sqf (T )

f

)
= θ1(T )

(
sqf (T )

f1

)
θ2(T )

(
sqf (T )

f2

)
= 1.

Thus, we obtain µ
θ1θ2
f ∈ D0(S). This completes the proof of Lemma 2.4.1.

Di(S) contribute to finding the structure of the field extension and correspondingly the

cardinality of the Galois group of multi-quadratic fields and their cyclotomic extensions

over Q. The cardinality of the same allows us to know the degree of this field extension.

Theorem 2.4.2.

|Di(S)|=
2|S|ϕ(d)

|H (S)||Di|
, for i = 0,1,2.

We require the following notations from (section 2, Babu and Mukhopadhyay (2022))

for the proof of the Theorem 2.4.2.

2.4.1 Notations

We define a map, χ : (P(S),△)→ (Fn
2,+), by

χ(T ) = (χT (a1), . . . ,χT (an)),

where for every subset T ⊆ S, χT : S → {0,1} denotes the characteristic function of T ,

i.e., if ai ∈ T , then χT (ai) = 1, otherwise χT (ai) = 0.

It is easy to see that χ is an isomorphism. Also, observe that Fn
2 is a vector space over

the field F2.

For any u = (u1,u2, . . . ,un),v = (v1,v2, . . . ,vn) ∈ Fn
2,

⟨u,v⟩= (u1v1 + · · ·+unvn) (mod 2),
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Figure 2.1 Various functions and maps involved in this chapter

defines a symmetric bilinear form on Fn
2. Thus for any v ∈ Fn

2, the map φv : Fn
2 → F2

defined by φv(w) = ⟨v,w⟩ is a linear functional with the kernel

E(v)(= ker(φv)) = {w ∈ Fn
2 : ⟨v,w⟩= 0}. (2.4.3)

Clearly, E(v) is a proper maximal subspace of Fn
2 for any nonzero v ∈ Fn

2.
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We observe that

χ
−1(E(v)) = EA(S) = {T ∈ P(S) : |T ∩A| is even}, where χ(A) = v. (2.4.4)

Also, we see that

H = χ(H (S)) = {χ(T ) : T ∈ H (S)}

is a subgroup and hence a subspace of Fn
2. Thus, we consider the quotient space Fn

2 =

Fn
2/H which is isomorphic to P(S) by

χ(T ) = (χT (a1), . . . ,χT (an))+H.

Then Di = χ(Di) are subspaces of Fn
2 for i = 0,1,2.

On the other hand, for any 1 ≤ f < d with ( f ,d) = 1, we consider a map η f : S →

{−1,1} by η f (ai) =
(ai

f

)
, for i = 1,2, . . . ,n. By the completely multiplicative property

of Legendre symbol, η f can be defined on P(S) as follows

η f (T ) = ∏
ai∈T

(
ai

f

)
=

(
∏ai∈T ai

f

)
=

(
sqf (T )

f

)
.

For every T ∈ H (S), it is easy to see that η f (T ) = 1. Equivalently, we have

ONη f
(S) = φ which implies η f ∈ C(S).

Proof of Theorem 2.4.2:

Observe that F(S) is isomorphic to P(S) through the map θ → Nθ , and by the relation

Nθ1·θ2 = Nθ△Nθ2 .

Therefore, define a map ψ : F(S)→ Fn
2 by

ψ(θ) = (χNθ
(a1), . . . ,χNθ

(an)).

Clearly, ψ is an isomorphism since it is a composition of two isomorphisms. Recall

from the definition of C(S) that a choice of signs θ ∈ C(S) if and only if |T ∩Nθ | is

even for all T ∈ H (S).
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Thus, it follows from (2.4.4) that for a vector v ∈ Fn
2, the kernel of corresponding linear

functional φv ∈ (Fn
2)

∗ defined as in (2.4.3) contains H if and only if v ∈ ψ(C(S)).

Thus, the map φv induces a linear functional

φv : Fn
2 → F2 by φv(w) = φv(w)

if and only if v ∈ ψ(C(S)).

Also, it follows from (Theorem 2, Babu and Mukhopadhyay (2022)) that

|ψ(C(S))|= 2n

|H|
.

Denote ψ(η f ) = x. Since η f ∈ C(S), the map φx induces a linear functional on Fn
2. Our

aim is to prove

|Di(S)|=
2|S|ϕ(d)

|H (S)||Di|
,

for i = 0,1,2.

It is enough to prove that, for every 1 ≤ f < d with ( f ,d) = 1,

|E f |= |{v ∈ ψ(C(S)) : φv(t) = φx(t),∀ t ∈ Di}|=
|ψ(C(S))|

|Di|
for i = 0,1,2.

Equivalently,

|E f |= |{v ∈ ψ(C(S)) : φv+x(t) = 0,∀ t ∈ Di}|=
|ψ(C(S))|

|Di|
for i = 0,1,2. (2.4.5)

Now, following the same arguments as discussed in (Theorem 2, Babu and Mukhopad-

hyay (2022)), we obtain

|E f + x|= |ψ(C(S))|
|Di|

for i = 0,1,2. Thus, we conclude (2.4.5) holds for every 1 ≤ f < d with ( f ,d) = 1.

This completes the proof of Theorem 2.4.2.
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Chapter 3

Explicit Galois group of Q(
√

a1, . . . ,
√

an,ζd)

over Q

We know that the degree of the multi-quadratic field Q(
√

a1,
√

a2, . . . ,
√

an) over Q

is bound to be 2t for some non-negative integer t ≤ n, where t depends on the algebraic

cancellations among the
√

ai’s. The arithmetic of multi-quadratic number fields plays

a crucial role in the theory of elliptic curves (see Abel-Hollinger and Zimmer (1995),

Laska and Lorenz (1985)). Balasubramanian et al. (2010) obtained an exact formula

for the degree of the multi-quadratic field extensions Q(
√

a1,
√

a2, . . . ,
√

an) over Q.

Recently Babu and Mukhopadhyay (2022) calculated the explicit structure of the Galois

group of these multi-quadratic fields.

