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Abstract

High efficiency video coding (HEVC) was developed to handle the ever-

increasing amount of video content by providing significant compression

gains. HEVC/H.265, developed by JCT-VC, can compress 4 K and 8 K

videos with 50% more efficiency than its predecessor H.264. This bit-rate

saving lowers infrastructure costs, making high-resolution and high-quality

video transmissions more affordable. HEVC can handle HD content and

deliver better compression efficiency because of computationally complex

algorithms like complex partitions, more angular predictions in intra pre-

diction, more parallel tools, a new addition to in-loop filters, and other

improved coding tools.

The addition of variable sized prediction units (PUs) and 35 directional

predictions has improved the compression efficiency while significantly in-

creasing the complexity of the intra prediction in HEVC. An efficient hard-

ware architecture for the intra prediction is proposed in this thesis which

produces high throughput to support high definition (HD) video applica-

tions. Features such as a compact reusable reference buffer, a dedicated

arithmetic unit are included that reduce hardware resources. The entire ar-

chitecture works as a pipelined unit and generates eight samples per clock

cycle in parallel with no data dependency. All of the above improvements

could not be fully utilised when the intra prediction engine is combined

with its subsequent transform module in the HEVC encoder. As a result,

an improved parallel-pipelined intra prediction engine is designed, which

will always process and predict samples row-by-row so that they can be

directly transform coded. The read-write latency associated with fetching

reference samples is reduced by incorporating a better compact reconfig-

urable reference buffer in the architecture.

The in-loop filter of the HEVC encoder and decoder is made up of the

deblocking filter (DF) and the newly incorporated sample adaptive offset

(SAO) filter, which improves the subjective quality of the image. In this

thesis, an integrated in-loop filter is designed on hardware that can handle

high computations by using very less on-chip memory. The in-loop filter

produces high throughput, while handling external memory traffic and

v



dependencies to support Ultra HD video applications.

The architectures are designed in Verilog HDL (Hardware Description Lan-

guage), synthesised, and then implemented on a 28 nm Artix-7 FPGA

board with a dual-core ARM Cortex-M1 processor. Xilinx Vivado is used

to generate post-implementation reports for analysis. The experimental

results show that the proposed designs achieve high throughput while us-

ing very little silicon area and have very high hardware efficiency when

compared to several other state-of-the-art hardware architectures.

Keywords: HEVC; intra prediction; in-loop filter; sample adaptive filter;

deblocking filter; FPGA; hardware architecture; parallel-pipeline.
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Chapter 1

Introduction

There will always be signals, they will always need processing, and there will

always be new applications, new mathematics and new implementation

technologies.

— Dr. Alan V. Oppenheim, Professor

Videos and their applications are in high demand today and will continue to be so in

the future (Cisco Systems, Inc (2020)). Security industries, video-based medical ap-

plications, broadcasting, and other industries are currently adopting High Definition

(HD) and Ultra High Definition (UHD) video applications. The widespread availabil-

ity of larger, better, and less expensive smartphones, tablets and other display devices

have created the ideal environment for wirelessly consuming, producing, and sharing

massive amounts of HD video content. In addition, the pandemic outbreak in the

years 2019-21 has resulted in an explosion of video applications and a steep increase

in video content. According to the Cisco Annual Report (Cisco Systems, Inc (2020)),

internet users will increase from 3.9 billion in 2018 to 5.3 billion by 2023, representing

an annual compound growth of 6%. In terms of population, it is that 66% of people

globally access internet and majority will access video content. It is also estimated

that by 2023, two-thirds i.e. 66% of the installed flat-panel TV sets will be UHD. In

short, the current high demand for videos and other video-based applications will con-

tinue to grow in the coming years, putting significant strain on existing transmission

and storage networks, and resulting in significant bandwidth demands.

Experts from the ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Moving
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Pictures Experts Group (MPEG) jointly developed a new video compression technol-

ogy High-efficiency Video Coding (HEVC)/H.265, that helps manage ever-increasing

bandwidth demands while also coping with existing transmission networks. HEVC is

designed to compress 4 K and 8 K videos 50% more efficiently than its predecessor,

H.264 (Sullivan and Ohm (2010), Sze et al. (2014), Wien (Jan. 2015),). As a re-

sult, infrastructure costs are reduced, making high-resolution and high-quality video

transmissions more affordable. HEVC’s ability to handle HD content and deliver bet-

ter compression efficiency comes at the cost of a computationally complex algorithm

that includes complex partitions, more angular predictions in intra prediction, parallel

tools, a new addition introduced to in-loop filters, and other improved coding tools

(Bossen et al. (2012)).

1.1 Motivation for this Research work

Modern homes, media, enterprises, defence, security, space applications, education,

and many other sectors use a wide range of applications based on HD and UHD video

content. All of these applications and requirements will continue to expand in future

which will result in significant bandwidth demands.

HEVC is developed specifically to support high quality videos and provide twice the

compression efficiency than the existing standard. Improved efficiency of HEVC makes

high-quality content affordable and attractive to both consumers and distributors.

Compared to an H.264 encoder, applications like live streaming with a HEVC-enabled

encoder uses half the bitrate. Since the bitrate demands are cut in half, more and

more higher resolution video applications can be used. Due to the high demand for

high-resolution video applications, major global companies such ase Intel, Telestream

(Telestream (2020)), Spin Digital (Spin Digital (2020)), Haivision (Haivision (2020))

and ohters are developing HEVC encoders. Major chip developers like Qualcomm,

Ateme, MulticoreWare, NTT, DivX, ViXS, eBrisk Video, Altera, Ittiam, NVIDIA

NVENC, AMD UVD, VLC, VITEC and others are developing IC chips to support

HEVC encoding and decoding. For applications like live streaming services, an average

video streamer can often get away with using software encoding, but cannot handle HD

content. The throughput of simulations on software is low, especially with increased

processing and large amounts of video data to handle. Whereas, executing algorithms

on hardware will increase the throughput by processing multiple units in parallel.
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Hardware encoders are turnkey devices designed specifically for the fast, efficient, and

reliable encoding of video streams in professional applications. Hardware encoders

have more processing power and can work with HD video inputs, allowing users to

stream higher-quality video at lower bandwidth rates and with less latency (Sullivan

et al. (2012)).

With so many devices supporting HD and UHD video, it is significant challenge to

the researchers to encode and decode these formats on hardware and produce good

quality video to the end-user at a lower bit-rate and higher compression ratio using

minimum resources and less power.

1.2 Background

The literature covers the evolution of HEVC as well as several state-of-the-art HEVC

hardware implementations.

1.2.1 HEVC and hardware implementations of HEVC

The H.264/MPEG-4, also popular as Advanced Video Coding standard (AVC) was

developed in May 2003 and is one of the most widely used standards supporting sev-

eral multimedia applications, including HDTV broadcasting, video on demand (VoD),

blu-ray disc storage, video conferencing and more (Wiegand and Sullivan (2007), Spin

Digital (2020)). H.264 as explained in Wiegand et al. (2003) is a conventional block-

based motion-compensated hybrid video standard based on video coding layer (VCL)

design. In comparison to its previous standards, H.264 saves about 50% on bit rates.

H.264 was able to achieve such savings by introducing enhanced motion-prediction,

smaller block size transforms, adaptive in-loop deblocking filter, better entropy meth-

ods. However, H.264 was unable to handle 4 K and 8 K video content at high quality

and lower bitrates. This led to the development of the new standard HEVC (Sullivan

and Ohm (2010)).