For a positive integer d ≥ 3, ζd denotes a primitive d-th root of unity. In this chapter,

we calculate the explicit structure of the Galois group of Q(
√

a1,
√

a2, . . . ,
√

an,ζd) over

Q in terms of its action on ζd and
√

ai for 1 ≤ i ≤ n.

The explicit structure of the Galois group of Q(
√

a1, . . . ,
√

an,ζd1, . . . ,ζdk) over Q

will be discussed in Corollary 3.2.2. Here ζdi denotes the primitive di-th roots of unity,

for 1 ≤ i ≤ k.

3.1 The degree of Q(
√

a1,
√

a2, . . . ,
√

an,ζd) over Q

In this section, we give an exact formula for the degree of Q(
√

a1,
√

a2, . . . ,
√

an,ζd)

over Q. Recalling Chebotarev’s Density Theorem, as we use it to find the density of

primes satisfying certain conditions which will be discussed in this section.
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Chebotarev’s Density Theorem

Let K/Q be a Galois extension with Galois group Gal (K/Q). Let σp be its conjugacy

class in Gal (K/Q). For any rational unramified prime p, let σp be a Frobenius element

in Gal (K/Q). Then the relative density of the primes {p : σp =C} is |C|
[K:Q] .

We will need the behaviour of unramified primes using the following well-known

Lemma.

Lemma 3.1.1. Let m be a square-free integer let K =Q(
√

m) be a quadratic extension
over Q. Let OK denote the ring of integers of K. Then for any odd prime p ≥ 3, we have

(i) p ramifies in OK if and only if p | m.

(ii) p splits completely in OK iff m is a square modulo p, or
(

m
p

)
= 1.

(iii) p is inert in OK iff m is not a square modulo p, i.e,
(

m
p

)
=−1.

The number fields here are contained in a cyclotomic extensions, hence the Galois

groups are abelian. Hence now we have a degree theorem for the multi-quadratic fields

with cyclotomic extensions:

Theorem 3.1.2. Let S = {a1,a2, ...,an} be a finite subset of non-zero integers. Let
K = Q(

√
a1,

√
a2, ...,

√
an,ζd) be a multi-quadratic field compositum with cyclotomic

extension, where ζd denotes the primitive d-th root of unity for d ≥ 3. Then, we have

[K : Q] =
2nϕ(d)

|H (S)||D0|
.

Note that, in the statement of Theorem 3.1.2, we assume 8 | d. The proof of the

other two cases follows similarly.

Proof. Since K is a 2-elementary Abelian extension compositum with cyclotomic ex-
tension of Q, we have Gal (K/Q)≃ Ft

2 ×Z∗
d for some 1 ≤ t ≤ n.

In fact, if
f (x) = (x2 −a1)(x2 −a2) . . .(x2 −an)(xd −1) ∈ Z[x],

then K/Q is the splitting field of f (x). Let

P1 := {p > 2 : p ≡ 1 (mod d),
(ai

p

)
= 1, ∀ 1 ≤ i ≤ n}.
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Since
( sqf (T )

1

)
= 1, for all T ∈P(S), from Corollary 2.3.9, it follows that the density

of P1 is |H (S)||D0|
2nϕ(d) . Now, we will use Chebotarev’s Density Theorem to calculate the

relative density of P1.

To proceed as such, for p ∈ P1, we want to calculate the Frobenius element σp ∈
Gal (K/Q). It is enough to find the action of σp on ζd and

√
ai for each i.

Since p ≡ 1 (mod d), σp restricted to Q(ζd) is the identity. Also, since p ∈ P1, it
follows from Lemma 4.1.7 that p splits completely in Q(

√
ai), for 1 ≤ i ≤ n. Therefore,

the Frobenius element σp ∈ Gal (K/Q) satisfies

σp(ζd) = ζd and σp(
√

ai) =
√

ai,

for 1 ≤ i ≤ n. Thus, σp is defined uniquely in Gal (K/Q). By the Chebotarev Density
Theorem, the relative density of P1 is

1
[K : Q]

=
|H (S)||D0|

2nϕ(d)
.

This completes the proof of Theorem 3.1.2.

3.2 The explicit Galois group of Q(
√

a1,
√

a2, . . . ,
√

an,ζd) over Q

Now we discuss the explicit structure of the Galois group of Q(
√

a1,
√

a2, . . . ,
√

an,ζd)

over Q. Precisely, we prove the following Theorem.

Theorem 3.2.1. Let S = {a1,a2, ...,an} be a finite set of non-zero integers. Let K =
Q(

√
a1,

√
a2, ...,

√
an,ζd) denotes a multi-quadratic field compositum with cyclotomic

extension, where ζd denotes the primitive d-th root of unity for d ≥ 3. Let (D0(S),∗)
be defined as in (2.4.2). Then there exists an explicit isomorphism between D0(S) and
Gal (K/Q).

Note that in the statement of Theorem 3.2.1, we assume 8 | d. Recall that

D0(S) =
{
( f ,θ) ∈ Z∗

d ×C(S) : µθ
f (T ) = θ(T )

(
sqf (T )

f

)
= 1, ∀ T ∈ D0

}
,

where D0 =
{

T ∈ P(S) : | sqf (T )| | d
}

The proof for the other two cases follows sim-

ilarly.

Proof. Since K is a 2-elementary abelian extension compositum with cyclotomic ex-
tension of Q, we have Gal (K/Q)≃ Ft

2 ×Z∗
d for some 1 ≤ t ≤ n.

On the other hand, since F(S)≃ Fn
2, by using Lemma 2.4.1, we obtain that D0(S)≃

Ft
2 ×Z∗

d for some 1 ≤ t ≤ n.

Also, it follows from Theorem 2.4.2 and Theorem 3.1.2 that

|D0(S)|= | Gal (K/Q)|= 2nϕ(d)
|H (S)||D0|

.
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Hence, we have ( Gal (K/Q),◦)≃ (D0(S),∗).

In the rest of the proof, we show that there exists an explicit injective homomor-
phism between Gal (K/Q) and D0(S).
Let

P( f ,θ) := {p > 2 : p ≡ f (mod d),
(ai

p

)
= θ(ai), ∀ 1 ≤ i ≤ n}.

By using Corollary 4.1.8, it follows that P( f ,θ) contains infinitely many primes, for
every θ ∈ D0(S). In fact, the relative density of P( f ,θ) over the set of all primes P is
|H (S)||D0|

2nϕ(d) .

For any p ∈ P( f ,θ), we want to calculate the Frobenius element σp ∈ Gal (K/Q).
It is enough to find the action of σp on ζd and

√
ai for each i.

By using the definition of P( f ,θ) and Lemma 4.1.7, we obtain that p either splits
completely or is inert in Q(

√
ai) respectively if ai ∈ S\Nθ or ai ∈ Nθ .

Since p ≡ f (mod d), the Frobenius element σp(ζd) = ζ
f

d . Therefore, for any p ∈
P( f ,θ) the Frobenius element σp ∈ G satisfies

σp(
√

ai) = θ(ai)
√

ai =

{√
ai, if ai ∈ S\Nθ

−√
ai, if ai ∈ Nθ ,

for 1 ≤ i ≤ n and σp(ζd) = ζ
f

d . Hence σp is defined uniquely in Gal (K/Q).

Now, we define a map ∆ : D0 → Gal (K/Q) by

∆(( f ,θ)) = σp, for some p ∈ P( f ,θ).

Clearly, ∆ is a well-defined and injective map. We claim that ∆ is a homomorphism.

Suppose ∆(( f1,θ1)) = σp1 and ∆(( f2,θ2)) = σp2 , with p1 ∈ P( f1,θ1) and p2 ∈
P( f2,θ2), then

∆(( f1,θ1))◦∆(( f2,θ2))(
√

ai) = σp1(σp2(
√

ai)) =

{√
ai, if ai ∈ S\ (Nθ1△Nθ2)

−√
ai, if ai ∈ Nθ1△Nθ2

for 1 ≤ i ≤ n and

∆(( f1,θ1))◦∆(( f2,θ2))(ζd) = σp1(σp2(ζd)) = σp1(ζ
f2

d ) = ζ
f1 f2 (mod d)

d = ζ
f

d ,

where f ≡ f1 f2 (mod d).

On the other hand, let ∆(( f ,θ1 ·θ2))=σp, where p∈P( f ,θ1 ·θ2) and f ≡ f1 f2 (mod d).
Then by the definition of σp and the relation Nθ1·θ2 = Nθ1△Nθ2 , we obtain

σp(
√

ai) =

{√
ai, if ai ∈ S\ (Nθ1△Nθ2)

−√
ai, if ai ∈ Nθ1△Nθ2

for 1 ≤ i ≤ n and σp(ζd) = ζ
f

d .
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Thus we have,

∆(( f1,θ1))◦∆(( f2,θ2)) = ∆(( f1,θ1) · ( f2,θ2))

This completes the proof of Theorem 3.2.1.

In the case of multi-quadratic and multi-cyclotomic extensions, the Galois group

of such fields can be brought down to our problem of multi-quadratic and cyclotomic

extensions. The following Corollary deals with it.

Corollary 3.2.2. Let S = {a1,a2, ...,an} be a finite set of non-zero integers and let 3 ≤
d1 ≤ ·· ·≤ dk be integers with d = lcm(d1, . . . ,dk). Let L=Q(

√
a1, . . . ,

√
an,ζd1 , . . . ,ζdk)

be a multi-quadratic field compositum with several cyclotomic extensions, where ζdi
denotes the primitive di-th root of unity, for i = 1, . . . ,k. Let (Di(S),∗) is defined as
in (2.4.2), for d = lcm(d1, . . . ,dk), i = 0,1,2. Then, there is an explicit isomorphism
between D0(S) and Gal (L/Q).

Here, we assume 8 | d. The proof for the other two cases follows similarly.

The Proof of Corollary 3.2.2 follows similar to Theorem 3.2.1.
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Chapter 4

Non-primitive roots with prescribed residue
pattern

Given a set of primes S, the limit

δ (S) = lim
x→∞

|{p ≤ x : p ∈ S}|
|{p ≤ x}|

,

if it exists, is called the natural density of S. An integer g with |g|> 1 is a primitive root

modulo p if p ∤ g and the multiplicative order of g modulo p (ordp(g)) equals p−1.

Let Pg be the set of primes p such that g is a primitive root modulo p. In 1927, E.

Artin conjectured that there exist infinitely many primes p for which g is primitive root

modulo p if g is not a square. Moreover, he also gave a conjectural formula for natural

density δ (Pg). In 1967, Hooley (1967a) proved Artin’s conjecture under the Gener-

alized Riemann Hypothesis (GRH) and determined δ (Pg). In 1976, Matthews (1976)

generalized Hooley’s result under the assumption of GRH. Precisely, he proved that

given nonzero integers a1, . . . ,an, there exists a non-negative constant C =C(a1, . . . ,an)

such that

|{p ≤ x : ordp(ai) = p−1,∀ i = 1,2, . . . ,n}|=C
x

logx
+O

(
(log logx)2n−1

(logx)2

)
.

Under GRH, the distribution of primes in a prescribed arithmetic progression for

which g is primitive root modulo p is also studied in the literature; (see, Lenstra et al.

(2014); Moree (1999, 2008)). We generalize the prescribed pattern by P. Moree, con-

sidering the set S, as mentioned earlier, instead of an element g.
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On the other hand, for a prime p, if an integer g generates a subgroup of index t in

(Z/pZ)∗, then we say that g is a t-near primitive root modulo p. As mentioned in 1,

Using the notations of Moree and Sha (2019), we have

Pg(t) ={p : p ∤ g, p ≡ 1 (mod t), ordp(g) = p−1/t},

Pg(t,d, f ) ={p : p ≡ f (mod d), p ∈ Pg(t)}.