HEVC/H.265 is the state-of-the-art video compression standard suitable for real-time

HD and UHD workflows (Ultra HD Forum (2021)) as explained in Sullivan et al.

(2012). HEVC is capable of reducing the bitrate by 50% for the same quality compared

to H.264/AVC and has been widely used in the media industry, driving particularly the

shift to UHD videos since its inception (Ohm et al. (2012), G. J. Sullivan (2021)).
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Tsai et al. (2014), design a hardware encoder chip using pipelining technique. Three

main stages of pipeline are the prediction core, the reconstruction core, and the bit-

stream core. The encoder supports UHD video applications using less resources than

H.264. HEVC achieves this efficiency through a number of features, including quadtree

partitioning, 35 prediction modes in intra prediction module. Another significant ad-

dition is the sample adaptive offset (SAO) filter, a loop filtering block designed to

smooth out artifacts caused by the aggressive compression applied by HEVC on the

encoding side.

HEVC has been implemented on a variety of platforms, including digital signal proces-

sors (DSPs) as in (Norkin et al. (2012)), general-purpose processors (GPPs) (Bossen

et al. (2012)), graphic processing units (GPUs) (Wang et al. (2016)) application-

specific integrated circuits (ASICs) (Ozcan et al. (2013)), (Peesapati et al. (2017)),

(Shen et al. (2016)), (Pastuszak and Abramowski (2016)), multi-core processors (Yan

et al. (2014)), field-programmable gate arrays (FPGAs) as in (Onishi et al. (2018)),

(Abeydeera et al. (2016)), (Ding et al. (2019)) to support various high quality video

applications.

1.2.1.1 Earlier works on intra prediction

Quadtree partitioning and 35 angular predictions in intra prediction are two of the

most important introductions in HEVC (Wien (Jan. 2015)).

A novel method of intra prediction to provide high compression gains is proposed

in Lainema and Ugur (2011). The design was created in such a way that it could

be effectively implemented in resource-constrained environments while also being ap-

plicable in a wide range of applications. There were more angular predictions and

block sizes involved, and the design was intelligently designed to cover these cases by

operating in parallel. Their method outperformed previous technologies significantly

and consistently across different classes of video material, hence was adopted as the

directional intra prediction method for the HEVC draft and later successfully included

in the HEVC standard. Best mode selection time reduction techniques were proposed

by Zhao et al. (2011) and this method is partially included in HEVC test model.

In Lainema et al. (2012), an overview of the framework of intra coding for HEVC is

provided. For the first time, novel features such as quadtree-based variable block-size

coding structure, planar prediction, adaptive filtering (both pre and post-prediction
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stages), and adaptive scanning were included in intra prediction. All of the design

tools were used, and the performance was evaluated in their work. This novel intra

prediction algorithm achieved a bitrate reduction of 22% on average and up to 36%

objectively over H.264. There were also significant improvements in subjective picture

quality. In Sullivan et al. (2013), methods to decrease the computational complexity

of the intra prediction by selecting the decoded neighbouring blocks for prediction and

conditions to skip picture smoothing are included. Zhou et al. (2012) emphasis on the

loseless encoding, which is used in many real-world applications like automotive vision

applications.

Wien (Jan. 2015), and Sze et al. (2014) presents an in-depth explanation of the tools

used in HEVC intra prediction. Objective and subjective analysis, as well as the

complexity and implementation details, are thoroughly discussed and presented. Sze

et al. (2014) discuss and present various stages of the draft, as well as design changes

and improvements in their work. Li et al. (2011) noticed that 4× 4 PUs account for

66% of the total PUs on the decoder side. They proposed a 4 × 4 intra prediction

engine supporting only 17 directional predictions using two parallel datapaths. Sjövall

et al. (2015) present a high level synthesis (HLS) design flow for an HEVC intra

encoder implemented on a SoC-FPGA. HLS design flow helps to speed up the design

exploration, verification, and implementation in hardware/software implementation.

In Abeydeera et al. (2016), a pipelined HEVC decoder to support 4 K applications is

proposed. Single cycle reference processing in intra prediction is used to optimise the

architecture. In Amish and Bourennane (2016), a multiplexer based intra prediction

engine with parallel datapaths is proposed. They equipped one datapath for DC/

planar mode and the other for directional modes to process 4 K @ 24 fps videos. In

Amish and Bourennane (2019), they extend their previous work to design a hardware

intra prediction technique to support 3D HEVC video applications.

In Atapattu et al. (2016), an FPGA based hardware design of an all intra HEVC

encoder that encodes HD quality videos @ 30 fps raw video in real time is presented.

However, intra prediction architecture is optimised for 4 × 4 blocks to predict 19

modes in parallel, and tries to reduce latency rather than considering all prediction

directions. In Choudhury and Rangababu (2017), three datapaths one each for DC,

planar and for angular modes are proposed. One 4× 4 PU is processed in one cycle.

The parallel design takes up more resources and lack of reference buffer management
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increases data loading time. Azgin et al. (2017) propose a HEVC intra prediction

hardware which uses less energy by optimising the intra prediction computations to

support 2 K @ 40 fps. In Kalali et al. (2018), they propose a low energy consuming

intra prediction hardware for PUs of sizes 4 and 8. In Zhang and Lu (2018), a fully

parallel intra encoder design with four parallel prediction units to support each PU

size is proposed. However, Zhang and Lu (2018), achieve flexibility and throughput

using very high hardware resources. Ding et al. (2019) proposes a flexible intra encoder

engine with 32 parallel reconfigurable processing elements. Fan et al. (2019) used 32

parallel processing elements to support all PU sizes and angular modes. Reference

buffers are reused to reduce the resource utilisation.

1.2.1.2 Earlier works on in-loop filters

Another new feature in HEVC is the inclusion of a sample adaptive offset (SAO)

filter in the in-loop filters, along with a deblocking filter (DF). The in-loop filter

aims to combat block partitioning-related issues such as blocking, ringing, colour

bias, and blurring (Sze et al. (2014)). However, processing in-loop filter demands

greater computing power (Bossen et al. (2012)). HEVC in-loop filter has been imple-

mented on a variety of platforms, including digital signal processors (DSPs) (Norkin

et al. (2012)), general-purpose processors (GPPs) (Bossen et al. (2012)), application-

specific integrated circuits (ASICs) (Ozcan et al. (2013)), (Peesapati et al. (2017)),

(Shen et al. (2016)), (Shen et al. (2013b)), multi-core processors (Yan et al. (2014))

etc. Parallelisation (Ozcan et al. (2013)), pipeline (Zhu et al. (2013a)) and mixed

parallel-pipelined (Peesapati et al. (2017)) techniques are often used to improve sys-

tem performance and throughput of in-loop filter.

In Fu et al. (2011), they present a coding tree unit (CTU) based SAO to achieve low

latency. To adapt to SAO parameters in each CTU, a CTU-based design is specified

which are then interleaved into the slice data. A CTU-based optimization algorithm

used achieves better rate reduction. The SAO design is evaluated using HM 8.0

(HEVC reference software).

A pipelined SAO filter is proposed in Choi and Joo (2015), to improve the efficiency of

HEVC encoders. The SAO is implemented and tested on hardware using four different

quantisation parameter (QP) values. In Norkin et al. (2014) the SAO filter operations

are explained in detail and the goal of SAO is to reduce ringing artifacts caused due
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to larger transform sizes used in HEVC. Distortion caused due to large transforms is

reduced by classifying the samples and adding offset, and this is done on CTUs rather

than a whole picture frame which also helps to reduce process complexity. Norkin et al.

(2014) introduce two classifications edge offset (EO) and band offset (BO) methods

to classify and add offsets.

Shukla et al. (2017) in their work proposes a hardware efficient SAO filter that can be

implemented on both FPGA and ASIC platforms. The boundary samples and CTU in

the design, are divided into a set of buffers and operated in parallel. In Rediess et al.

(2014) the SAO filter is implemented on hardware to speed up the process by taking

advantage of hardware parallel operations. Edge offset takes care of the dependency on

neighbouring samples by storing them in buffers. For better throughput and efficiency

Diniz et al. (2015) reuses the hardware in the design. Shen et al. also suggested a

five-stage pipelined design for a combined DF and SAO filter in their works Shen

et al. (2013a) and Shen et al. (2016). Park et al. (2016) developed an in-loop filter

that uses internal buffers to decrease memory overhead and simplifies processing by

modifying the codec to lower hardware costs and increase throughput. Srinivasarao et

al. in Srinivasarao et al. (2015) suggested a design to support both H.264 and HEVC

standards for decoders on FPGA and ASIC platforms, to achieve long-term hardware

sustainability. Peesapati et al. (2017) presents a mixed parallel pipeline DF with

low latency. Baldev et al. in Baldev et al. (2018) proposes a five-stage pipelined in-

loop filter for better throughput, expanding on the work of Peesapati et al. (2017). Liu

et al. (2017) offers a reconfigurable in-loop filter using reconfigurable processing units

to achieve better performance. Kopperundevi et al. (2022) has designed an hybrid DF

on FPGA and ASIC to support 4 K and 8 K video applications but considered LCUs

of sizes 32× 32. Baldev et al. (2021) have designed an adaptable parallel and pipeline

DF for HEVC decoder. Data dependency is reduced to achieve variable throughput.

Singhadia et al. (2021) proposed an hardware integrated DF and SAO filter to achieve

high throughput. However, design process only luma samples and ignores the chroma

samples to accelerate the proecssing.

1.3 Research gap

New additions of quadtree partitioning and 35 angular predictions in intra prediction

and SAO filter in in-loop filters pose a significant challenge to implement them on
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hardware. As seen in previous research works, a lot of effort has gone into implement-

ing intra prediction and SAO filters on hardware in order to design an area and power

efficient HEVC encoder. It is also clear from the preceding discussions that HEVC en-

coders are in high demand. AVC and HEVC standards are currently widely used and

will continue to be so until the next standard, Versatile Video Coding (VVC/H.266),

becomes stable enough to be developed and integrated into devices.

There are numerous uses for a dedicated HEVC hardware, particularly in light of re-

cent trends in on-the-go video consumption. Since area is a constraint in such devices,

the implementation described in this work aims to address this issue. There is a lot of

room to further optimise the compression mechanisms and implement them on hard-

ware. All of these factors prompted us to develop and design area efficient block-based

intra prediction and SAO filter for HEVC encoders on hardware. The intra prediction

and the in-loop filter hardware designed thus could be integrated into the encoder

to efficiently encode high-definition video streams in laptops, cellphones, or in dedi-

cated streaming devices. The architectures are tested on FPGA. FPGA was chosen

for implementation because of its capabilities such as video acceleration, flexibility,

reprogramming, and reconfigurability. FPGAs allow for numerous optimizations to

speed up video encoding in comparison to traditional software-based encoders.

1.4 Research Objectives

The primary objective of this work is to design area-efficient hardware architectures of

intra prediction engine and SAO filter for the HEVC encoder. The following research

objectives are proposed based on the literature review.

1. To design and implement an efficient architecture for planar and DC intra pre-

dictions on FPGA to support real time HD applications.

2. To design and implement a pipelined-parallel intra prediction architecture on

FPGA that can support all angular modes and prediction unit (PU) sizes, as

well as real-time HD applications.

3. To design and implement an area efficient discrete cosine transform/discrete

sine transform (DCT/DST) based intra prediction architecture on FPGA for
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real-time HD applications.

4. To design and implement an efficient and optimised sample adaptive offset (SAO)

filter, as well as combine it with the deblocking filter (DF) of the in-loop filter

and implement it on FPGA.

1.5 Contribution to the Thesis

The following are the major contributions of this work:

1. Planar and DC intra predictions are performed using two hardware architectures.

The design achieves high throughput to support real-time HD video applications.

The following are two architectures that have been designed:

� Parallel Pipelined Architecture (PPA)

� Parallel Datapaths Architecture (PDA)

2. An intra prediction engine with the following features is designed to support all

of the directional predictions and PU sizes.

� Reconfigurable reference buffers

� Dedicated arithmetic unit

� Reusable multipliers

3. An intra prediction architecture using balanced pipeline, parallel, and sequential

techniques is designed. The design employs the following techniques to maximise

hardware efficiency and achieve high throughput:

� DCT/DST based intra prediction engine

� Reconfigurable reference buffers

� Dedicated arithmetic unit and reusable multipliers

4. A parallel-pipipelined SAO architecture is designed and integrated with the DF.

The optimised design is implemented on FPGA and supports HD and UHD

video applications.
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1.6 Organisation of the Thesis

A brief chapter-by-chapter organisation of the research thesis is presented in this

section.

� Chapter 1 presents a brief discussion of the motivation for choosing this re-

search topic, followed by a systematic examination of the evolution of the HEVC

standard and its implementations. New and improved tools included in intra

prediction and SAO filter are presented, along with a brief discussion of their

hardware implementations.

� Chapter 2 covers a general overview, and the evolution of video compression

standards. The HEVC standard, its background and coding tools are discussed

in detail. This chapter covers the hardware specifications, the test set up, metrics

used for validating the proposed algorithms, and the test dataset.

� In Chapter 3, objectives 1 and 2 are explained. This chapter covers the op-

timised hardware architectures for DC and planar predictions, as well as their

implementation and analysis. Two architectures with different strategies is im-

plemented and analysed. The best strategy is picked and applied to all the

angular predictions of intra prediction module. In this chapter, objective 2,

which is an area-efficient intra prediction engine with novel methods to achieve

high efficiency is presented. The experimental results are tabulated and anal-

ysed. The findings are compared with other similar studies and the results are

discussed.

� Objective 3 is presented in Chapter 4. A DCT/DST based intra engine de-

signed to work in congruence with the transform module to improve the overall

throughput of the HEVC encoder is presented. The design supports all the

angular predictions and PU blocks specified in the HEVC codec. The experi-

mental results and observations are tabulated and compared with similar works

available in the literature which clearly presents better optimised architecture

in terms of area for the throughput obtained.

� Chapter 5 presents objective 4, in which a hardware implementation of an

optimised efficient SAO filter of the in-loop filter is presented. The SAO is

designed to work independently and in conjunction with DF of in-loop filter.
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The SAO is tested separately and also combined with the deblocking filter. The

simulation and implementation results are presented and discussed.