Assuming GRH, Moree (2013) determined δ (Pg(t)) when g > 1 is squarefree.

Also as mentioned in 1, for t ≥ 1, g /∈ {−1,0,1} and positive coprime integers f ,d,

we make use of the following sets defined by Moree and Sha (2019):

Qg(t,d, f ) = {p : p ≡ f (mod d), ordp(g) ̸= (p−1)/t},

Rg(t,d, f ) = {p : p ∤ bg, p ≡ f (mod d), p ≡ 1 (mod t) and ordp(g) | (p−1)/t}.

They showed that for any integer q > 2 and coprime to 2dt, the set Qg(t,d, f )

contains a subset of primes p having natural density 1
[Q(ζd ,ζq,g1/q):Q]

.

Further, suppose the set Rg(t,d, f ) is nonempty, then they showed that for any in-

teger q > 2 and coprime to 2gdt, the set Rg(t,d, f ) contains a subset of primes p for

which g is a non t-near primitive root modulo p having natural density 1
[Q(ζd ,ζqt ,g1/qt):Q]

.

Before describing our results, we define the quadratic residue pattern and discuss a

few results.

Let S = {a1,a2, . . . ,an} be a set of nonzero integers. In 1968, Fried (1968) showed

that there are infinitely many primes p for which all the elements of S are quadratic

residues. He also provided a necessary and sufficient condition for ai’s to be quadratic

nonresidues modulo p. In 2010, Balasubramanian et al. (2010) calculated the exact

density of such primes in Fried’s result. Earlier Wright (2007, 2008) had considered the

above result qualitatively.

Recently Babu and Mukhopadhyay (2022), calculated the exact density of the set of

primes for which S has residue pattern θ modulo p. In chapter 2, we obtained the exact

density of the set of primes p of the form p ≡ f (mod d) for which S has residue pattern
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θ modulo p. Also, a necessary and sufficient condition for a choice of signs θ for S to

be a residue pattern modulo p for infinitely many primes of the form p ≡ f (mod d)

was obtained.

Suppose S = {a1,a2, . . . ,an} be a set of nonzero integers such that for any nonempty

subset T of S, the product of all the elements in T is not a perfect square. For such a

set,Dey and Kumar (2016), gave a lower bound for the density of the set of primes p

for which the ai’s are quadratic nonresidues but not primitive roots modulo p.

Let S = {a1,a2, . . .an} be a subset of Z \ {0} with a choice of signs θ for S. In

this paper, we give a lower bound for the density of primes in arithmetic progression

for which the elements of S are not t-near primitive roots and satisfy a residue pattern

θ (mod p).

For a positive integer t and positive coprime integers f ,d, we define:

QS(t,d, f ,θ) =
{

p : p ∈ Qai(t,d, f ), and
(

ai

p

)
= θ(ai), for i = 1,2, . . . ,n

}
,

RS(t,d, f ,θ) =
{

p : p ∈ Rai(t,d, f ) and
(

ai

p

)
= θ(ai), for i = 1,2, . . . ,n

}
.

In Theorem 4.2.1, we give a lower bound for the density of QS(t,d, f ,θ). Pre-

cisely, we show that the set QS(t,d, f ,θ) contains a positive density subset of primes

under a specific condition on θ . In Theorem 4.3.1, we give a lower bound for the

density of RS(t,d, f ,θ). Precisely, for an odd positive integer t, we show that the set

RS(t,d, f ,θ)∩QS(t,d, f ,θ) contains a positive density subset of primes under a spe-

cific condition on θ .

4.1 Preliminary lemmas

We require the following lemmas for the proof of the theorems.

Lemma 4.1.1. (Dey and Kumar (2016), Lemma 2)
1. Let L and M be finite extensions over Q with L∩M = Q. If one is a normal

extension over Q, then L and M are linearly disjoint over Q.

2. Let L and M be finite extensions over Q and let LM be their compositum over Q.
Then [LM : Q] = [L : Q][M : Q] if and only if L and M are linearly disjoint over
Q.
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3. Let {Li : i ∈ I} be a linearly disjoint family of Galois extensions over Q and let
∏
i∈I

Li be the compositum of Li’s over Q. Then

Gal (∏
i∈I

Li/Q)∼= ∏
i∈I

Gal (Li/Q).

Lemma 4.1.2. (Pg. 592, Dummit and Foote (2004)) Suppose L be a Galois extension
over Q and M be any finite extension over Q. Then

[LM : Q] =
[L : Q][M : Q]

[L∩M : Q]
.

Further, if L and M both are Galois extensions over Q, then

1. the intersection L∩M is Galois over Q,

2. the composite LM is Galois over Q and the Galois group is isomorphic to the
subgroup

H = {(σ ,τ) : σ |L∩M = τ|L∩M}

of the direct product Gal (L/Q)× Gal (M/Q).

Lemma 4.1.3. (Weintraub (2009), Corollary 4.5.5) Let m be a nonzero square-free
integer. Let

m′ =
{|m| if m ≡ 1 (mod 4),

4|m| otherwise.

Then Q(
√

m)⊆Q(ζn) if and only if n is multiple of m′.

Lemma 4.1.4. (Weintraub (2009), Corollary 4.2.8) Let m and n be positive integers and
set d = gcd(m,n) and l = lcm(m,n). Then Q(ζm)Q(ζn) =Q(ζl) and Q(ζm)∩Q(ζn) =
Q(ζd).

In particular, if m and n are relatively prime, then Q(ζm)Q(ζn) = Q(ζmn) and
Q(ζm)∩Q(ζn) =Q.

Lemma 4.1.5. Let a1,a2, . . . ,an be distinct nonzero integers and let p be an odd prime
and k be a positive odd integer. Then p ≡ 1 (mod k) and a(p−1)/k

i ≡ 1 (mod p), for all
i = 1,2, . . . ,n if and only if p splits completely in Q(ζk,a

1/k
1 ,a1/k

2 , . . . ,a1/k
n ), where ζk is

a primitive k-th root of unity.