� Finally in Chapter 6, the contributions of the proposed architectures and the

concluding remarks of this thesis are discussed. Future scope of the proposed

design, commercial applications and potential methods for improving the design

are discussed.
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Chapter 2

HEVC - Overview and key

features

Study the science of art. Study the art of science. Develop your senses - especially

learn how to see. Realize that everything connects to everything else.

— Leonardo da Vinci, Artist and Scientist

In this chapter, the importance of video coding, the development of video standards

and a general overview of the HEVC coding tool is presented. This chapter provides

overview of the hardware and metrics used in the evaluation of this study.

2.1 Basics of video compresion

Video is essentially the technology that captures moving images electronically. A

video is composed of a series of still images that change so quickly that they create

the illusion of a moving image. A higher number of still images/frames results in

a smoother motion of a video scene and each frame is recorded as millions of tiny

picture elements, called pixels/samples. The number of pixels in an image is referred

to as its resolution, and it contains information such as depth, illumination, and

texture. Higher frame rates and resolution provides a better video experience, but

they also require more samples to be captured and stored, resulting in a storage and

transmission bottleneck, necessitating video compression.

The importance of compression is demonstrated using the following example. Consider
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a 60-minute 1080p raw HD video with an aspect ratio of 16:9 and a frame rate of 30

frames per second (fps). The calculation for storing this video is as follows:

Storage space required =
(W ×H × bitdepth× framerate× video time in seconds)

8bits/byte

=
(1920× 1080× 24× 30× 60× 60×)× 1byte

8bits

= 671GB

The video content in the example above requires 671 GB of storage space. And if we

assume it costs Rs.40 to deliver this content to a single home. The cost of sending

this information to 10,00,000 homes is Rs.40,00,000. Now, if the above video could be

compressed by 50%, the same data could be stored or transmitted for half the price,

or more data could be stored and transmitted for the same price.

Video compression reduces the size of a large, raw video file into smaller files, and

became popular as a way to get more out of fewer resources. However, simply com-

pressing content does not result in the highest possible quality, nor does it allow for the

support of multiple devices and platforms. Here, video encoding is used to compress

and prepare video files for playback by converting them to the appropriate formats

and specifications. Video codecs are hardware or software that compresses and en-

codes (code and compress) videos for high-quality delivery, then decode/decompresses

them for playback. Codec is the short form for enCOding (coding) and DECoding.

The final goal of any video codec is to reduce file size and the required bit rate while

maintaining the quality of the original source. Figure 2.1, as described in Wang et al.

Figure 2.1: Generalized block diagram of the video coding system. (Source: Wang
et al. (2002))
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(2002), illustrates the general operations involved in a video codec. The encoder takes

the input video data and converts it to the parameters specified by the codec. These

parameters are quantized before being mapped into coded bitstreams and sent over

the channel. Reverse encoding is used at the decoder, where the coded bit stream

is converted into parameters and dequantized. The video frame is rebuilt by the

synthesis tool, and the video is displayed.

Today’s video consumption devices include everything from large, high-resolution tele-

visions to powerful palm and pocket-sized viewing devices. Modern video consump-

tion is fuelled by spectacular viewing devices which leads to a never-ending search

for more efficient file formats capable of delivering a wide range of high-quality video

services.

2.1.1 History and evaluation of video codecs

Figure 2.2: Evolution of video codecs with each generation providing better bit rate
reduction (Source: Telestream, 2020)

The video coding experts group (VCEG) was formed by the two gaint organisations

ISO/IEC and ITU-T, both pioneers in the process of video coding standardisation.

Meanwhile, another group of experts from ISO and IEC created the Moving Pictures

Experts Group (MPEG), who were responsible for developing standards for compres-

sion and transmission of media content. Figure 2.2 shows the evolution of standard

codec in the recent years. MPEG-1 gave way to MPEG-2, which became the standard

to deliver digital video content using direct broadcast satellite (DBS) for viewing over

cable. In the next decade, MPEG-2 made room for MPEG-4, also known as H.264/

AVC.
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2.1.2 Advanced Video Coding (AVC)/H.264/MPEG-4

AVC is a popular and widely used codec that allows for a greater variety of services

while maintaining the efficiency and quality required to light up tablets, smartphones,

and personal computers (PCs) (Wiegand and Sullivan (2007)). H.264 aided the de-

velopment of high-definition television tools for current distribution models. Many

multimedia applications, such as HDTV broadcasting, Video on Demand (VoD), Blu-

ray Disc storage, video conferencing, and so on, use AVC, which was followed by

H.265.

Figure 2.3: Encoding process on a macroblock in AVC (Source: Wiegand et al. (2003))

H.264 employs a traditional coding method, namely, hybrid block-based temporal and

spatial prediction, followed by block-based scaler quantized block transform coding.

Decoding is a subset of encoding processes. A simplified block diagram of the encoding

process applied to a macroblock in H.264 is shown in Figure 2.3. The input video

frame is divided into squares called macroblocks. Intra tools use spatial details to

code the first picture at the start of a sequence or at a random access point. The

remaining images in the sequence are coded using motion data and inter prediction

tools. The residual difference (the difference between the original and predicted data)

is then calculated and transformed using a decorrelating block transform. After scaling
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and quantizing the transform coefficients, they are encoded and transmitted. The

transform coefficients are then inverse scaled and transformed, generating the decoded

prediction residual (decoder operation). This parameter is added to the prediction,

which is then processed by a deblocking filter, which finally generates the decoded

video (Wiegand et al. (2003)). AVC supports nine intra coding modes (one DC and

eight directional modes) and supports 4× 4, 8× 8, and 16× 16 block sizes. The best

prediction mode is the one with the lowest rate-distortion (RD) cost.

Figure 2.4: Comparison of HEVC with previous standards. HEVC offers better signal
to noise ratio for the same bit rate (Source: Sullivan et al. (2012))

H.264, on the other hand, has reached the limits of its coding efficiency and is not

sufficient for transmitting 8 K video at high quality and low bitrate. HEVC (High

Efficiency Video Coding)/H.265 is the most recent ratified standard, which provides

significantly higher video quality at the same bit rate or the same video at half the

bit rate when compared to H.264. As shown in Figure 2.4, HEVC offers the lowest

bit rate for the same quality video content compared to previous codecs (Grois et al.

(2013), (Sullivan et al. (2012))).
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Figure 2.5: Block diagram of HEVC video encoder and decoder.
(Intra prediction module and in-loop filters are highlighted in light green colour, and the decoder
is in grey colour)

2.2 High Efficiency Video Coding (HEVC) - An

overview

The Video Coding Experts Group (VCEG) of the ITU-T and the ISO/IEC Moving

Picture Expert Group collaborated to develop HEVC. By retaining the hybrid cod-

ing architecture, HEVC is built on the same general structure as previous standards

(Boyce et al. (2013)). The block diagram of the HEVC encoder is shown in Figure

2.5. The standard follows initial prediction, either intra frame or inter frame, followed

by a transform, quantisation, and entropy coding over the residual information in

the standard (Sze et al. (2014), Wien (Jan. 2015)). The encoder then performs the

decoder operation, which involves inverse scaling and inverse transformation of the

transform coefficients, resulting in the decoded prediction residual. This residual is

then added to the prediction, which is processed by an in-loop filter, which outputs the

decoded video (Sullivan et al. (2012)). Despite the fact that the algorithm seems to be

similar to the previous standards, there are a few key differences that enable HEVC’s

enhanced compression capability (Ohm and Sullivan (2012)), which are discussed in

the following sections.
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Figure 2.6: CTU is partitioned into CUs in a quad-tree pattern, and CUs are further
decomposed into PUs

Figure 2.7: Illustration of reference samples and intra directional modes with their
indices used in HEVC (Source: Sullivan et al. (2012))

Each input video frame in HEVC is divided into square blocks known as largest coding

units (LCUs), which are further divided into coding units (CUs). Each input picture

has three colour components: Y (luma), U (chroma), and V (chroma), and each

sample in every colour component is represented with 8-bit precision. CUs are further
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broken down into quad-tree partitioned prediction units (PUs), and transform units

(TUs). As shown in Figure 2.6, H.265 introduces PUs of 5 different sizes for intra

prediction, namely 4× 4, 8× 8, 16× 16, 32× 32 and 64× 64 ; and TUs of 4 different

sizes, namely 4× 4, 8× 8, 16× 16, and 32× 32 (Kim et al. (2012), Sze et al. (2014)).

In contrast, H.264, merely has 4 × 4 and 16 × 16 blocks. HEVC uses more complex

prediction mechanisms with arithmetic-intensive intra predictions to achieve better

compression. As shown in Figure 2.7, HEVC has 35 directional predictions for each

type of PU size, whereas H.264 only has 9 modes.

2.2.1 Largest coding unit (LCU)

Figure 2.8: Structure of a CTU

CUs are the basic processing units in HEVC. As shown in Figure 2.8, each CTU

contains luma coding tree blocks (CTBs), chroma CTBs, and the associated syntax

element. The larger LCU size allows for better compression, which is especially bene-

ficial for HD video. CTUs are then divided into CUs and coding blocks (CBs), which

are signalled by a quadtree structure, as shown in Figure 2.6, where luma and chroma

CUs are usually split together. At the CU level, the decision is made whether to

encode a picture area using inter or intra prediction.

2.2.2 Prediction blocks (PBs) and Prediction units (PUs)

The Prediction unit (PU) aggregates the prediction blocks (PBs) of the luma and

chroma samples along with the associated syntax elements such as motion data. HEVC

supports variable PB sizes ranging from 64× 64 down to 4× 4 samples. The CUs in I

slices can only be in intra-prediction mode, whereas in P and B slices, they can be in

both intra and inter prediction mode. HEVC supports both square and rectangular

(non-square) partations for inter prediction as shown in Figure 2.9. In Figure 2.9,
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Figure 2.9: PU Partitioning (Source: Sullivan et al. (2012))

M denotes the size of the block, where M = 4, 8, 16, 32, and L, R, U and D stands

for left, right, up and down partition receptively. For intra prediction, however, only

square partitions are supported as shown in Figure 2.7.

2.2.3 Transform units (TUs) and Transform blocks (TBs)

Figure 2.10: Example for the partitioning of a 64 × 64 CTU into CUs of 8 × 8 to
32× 32, which are further divided into CB and TB samples. (Source: Sze et al. (2014))

A transform unit (TU) is a square block of colour component samples on which a

two-dimensional transform is used to code the residual signal. The transform unit is

made up of luma and chroma transform blocks (TBs), as well as syntax elements that

contain the associated transform coffecient levels. CB is partitioned into TBs in a

recursive manner using a quadtree approach known as the residual quad-tree (RQT).

Three parameters limit each RQT: maximum depth of the tree, minimum allowed

transform size and maximum allowed transform size. A TU vary from sizes ranging

from 4 × 4 to 32 × 32. In order to comply with the transform size constraints, a TB

size of 64× 64 causes an implicit splitting into four 32 × 32 TBs. Luma CTBs are

subdivided recursively into luma CBs and luma TBs along with the corresponding

nested quad-tree structures of the coding tree and residual quad-trees, as shown in
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Figure 2.10.

2.2.4 Slices, tiles and wavefront processing

In HEVC input picture frame is split into slices, tiles and wavefront parallel processing

(WPP) as shown in the Figure 2.11. Multiple partitions within the image can be

created using these techniques, allowing for parallel processing. Slices are a sequence

Figure 2.11: Slices, tiles, WPP in HEVC. (Source: esilicon Labs)

of CTUs that are processed in the same order as a raster scan. Each slice can be as

big as the entire image or as small as a single CTU. In a picture, there could be one

or more slices. As shown in Figure 2.11, a picture can be divided into one or more

slices, each of which consists of several non-overlapping slice segments. Within each

slice, the first slice segment is always independent.

In addition to slices, HEVC also defines tiles, which are self-contained, independently

decodable rectangular regions of the picture. Main purpose of a tile is to allow parallel

processing architectures to be used for encoding and decoding. Because multiple tiles

are contained in the same slice, they may share header information. A single tile,

on the other hand, could contain multiple slices. As shown in Figure 2.11, a tile is

a rectangular arranged group of CTUs, with all of them containing about the same

number of CTUs (typically, but not necessarily).

In HEVC wavefront parallel processing (WPP), synchronous entropy decoding of mul-

tiple CTU rows within a slice is followed. When WPP is enabled, a slice is divided

into rows of CTUs. The first row is processed normally, the second row can begin only

after two CTUs in the first row have been processed, the third row can begin only
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after two CTUs have been processed in the second row, and so on. WPP thus provides

a finer level of granularity within a slice, allowing for parallel processing.

2.2.5 Inter prediction

In the temporal domain, redundancy refers to the fact that successive frames in time

order are usually highly correlated, resulting in parts of the scene being repeated

with little or no changes over time. Temporal redundancy, also known as inter-frame

correlation. It is clear that coding only the changes in the video content, rather

than coding each entire picture, is a more efficient way to represent the video. As

stated by Sullivan et al. (2012), this technique is called interframe prediction and

is designed to improve coding efficiency in order to achieve better compression. As

shown in Figure 2.9, inter prediction supports eight PU block partitioning schemes,

namely symmetric and asymmetric motion partitions (AMPs). AMP increases coding

efficiency by allowing PUs to precisely conform to the shape of objects in the image

without the need for additional splitting.

2.2.6 Transforms and quantization

HEVC defines transforms on TUs of size 4 × 4, 8 × 8, 16 × 16, and 32 × 32, and are

simple fixed-point matrix multiplications for the vertical and horizontal components

of the inverse transform, as given by the relations (2.1) and (2.2) respectively.

Y = s
(
CT .T

)
(2.1)

R = Y T .T (2.2)

Where s() is a scaling and saturating function that ensures values of Y . Each factor

in the transform matrix T is represented using signed 8 bit numbers. Operations are

defined such that 16 bit signed coefficients C are multiplied with the factors, as the

transforms are integer approximations of a DCT. Some key modules, such as trans-

forms, intra picture prediction, and motion compensation, are more complex in HEVC

than in the previous standard H.264, but the tool attempts to reduce complexity in

others, such as entropy coding and deblocking (Bossen et al. (2012)).
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2.2.7 Entropy coding

The final stage of video encoding, after the video has been reduced to a series of syntax

elements, is entropy coding, which is a type of lossless compression. Context adaptive

binary arithmetic coding (CABAC) is the technique used in HEVC, which has several

key improvements over the previous standard (Sze et al. (2014)). Several tools are

added to improve throughput, speed and compression performance, as well as methods

to reduce context memory requirements. The operation of CABAC encoding can be

grouped into three stages.