The proof of Lemma 4.1.5 follows similarly to Proposition 8 of Dey and Kumar

(2016).

Lemma 4.1.6. Let a =±ah
0, where a0 is positive but not of an exact power of a rational.

For any positive odd integer k and a positive integer r, we have

[Q(ζkr)Q(ζk,a1/k) : Q] = [Q(ζkr,a1/k) : Q] =
ϕ(kr)k
(k,h)

(4.1.1)
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and thus for any odd prime q ∤ rk, we have

Q(ζkr)∩Q(ζqk,a1/qk) =Q(ζkr)∩Q(ζk,a1/k) =Q(ζk). (4.1.2)

Proof. (4.1.1) follows from Lemma 1 of Moree (2005) and the assumption that k is odd.
To prove (4.1.2), it is enough to prove

[Q(ζkr)∩Q(ζqk,a1/qk) : Q] = [Q(ζkr)∩Q(ζk,a1/k) : Q] = ϕ(k).

Using Lemma 4.1.2 and (4.1.1), we write

[Q(ζkr)∩Q(ζqk,a1/qk) : Q] =
[Q(ζkr) : Q][Q(ζqk,a1/qk) : Q]

[Q(ζqkr),a1/qk) : Q]
=

ϕ(kr)ϕ(qk)qk
(qk,h)

ϕ(qkr)qk
(qk,h)

.

Since q ∤ rk is an odd prime, we have

[Q(ζkr)∩Q(ζqk,a1/qk) : Q] =
(q−1)ϕ(kr)ϕ(k)
(q−1)ϕ(kr)

= ϕ(k).

Similarly, by using (4.1.1) and Lemma 4.1.2, we obtain

[Q(ζkr)∩Q(ζk,a1/k) : Q] =
ϕ(kr)ϕ(k)k

(k,h)
ϕ(kr)k
(kr,h)

= ϕ(k).

This completes the proof of Lemma 4.1.6.

Let m be an integer and p ∤ m be a prime number. If m is a square modulo p we put(
m
p

)
= 1, and

(
m
p

)
=−1 otherwise.

Lemma 4.1.7. Let m be a squarefree integer and let K =Q(
√

m) be a quadratic exten-
sion over Q. Let OK be the ring of integers of K. Then for any odd prime p ≥ 3, we
have

(i) p ramifies in OK if and only if p | m.

(ii) p splits completely in OK if and only if
(

m
p

)
= 1.

(iii) p is inert in OK if and only if
(

m
p

)
=−1.

For any non-zero integer n, we denote the squarefree part of n by sqf (n). For any

finite subset T ⊂ Z \ {0}, by sqf (T ) we mean sqf (∏s∈T s). Let S be a finite set of

non-zero integers with a choice of signs θ for S. For any nonempty subset T ⊆ S, we

set

θ(T ) := ∏
s∈T

θ(s). (4.1.3)
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Let P(S) denote the set of all subsets of S. It is well-known that (P(S),△) is an

abelian group having identity element φ isomorphic to
(
Z/2Z

)|S|, where φ denotes the

empty subset.

Lemma 4.1.8. (Babu and Mukhopadhyay (2022), Corollary 4.1) Let S be a finite set
of non-zero integers with a choice of signs θ for S. Let f ,d be positive integers with
1 ≤ f ≤ d and ( f ,d) = 1.

Case 1 4 ∤ d
There exist infinitely many primes p of the form p ≡ f (mod d) such that S has
residue pattern θ modulo p if and only if θ(T ) =

(
sqf (T )

f

)
for every T ∈ Dd

2 . In
this case, the asymptotic density of primes of the form p ≡ f (mod d) for which S

has residue pattern θ modulo p is |Dd
2 |

ϕ(d)2|S|
.

Case 2 4 | d and 8 ∤ d
There exist infinitely many primes p of the form p ≡ f (mod d) such that S has
residue pattern θ modulo p if and only if θ(T ) =

(
sqf (T )

f

)
for every T ∈ Dd

1 . In
this case, the asymptotic density of primes of the form p ≡ f (mod d) for which S

has residue pattern θ modulo p is |Dd
1 |

ϕ(d)2|S|
.

Case 3 8 | d
There exist infinitely many primes p of the form p ≡ f (mod d) such that S has
residue pattern θ modulo p if and only if θ(T ) =

(
sqf (T )

f

)
for every T ∈ Dd

0 . In
this case, the asymptotic density of primes of the form p ≡ f (mod d) for which S

has residue pattern θ modulo p is |Dd
0 |

ϕ(d)2|S|
.

Recall from 3,

[K : Q] =
2nϕ(d)
|Dd

i (S)|
,

where Dd
i (S) is defined as in (2.3.2). Here

i =


0 if 8 | d,

1 if 4 | d and 8 ∤ d,

2 if 4 ∤ d.

(4.1.4)

Lemma 4.1.9. Let S = {a1,a2, . . . ,an} be a finite set of non-zero integers and m be an

odd positive integer. Let L =Q(a
1
m
1 ,a

1
m
2 , . . . ,a

1
m
n ,ζm). Then the degree of the extension L

over Q is given by
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[L : Q] =
mnϕ(m)

|Hm(S)|
,

where

Hm(S) =
{
(r1, . . . ,rn) ∈

(
Z/mZ

)n :
n

∏
i=1

ari
i = km, for some k ∈ Z

}
. (4.1.5)

Proof. From Theorem 3.7.11 of Weintraub (2009), it follows that

[L : Q(ζ (m))] = |⟨a1, . . . ,an⟩|,

where ⟨a1, . . . ,an⟩ denotes the subgroup of Q(ζm)
∗/(Q(ζm)

∗)n generated by a1, . . . ,an.

Consider the Z/mZ free module
(
Z/mZ

)n with the basis S = {a1, . . . ,an}. Observe
that Z/mZ acts on Q(ζm)

∗/(Q(ζm)
∗)n by α · x = xα .