1. Binarisation - transforms syntax elements into binary symbols (bins)

2. Context modelling - estimating the probability of binary symbols

3. Arithmetic coding - compressing the size of bins to bits based on the probability.

CABAC provides better coding efficiency because of the arithmetic coding tools and

more sophisticated context modelling, which also increase tool complexity.

2.3 Semantics of intra prediction

Intra prediction in HEVC is designed to reduce the spatial data redundancy and

includes tools to perform accurate predictions. Quadtree partitioning and 35 angular

predictions that are introduced to improve compression efficiency also makes the intra

engine computationally complex. The current PU is predicted using the neighbouring

samples that are already coded. These predicted samples are called reference samples,

and are the boundary samples from the previously predicted blocks. Intra prediction

can be broadely divided into following stages:

� Reference samples selection

� Mode dependent filtering

� Prediction

2.3.1 Reference samples selection

The reference samples are selected from above and left of the current PU. One 4× 4

PU and the reference samples required to predict a PU are illustrated in Figure 2.12.
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Figure 2.12: Illustration of a PU of size 4× 4 with the reference samples and angular
predictions.

C is the corner or top-left reference sample, T is top, TRs are top-right, L′s are

left, and LBs are left-bottom reference samples. NBlock is the size of the PU under

prediction. If any reference samples are missing, the reference array is extended with

the last available sample. The reference array is filled with the initial value of 128 (for

an 8 bit video) is no reference samples are available. (For example, the first PU in a

new input frame has no reference samples). The boundary samples of the predicted

PU are used as the references for the following predictions and are highlighted using

dashed lines in Figure 2.12. Among the 35 angular predictions introduced, mode 0

and 1 corresponds to planar and DC predictions respectively. 2−35 modes are angular

predictions, with horizontal predictions ranging from 2 − 18 and vertical directional

predictions ranging from 19− 34 which are shown in Figures 2.7 and 2.12.

2.3.2 Reference samples filtering

Block partitioning of the input frame gives rise to contouring artifacts at the block

edges. Smoothing/filtering is applied to reduce contouring artifacts on the reference

samples based on the directional modes and PU sizes which are listed in Table 2.1.
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Table 2.1: Reference samples smoothing for angular modes based on PU sizes

Block size Angular modes for which filtering is applied

4× 4 No filtering

8× 8 2, 18, 34

16× 16 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33

32× 32 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33

There are two types of reference sample smoothing:

1. Three-tap filtering

2. Strong intra smoothing.

By default a three tap filter ([1, 2, 1] /4) is applied to each reference sample and its

neighboring reference samples. The outermost reference samples are not modified (Sze

et al. (2014)), but all the other samples are filtered using the relations (2.3), (2.4) and

(2.5), where� is shift right operation and [i][j] gives the location of the sample.

Ref [−1][−1] = (Ref [−1][0] + 2×Ref [−1][−1] +Ref [0][−1] + 2)� 2 (2.3)

Ref [−1][j] = (Ref [−1][j + 1] + 2×Ref [−1][j] +Ref [−1][j − 1] + 2)� 2 (2.4)

Ref [i][−1] = (Ref [i+ 1][−1] + 2×Ref [i][−1] +Ref [i− 1][−1] + 2)� 2 (2.5)

where, i, j = 0, 1, 2, ..., (2NBlock − 2).

Strong intra smoothing is applied to the samples between Ref [−1][−1] and the cor-

ner reference samples. Linear interpolation between the corner reference samples is

generated. Strong filtering is applied to PUs of size 32× 32 using relations (2.6) and

(2.7). Strong filter or three tap filter on a 32 × 32 PU is decided by the threshold

using relations (2.8) and (2.9).

Ref [−1][j] = ((63− j)×Ref [−1][−1] + (i+ 1)×Ref [−1][63] + 32)� 6 (2.6)

Ref [i][−1] = ((63− i)×Ref [−1][−1] + (i+ 1)×Ref [63][−1] + 32)� 6 (2.7)

26



where, i, j = 0, 1, 2, ..., 62.

|Ref [−1][−1] +Ref [2NBlock− 1][−1]− 2Ref [2NBlock− 1][−1]| < (1� (b− 5)) (2.8)

|Ref [−1][−1] +Ref [−1][2NBlock− 1]− 2Ref [−1][2NBlock− 1]| < (1� (b− 5)) (2.9)

where b is the bit depth of the sample.

2.3.3 Prediction

For the given angular mode, the samples in a PU are predicted using (2.10) and

(2.11), where ind and fracPrt are the index and the weight of the selected reference

sample. The reference sample with the index, ind and its offset with index (ind+ 1)

are selected to predict PredBlock[i][j]. Mode 2 to 34 are directional prediction modes.

Horizontal predictions is given by:

PredBlock[i][j] = ((32− fracPrt)×RefAng[j + ind+ 1]+

fractPrt×RefAng[j + ind+ 2] + 16)� 5
(2.10)

Vertical predictions is given by:

PredBlock[i][j] = ((32− fracPrt)×RefAng[i+ ind+ 1]+

fracPrt×RefAng[i+ ind+ 2] + 16)� 5
(2.11)

where, i, j = 0, 1, 2, ..., (NBlock − 1).

The reconstructed samples are obtained by the addition of the predicted reference

samples and the residuals. The residue is the difference between the current and the

predicted samples. The reconstructed pixels would become the reference samples for

the following predictions.

2.4 In-loop filters

In-loop filtering is applied after the inverse quantization and transformation, but be-

fore the reconstructed image is used for predicting other pictures through motion

compensation (MC). In-loop filter is a part of both encoder and decoder. The in-loop
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filter has two tools, which are:

� Deblocking filter

� Sample adaptive offset filter

HEVC, like its predecessor, has an in-loop deblocking filter (DF). DF smooths out

blocking artifacts around transform edges in the reconstructed image to improve pic-

ture quality and consequently compression efficiency (Norkin et al. (2012)). In HEVC,

this filter is simple and includes parallel operations. Along with DF, another filter-

ing stage, the sample-adaptive offset (SAO) filter is introduced in HEVC. SAO aims

to improve the video quality objectively and subjectively (Fu et al. (2012)). In-loop

filters corrects distortions introduced during the encoding process (prediction, trans-

form, and quantisation), thereby including filtering as a part of the prediction loop.

The pictures thus obtained have less encoding distortion and therefore serve as better

references for motion compensated prediction.

2.4.1 Deblocking filter (DF)

Figure 2.13: Alignment of 8×8 blocks to which the deblocking filter is applied (Source:
Bossen et al. (2012))

The DF in HEVC uses an adaptive smoothing filter to smooth out the discontinuities

that occur between PU and TU block boundaries (Wien (Jan. 2015)). H.264 uses

macroblocks in all of its modules, whereas HEVC uses picture-based in-loop filters. A

picture is made up of a series of CTUs.

The DF is applied to the horizontal and vertical boundaries of PUs and TUs with a

block size of 8× 8 while the edges of 4× 4 grids are filtered in AVC. This immediately

reduces the number of filter modes that must be computed and the number of samples

that needs to be filtered by half. In order to enable parallel processing, the order in
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Figure 2.14: Illustration of the block edges in HEVC. (a) Horizontal and vertical
edges in HEVC for 8 × 8 blocks. (b) P and Q blocks with the sample convention used
for processing

which edges are processed is also changed. Filtering is applied separately on the 4×
4, P and Q blocks as shown in Figure 2.14. Normal and strong filtering modes are

available in DF, which modify two and three luma samples respectively along each

boundary. The vertical boundary operation is shown in Figure 2.14 (b), and the

horizontal boundary filtering is analogous.