Consider the map f :
(
Z/mZ

)n → ⟨a1, . . . ,an⟩, which sends ai → ai and extend it lin-
early. Then ∑i riai ∈ ker f if and only if (r1, . . . ,rn) ∈ Hm(S). Therefore, we obtain

[L : Q(ζ (m))] =
mn

|Hm(S)|
.

Further, from the assumption that m is odd and Proposition 4.1 of S.S. Wagstaff
(1982), it follows that

[L : Q] =
mnϕ(m)

|Hm(S)|
.
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4.2 A positive density subset of QS(t,d, f ,θ)

Theorem 4.2.1. Let d, f be coprime positive integers and let S = {a1,a2, . . .an} be a
subset of Z\{−1,0,1} with a choice of signs θ for S. Let t ≥ 1 be an integer and q be
the least odd prime such that

q ∤ dta1a2 · · ·an.

Suppose
(

sqf (T )
f

)
= θ(T ) holds for every T ∈Dd

i (S), where the values of i are defined
as in (4.1.4). Then the set QS(t,d, f ,θ) contains a positive density subset of primes p
having natural density

|Hq(S)||Dd
i (S)|

ϕ(d)(q−1)(2q)n ,

where Dd
i (S), Hq(S) are defined as in (2.3.2), (4.1.5) respectively.

Proof. We assume 8 | d. The proof for the other two cases follows similarly.

Consider the number fields:

Lq =Q(a1/q
1 ,a1/q

2 , . . . ,a1/q
n ,ζq) and Md =Q(

√
a1,

√
a2, . . . ,

√
an,ζd).

Let L = LqMd be the compositum of Lq and Md .

Since q is an odd prime such that q ∤ a1a2 · · ·an (equivalently, there is no subset T of
S with sqf (T ) = q), it follows from Lemma 4.1.3 that Lq∩Q(

√
a1,

√
a2, . . . ,

√
an) =Q

and since q ∤ d, by using (4.1.2) with k = 1, we obtain Lq ∩Q(ζd) =Q.

Therefore, by (1) of Lemma 4.1.1, we conclude that Lq and Md are linearly disjoint over
Q, that is Lq ∩Md =Q. Thus, by (2) of Lemma 4.1.1, we obtain

[L : Q] = [Lq : Q][Md : Q]. (4.2.1)

Since Lq and Md both are Galois extensions over Q, by (3) of Lemma 4.1.1, we have

Gal (L/Q)∼= Gal (Lq/Q)× Gal (Md/Q). (4.2.2)

Now, consider the set

P(θ ,d,q)= {p∈P : p≡ f (mod d), p splits completely in Lq,
(ai

p

)
= θ(ai), ∀ 1≤ i≤ n},

where P is the set of all prime numbers.

We write P(θ ,d,q) = P(θ ,d)∩P(q), where

P(q) ={p ∈ P : p splits completely in Lq},

P(θ ,d) ={p ∈ P : p ≡ f (mod d),
(ai

p

)
= θ(ai), ∀ 1 ≤ i ≤ n}.

For any prime p ∈ P(θ ,d,q), we want to calculate the Frobenius element σp ∈
Gal (L/Q). We observe that p ∈ P(q) if and only if σ |Lq is an identity element of the
Galois group Gal (Lq/Q).
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Since by the assumption that
(

sqf (T )
f

)
= θ(T ) holds for every T ∈ Dd

0 (S), using
Lemma 4.1.8, we see that P(θ ,d) contains infinitely many primes with the relative

density |Dd
0 |

2nϕ(d) .

Since for any p ∈ P(θ ,d) is of the form p ≡ f (mod d), the Frobenius element
σp|Kd(ζd) = ζ

f
d .

Also, for any p ∈ P(θ ,d) it follows from Lemma 4.1.7 that
σ |Kd(

√
ai) = θ(ai)

√
ai, for 1 ≤ i ≤ n.

Therefore, the Frobenius element σp ∈ Gal (L/Q) satisfies

σp(a
1/q
i ) = a1/q

i , σp(
√

ai) = θ(ai)
√

ai, for 1 ≤ i ≤ n,

σp(ζq) = ζq and σp(ζd) = ζ
f

d .

Since the Galois group Gal (Kd/Q) is abelian, by (4.2.2), we note that the conju-
gacy class of σp contains only one element which is nothing but σp itself. Therefore,
by Chebotarev Density Theorem, the density of P(θ ,d,q) is 1

[L:Q] .

Thus, by using Theorem 3.1.2 and Lemma 4.1.9 with (4.2.1), we conclude that the
density of P(θ ,d,q) is

|Hq(S)||Dd
0 (S)|

ϕ(d)(q−1)(2q)n .

Finally, from Lemma 4.1.5, we observe that any p ∈ P(θ ,d,q) satisfies

p ≡ 1 (mod q) and a(p−1)/q
i ≡ 1 (mod p),

for all i = 1,2, . . . ,n.

Since we assume q ∤ t, it follows that ordp(ai) ̸= p−1
t , for i = 1,2, . . .n and for all p ∈

P(θ ,d,q). Hence, for any prime p in P(θ ,d,q) we have p ≡ f (mod d), a1,a2, . . . ,an
are non t-near primitive roots and have residue pattern θ modulo p.

This completes the proof of the Theorem 4.2.1.

Example:

Consider the set S = {2,3,6} with a choice of signs θ(2) = 1,θ(3) = −1 and θ(6) =

−1. Suppose t = 5, f = 7 and d = 8. Then by definition of Dd
i (S) we see that

D8
0 (S) =

{
φ ,{2},{3,6},{2,3,6}

}
.

We choose q = 7 as it is the least prime that does not divide 2,3,6,5,8 and therefore we

have H7(S) = {φ}.

Since(
sqf (φ)

7

)
= θ(φ) = 1,

(
sqf ({2})

7

)
= θ({2}) = 1,

(
sqf ({3,6})

7

)
= θ({3,6}) = 1

43



(
sqf ({2,3,6})

7

)
= θ({2,3,6}) = 1,

by using Theorem 4.2.1, we obtain that the set QS(5,8,7,(1,−1,−1)) contains a posi-

tive density subset of primes p having natural density

|H7(S)||D8
0 (S)|

4×6× (14)3 =
4

4×6× (14)3 =
1

16464
.