Several decisions must be made before boundary filtering is applied, including whether

the boundary should be filtered or not, and which filtering modes, such as normal or

strong, should be used. Only data from the first and last rows of P and Q blocks

(shown using dotted lines in Figure 2.14 (b)) is used to make filtering decisions. The

decisions are made using the relations from (2.12) through (2.21).

|p20 − 2p10 + p00|+ |p23 − 2p13 + p03|+

|q20 − 2q10 + q00|+ |q23 − 2q13 + q03| < β
(2.12)

|p20 − 2p10 + p00|+ |q20 − 2q10 + q00| <
β

8
(2.13)

|p23 − 2p13 + p03|+ |q23 − 2q13 + q03| <
β

8
(2.14)

|p30 − p00|+ |q00 − q30| <
β

8
(2.15)

|p33 − p03|+ |q03 − q33| <
β

8
(2.16)
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|p00 − q00| < 2.5tc (2.17)

|p03 − q03| < 2.5tc (2.18)

|p20 − 2p10 + p00|+ |p23 − 2p13 + p03| <
3β

16
(2.19)

|q20 − 2q10 + q00|+ |q23 − 2q13 + q03| <
3β

16
(2.20)

|δ0| < 10tc, i = 0, 1, 2, 3 (2.21)

The DF avoids filtering real video boundaries, instead focusing on those that are cre-

ated artificially during the coding phase using filtering decisions (Norkin et al. (2012)).

Filtering decisions are influenced by the type of block (intra, inter), the quantisation

parameter (QP), the motion vector difference, and the video content. A lookup table

with QP as the input is used to determine β (threshold) and tc values.

2.4.1.1 Boundary strength (Bs) Computation

The Bs value which ranges from 0 to 2, determines the amount of filtering required

on each block boundary (Norkin et al. (2012), Wien (Jan. 2015)). Boundary strength

is greatly influenced by the block type (inter/intra). As illustrated in Figure 2.14,

edges lying on the 8×8 sample grid are considered, and Bs is calculated for every four

samples on either side of the edge using the relation in (2.12), which is also used

to compute the tc (clipping value). The input image is divided into sub-blocks of

samples, with edges at the boundaries of 8 × 8 blocks, as shown in Figure 2.14 (Sze

et al. (2014)).

2.4.1.2 Filtering decision

The filter operation depends on the β value and skipped, if Bs > 0 and if the condition

in (2.12) is not met (Boyce et al. (2013)). As a result, edges with zero boundary

strength are not always filtered because the image may contain very abrupt transitions

across the edges which are not related to blocking artifacts. Due to the excessive

smoothness, the image becomes blurry when such edges are filtered. Blocking artifacts

are more noticeable in low frequency regions of the image. Samples p2i , p
1
i , p

0
i , q

0
i , q1i ,

q2i are present on either side of the boundary, as indicated in Figure 2.14(b), and are

filtered if they meet the requirements as given by (2.12).
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2.4.1.3 Filter implementation

The filtering order is specified as follows, vertical edges are filtered from left to right

first, then horizontal edges are filtered from top to bottom. The standard defines two

types of filtering:

� Strong filtering mode - modifies three sample values on each side of the boundary

� Standard filtering mode - modifies at most two sample values on each side of

the boundary.

2.4.2 Sample adaptive offset (SAO) filter

The SAO filter is a CTU-based filter that reduces degradation by applying an offset to

reconstructed images (Fu et al. (2011)). When high QP values are used, ringing arti-

facts appear around the edges of the input image, trying to detract from the subjective

quality of the image. The SAO filter reduces ringing effects and thus the difference

between restored and original images. Both the luma and chroma components of the

image are filtered in the same way with the SAO filter. In SAO, there are two meth-

ods for applying offset: edge and band offsets.The encoder can choose to apply either

band or edge offset on the different regions of a picture. It can also signal that neither

band nor edge offset is used for a region.

2.4.2.1 Edge offset (EO)

Figure 2.15: Edge offset classes and classification rules
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The edge offset in SAO is calculated by comparing the current sample to its two

neighbours using edge properties. One of four one-dimensional three-pixel patterns

is used to classify samples based on their edge direction and the patterns used are

shown in Figure 2.15. Each sample can be classified as a peak (if it is larger than its

two neighbours), a valley (if it is smaller than its two neighbours), an edge (if it is

the same as its one neighbour), or none of the above. There are four different EO

classes, each with five different categories. All angles, categories, and their conditions

are shown in Figure 2.15. Altogether there are 20 different offset classes to choose

from, and the codec will select the best one. The dependence of the current sample

on its neighbouring samples (i.e. samples from the left, right, top, bottom, top left,

bottom right, top right, top right, or bottom left CTUs) is one of the challenges

in implementing EO, which causes latency. This dependency and latency must be

factored into the pipeline techniques in hardware implementation. EO calculations in

HEVC requires more operations and is dependent on two neighbouring samples.

2.4.2.2 Band offset (BO)

Figure 2.16: Illustration of band offset and offset determination

In the case of band offset, all samples in a CTU are divided into 32 uniform bands

from zero to the maximum intensity. For 8-bit data, the maximum value is 255, so

the bands are 256/32 = 8 pixels wide. The 32 bands are divided into two groups.

The decoder receives just the offset values of four successive bands and the starting

band position in HEVC. The band indexes are assigned as 1 - 4. The remaining

28 band offset values and band indexes are set to zero. The band offset and offset

determination are depicted in Figure 2.16.
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2.4.2.3 Fast distortion estimation

Fast distortion estimation method is used to determine the best offset and SAO type

(EO and BO). First step is to add offsets to pre-SAO samples, then generate post-

SAO samples and finally calculate distortion between original samples and post-SAO

samples, this is given by,

Dpre =
∑
k∈C

(p(k)− d(k))2 (2.22)

Where k is pixel position, p(k) is original samples, and d(k) is pre-SAO samples, k

belongs to C and C is a set of specified SAO (EO, BO) samples. Next, the distor-

tion between the original samples and the post-SAO samples are generated using the

following equation.

Dpost =
∑
k∈C

(p(k)− (d(k) +O))2 (2.23)

Where O is the offset of a given sample set.

Then the delta distortion, difference between Dpost and Dpre is generated.

∆D = Dpost −Dpre

= NO2 − 2OE
(2.24)

E =
∑
k∈C

(p(k)− d(k)) (2.25)

In (2.24), N stands for number of samples, and E in (2.25) is the sum of differences

between original and pre-SAO samples. The following equation is used to calculate

the delta rate-distortion (RD) cost:

∆J = ∆D + λR (2.26)

Where λ is the lagrange multiplier, and R is the estimated bit cost.

∆J for all the bands are generated, using this value rate-distortion impact of SAO on

the LCU is estimated. This values are used to determine, band transition position, or

the applicable edge offset class.