Computationally, it is found that QS(5,8,7,(1,−1,−1)) = {271, 631, 751, 991, ...}

4.3 A positive density subset of RS(t,d, f ,θ)

Theorem 4.3.1. Let S = {a1,a2, . . .an} be a subset of Z \ {−1,0,1} with a choice of
signs θ for S. Let f ,d be positive coprime integers such that f ≡ 1 (mod (d, t)). Let q
be the least odd prime such that q ∤ dta1a2 · · ·an.

Suppose
(

sqf (T )
f

)
= θ(T ) holds for every T ∈ D rt

i (S), where the values of i are
defined as in (4.1.4). Then the set RS(t,d, f ,θ) contains a subset of primes p for which
each ai ∈ S is a non t-near primitive root modulo p having natural density

|Hqt(S)||D rt
i (S)|

ϕ(rt)(q−1)(2qt)n ,

where r is a positive integer satisfying [d, t] = rt, D rt
i (S) and Hqt(S) are defined as in

(2.3.2) and (4.1.5) respectively.

Proof. We assume 8 | d. The proof for the other two cases follows similarly.

Consider the number fields
Lqt =Q(a1/qt

1 ,a1/qt
2 , . . . ,a1/qt

n ,ζqt) and Mdt =Q(
√

a1,
√

a2, . . . ,
√

an,ζt ,ζd).

Let L = LqtMdt be the compositum of Lqt and Mdt .

Since we assume [d, t] = rt, by Lemma 4.1.4 we write Mdt =Q(
√

a1,
√

a2, . . . ,
√

an,ζrt).
Also, since qt is odd and q ∤ dta1a2 · · ·an, it follows from Lemma 4.1.3 and (4.1.2) that

Lqt ∩Mdt =Q(ζt).

Therefore, by Lemma 4.1.2, we obtain that

[L : Q] =
[Lqt : Q][Mdt : Q]

[Q(ζt) : Q]
, (4.3.1)

and since Lqt and Mdt both are Galois extensions over Q, we also have

Gal (L/Q)∼= {(σ ,τ) ∈ Gal (Lqt/Q)× Gal (Mdt/Q) : σ |Q(ζt) = τ|Q(ζt)}. (4.3.2)

Now, consider the sets
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P(q, t) ={p ∈ P : p splits completely in Lqt},

P(θ , t,d) ={p ∈ P :
(ai

p

)
= θ(ai), ∀ 1 ≤ i ≤ n, p ≡ f (mod d), p ≡ 1 (mod t)}.

For any prime p ∈ P(q, t), we calculate the Frobenius element σp ∈ Gal (Lqt/Q).
We observe that p splits completely in Lqt if and only if σp is an identity element of the
Galois group Gal (Lqt/Q).

Therefore, the Frobenius element σp ∈ Gal (Lqt/Q) satisfies

σp(a
1/qt
i ) = a1/qt

i , for 1 ≤ i ≤ n, σp(ζqt) = ζqt .

First, we want to show that P(θ , t,d) is non-empty, and then for any prime p ∈
P(θ , t,d), we want to calculate the Frobenius element τp ∈ Gal (Mdt/Q).

Since we assume f ≡ 1 (mod (d, t)), by the Chinese remainder theorem, the con-
gruences x ≡ 1 (mod t) and x ≡ f (mod d) have a solution. Hence, by Dirichlet’s theo-
rem for primes in arithmetic progression, there are infinitely many primes p satisfying
p ≡ f (mod d) and p ≡ 1 (mod t).

From the assumption that
(

sqf (T )
f

)
= θ(T ) holds for every T ∈D rt

0 (S) and Lemma
4.1.8, we see that P(θ , t,d) contains infinitely many primes with the relative density
|D rt

0 |
2nϕ(rt) .

Since any p ∈ P(θ , t,d) satisfies p ≡ f (mod d) and p ≡ 1 (mod t), the Frobenius
element τp satisfies τp(ζd) = ζ

f
d and τp(ζt) = ζt . Also, for any p ∈ P(θ , t,d) it follows

from Lemma 4.1.7 that
τp(

√
ai) = θ(ai)

√
ai, for 1 ≤ i ≤ n.

Therefore, the Frobenius element τp ∈ Gal (Mdt/Q) satisfies
τp(

√
ai) = θ(ai)

√
ai, for 1 ≤ i ≤ n, τp(ζt) = ζt and τp(ζd) = ζ

f
d .

We write P(θ ,d,q, t) = P(θ , t,d)∩P(q, t).

For any p ∈ P(θ ,d,q, t), we observe that
σ |Q(ζt) = τp|Q(ζt).

Thus, from (4.3.2), it follows that (σp,τp) ∈ Gal (L/Q). Since σp acts as the
identity element on Gal (Lqt/Q) and the Galois group Gal (Mdt/Q) is abelian, the
conjugacy class of (σp,τp) contains only one element which is just (σp,τp). Therefore,
by Chebotarev Density Theorem, the density of P(θ ,d,q, t) is 1

[L:Q] .

Thus, by using Lemma 3.1.2 and Lemma 4.1.9 with (4.3.1), we conclude that the
density of P(θ ,d,q, t) is

|Hqt(S)||D rt
0 (S)|

ϕ(rt)(q−1)(2qt)n .

Finally, from Lemma 4.1.5, we observe that any p ∈ P(θ ,d,q, t) satisfies

p ≡ 1 (mod qt) and a(p−1)/qt
i ≡ 1 (mod p),

for all i = 1,2, . . . ,n.
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Since we assume q ∤ t, it follows that ordp(ai) ̸= p−1
t , but ordp(ai) | p−1

t , for i =
1,2, . . .n and for all p ∈ P(θ ,d,q, t). Hence,

P(θ ,d,q, t)⊆ RS(t,d, f ,θ),

but a1,a2, . . . ,an are non t-near primitive roots for any prime p in P(θ ,d,q, t). This
completes the proof of the Theorem 4.3.1.

Example-1:

Consider the set S = {2,3,6} with a choice of signs θ(2) =−1,θ(3) =−1 and θ(6) =

1. Suppose t = 3, f = 5 and d = 8. Then by definition of Dd
i (S) we see that

D24
0 (S) =

{
φ ,{2},{3},{6},{2,3},{2,6},{3,6},{2,3,6}

}
.

We choose q = 5 as it is the least prime that does not divide 2,3,6,8 and therefore we

have H15(S) = {φ}.

Since(
sqf (φ)

5

)
= θ(φ) = 1,

(
sqf ({2})

5

)
= θ({2}) =−1,

(
sqf ({3})

5

)
= θ({3}) =−1,(

sqf ({6})
5

)
= θ({6}) = 1,

(
sqf ({2,3})

5

)
= θ({2,3}) = 1,

(
sqf ({2,6})

5

)
= θ({2,6}) =−1(

sqf ({3,6})
5

)
= θ({3,6}) =−1,

(
sqf ({2,3,6})

5

)
= θ({2,3,6}) = 1,

by using Theorem 4.3.1, we obtain that the set RS(3,8,5,(−1,−1,1)) contains a posi-

tive density subset of primes p for which 2,3,6 are non 3-near primitive root modulo p

having natural density

|H15(S)||D24
0 (S)|

8×4× (30)3 =
8

8×4× (30)3 =
1

108000
.

Example-2:

Consider the set S = {7,8,11} with a choice of signs θ(7) = 1,θ(8) =−1 and θ(11) =

1. Suppose t = 3, f = 4 and d = 5. Then by definition of Dd
i (S) we see that

D3
0 (S) =

{
φ
}
.

We choose q = 3 as it is the least prime that does not divide 7,8,11,5 and we hence we

have H9(S) = {φ}, since
(

sqf (φ)
4

)
= θ(φ) = 1.
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By using Theorem 4.3.1, we obtain that the set RS(3,5,4,(1,−1,1)) contains a

positive density subset of primes p for which 7,8,11 are non 3-near primitive root

modulo p having natural density

|H9(S)||D3
0 (S)|

φ(3)× (3−1)× (18)3 =
1

2×2× (18)3 =
1

23328
.

Computationally, it is found that RS(3,5,4,(1,−1,1)) = {19, ...}.

In Theorem 4.3.1, we studied the density of the set RS(t,d, f ,θ) for odd t. In the

final remark, we will discuss about the set RS(t,d, f ,θ) when t is even.

Remark 4.3.2. If t is even, then it is easy to see that Q(
√

a1,
√

a2, . . . ,
√

an)⊂ Lqt and
hence

σp(a
1/qt
i ) = a1/qt

i =⇒ σp(
√

ai) =
√

ai, for every 1 ≤ i ≤ n.

On the other hand,
τp(

√
ai) = θ(ai)

√
ai, for 1 ≤ i ≤ n.

Therefore, the condition σ |Lqt∩Mdt = τp|Lqt∩Mdt forces that θ(ai) = 1, for every 1 ≤
i ≤ n.

For this reason, we expect that in case t is even, the set RS(t,d, f ,θ) contains a
positive density of primes p for which each ai ∈ S is a non t-near primitive root modulo
p only if θ ≡ 1.
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Chapter 5

Conclusions and Future Scope

We are recapitulating the chapters. To make the thesis self-contained, in Chapter 1,

we give the mathematical background necessary to understand the subsequent chapters.

In Chapter 2, we give an asymptotic formula for the primes, p, that satisfy two

conditions. One that primes lie between N and 2N for a sufficiently large N ≥ 3 and

satisfy arithmetic progression condition p ≡ f (mod d). Two, for a given finite set

S = {a1,a2, . . . ,an} ⊂ Z\{0}, the set S satisfies a quadratic residue pattern θ . Using

this asymptotic formula, there is a revelation of a counting problem that aids in finding

the cardinality of the Galois group of multi-quadratic and cyclotomic field extensions,

K.

In Chapter 3, we continue this process and find the explicit structure of K. Though

the structure of multi-quadratic extension was already known, this work shows cancel-

lations among the multi-quadratic and cyclotomic parts of the field extension. Hence

we obtain the degree of this field extension. Further, we get the explicit structure of its

Galois group.

Using the knowledge obtained from the previous sections, in Chapter 4, we find

the natural density of primes for which the elements of the set S are non-primitive and

satisfy a prescribed residue pattern.

Figure
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As mentioned in chapter 1, finding the Galois group of algebraic field extensions is

one of the core areas in Computational Number Theory. In the future, we look for meth-

ods to find the Galois group of other kinds of number fields. For instance, Noether’s

conjecture that every finite group occurs as the Galois group of a number field over Q

is still open in general.

Transcendental field extensions could be another area of research with the wits of

lack of algebraicity. Intuitively, it appears to be more random if considered as field

extensions over Q, validating applications to Quantum Cryptography.

Biasse and Vredendaal (2019) have mentioned heuristic algorithm to calculate S-

class groups and S-unit group of multi-quadratic field extensions. As a sequel to the

work done in this thesis, a modified algorithm to similarly find the so called S-class

groups and S-unit group of the field Q(
√

a1, . . . ,
√

an,ζd) over Q is being attempted.
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APPENDIX

• Siegels’s Theorem (Davenport (2000), Chapter 22):

Let n ≥ 0 be a positive integer. Let d be a positive integer satisfying d ≤ logA n

for some A > 0. Then for every non-principal character χ (mod d), we have:

∑
p≤N

χ(p)≪ n · exp(−C
√

logN)

• Law of Quadratic Reciprocity:

Given any integer n and odd and squarefree integer s, we have( s
n

)(n
s

)
= (−1)

s−1
2

n−1
2 .

• Partial Summation Formula:

∑
1≤n≤x

an f (n) =C(x) f (x)−
∫ x

1
C(t) f ′(t) dt
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