The addition of SAO tool in the standard adds to the complexity, as it may require

either an additional decoding pass, or an increase in line buffers. The offsets are
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transmitted in the bitstream and thus need to be derived by an encoder. If considering

all SAO modes, the search process in the encoder can be expected to require about an

order of magnitude more computation than the SAO decoding process. Compared to

H.264/AVC, where only a deblocking filter is applied in the decoding loop, the current

HEVC specification features an additional sample-adaptive offset (SAO) filter. This

filter represents an additional stage, thereby increasing complexity.

2.5 Hardware specifications of the FPGA board

Intra prediction and SAO filter modules are designed in Verilog HDL (Hardware De-

scription Language), synthesised, and implemented on a 28nm Artix-7 FPGA board

with a dual-core ARM Cortex-M1 processor. Xilinx Vivado is used to generate simu-

lation, pre/post synthesis and pre/post implementation reports for analysis.

Figure 2.17: Zed board (Source: Guide to Zed (2012))

Hardware architectures are tested on Z-7020 boards. These boards are feature-rich,

ready-to-use, entry-level embedded software and digital circuit development platforms

built around the smallest member of the Xilinx Zynq-7000 family. The Z-7000 SoC

boards (Zed board and Xilinx Artix-7 FPGA AC701 Evaluation Kit shown in Figures
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Figure 2.18: Xilinx Artix-7 FPGA AC701 board details (Source: Guide to AC701
(2013))

2.17 and 2.18 respectively) are based on the Xilinx All Programmable System-on-

Chip (AP SoC) architecture, which tightly integrates a dual-core ARM Cortex-A9

processor with Xilinx 7-series FPGA logic. The zed board has 85,000 logic cells, 512

MB DDR3, 560 KB RAM, 220 DSP slices and operates at 150 MHz frequency, while

the Xilinx AC701 has 2,15,360 logic cells, 1 GB DDR3, 32 MB flash memory, 8 KB

EEPROM, 740 DSP slices and operates at 200 MHz (Guide to Zed (2012), Guide to

AC701 (2013)). Both boards come with a wide range of multimedia and connectivity

peripherals, allowing them to host a complete system design. The on-board memories,

video and audio I/O, dual-role USB, Ethernet, and SD slot will help the design up-

and-ready with no need of additional hardware.

FPGAs have the advantage that they are reprogrammable and made up of a matrix

of programmable logic blocks connected with programmable interconnects. FPGAs

are also an attractive option due to their flexibility, hardware timed speed, reliability,

and parallelism. FPGAs parallel nature allows each processing task to operate inde-

pendent of other logic blocks and doesn’t compete for resources (NI CORP (2021)).
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Current FPGAs are heterogeneous in nature, i.e, they are made up of a microproces-

sor and then connected to I/O (Input/Output). Modern FPGA’s operate with logic

gates combined with processors all in a single chip called as SoC (System on Chip),

resulting in improved computing performance (AMD Xilinx (2012)). This approach

takes advantage of the benefits offered by both the targets. In short, modern FPGAs

offer high logic density, an embedded host processor, DSP blocks, clocking, and high

speed at a low cost, as well as the ability to add artificial intelligence (AI) to their

platform, which is highly desired.

2.6 Test set up for the objective analysis of the

hardware designs

Figure 2.19: Intra and SAO modules test verification chart

One of the biggest challenges of implementing the intra prediction and in-loop modules

on FPGA is to correctly verify its behaviour. In order to do this, several steps were

taken. Reference software is provided by the JCT-VC, using this reference code, the

modules, input and output data required to our design modules are extracted. This

data is used as input in the software model to generate output data. This data is

used to test the correctness of the implementation of the intra prediction and in-loop

modules. The data is also tested using other metrics allowed in the standard. Figure

2.19 shows the test verification chart used to test the architectures, in which the
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Figure 2.20: Block diagram of Intra and SAO filter IP test setup on the FPGA

video/image frames are fed into the intra/SAO modules and the output is checked for

consistency. The hardware model is run using the input data specified by the HEVC

reference development team and the output is compared to the reference output to

verify that the hardware is doing the processing as expected. The correctness of the

output data in the hardware is also tested using the metrics described in the following

sections. The demo of the FPGA implementation used to test the architectures is

shown in Figure 2.20.

2.7 Metrics used for the objective analysis of the

hardware design

The distortion or the correctness of the output data is compared to the original data

to determine reconstruction quality. This measurement is frequently performed on a

sample-by-sample basis. Sum of Squared Difference (SSD), Sum of Absolute Differ-

ences (SAD), Sum of Absolute Transformed Differences (SATD), and PSNR - Peak

Signal-to-Noise Ratio - are the distortion measures used in HEVC. To perform soft-

ware testing, the reference software, HM software test module, is used (Fraunhofer

(2015)).
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2.7.1 Sum of Absolute Differences (SAD)

The sum of absolute differences is defined as the sum of the difference between the

current and the predicted PU and is given by (2.27). SAD is one of the most straight-

forward and quick metrics available (Wien (2015)).

SAD =

Nblock∑
i=0

Nblock∑
j=0

|PredBlock[i][j]− CurrentBlock[i][j]| (2.27)

2.7.2 Structural similarity index (SSIM)

The SSIM is a perceptual metric that quantifies image quality degradation as a result

of processing such as data compression or data transmission losses. SSIM is a full

reference metric that requires two images, the original and a processed image, which

is a compressed image, from the same image capture. The SSIM scale runs from 0 to

1, with 1 denoting perfect match.

2.7.3 Peak signal-to-noise ratio (PSNR)

The peak signal-to-noise ratio (PSNR) between two images is calculated in decibels.

The PSNR is used to determine the quality of the reconstructed image. The higher

the PSNR, the better the image quality. PSNR is calculated as shown below.

PSNR = 10 log10

(
NPNL

A2
max

DMSE

)
db (2.28)

Where Amax is the maximum amplitude of the original image. For a 8-bit video it is

28 − 1 = 255. NP is the number of samples per line, NL is the number of lines in the

image. DMSE is the mean squared error (MSE). MSE is the average of the squares of

the errors between the original and reconstructed images, and error is the difference

in the value between the original and processed images.

2.7.4 Metrics used to measure hardware complexity

Hardware encoders are not cross-platform and are designed to run in real-time. They

are either built into the platform or are an add-on. One of the most important

requirements for hardware encoders is to have area efficient architecture wih low
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power consumption. To compare different algorithms and hardware implementation

results, performance metrics such as area occupied, number of gates, number of reg-

isters, memory utilisation, frequency of operation, throughput, power consumption,

and board technology are used.

2.8 Test sequences used for the objective analysis

of the hardware designs

Table 2.2: Test sequences from the JCT-VC common testing conditions

Class Sequence Name
Number of

Frames
Resolution Frames per second

A

Traffic 150 2560× 1600 30

PeopleOnStreet 150 2560× 1600 30

Nebuta 300 2560× 1600 60

SteamLocomotive 300 2560× 1600 60

B
Kimono 240 1920× 1080 24

BasketballDrive 500 1920 x 1080 50

C
RaceHorses 300 832 x 480 30

BasketballDrill 500 832 x 480 30

D
RaceHorses 300 416 x 240 30

BlowingBubbles 500 416 x 240 50

E FourPeople 600 1280 x 720 60

F

BasketballDrillText 500 832 x 480 50

SlideShow 500 1280 x 720 20

ChinaSpeed 500 1024 x 768 30

(Source:Sze et al. (2014))

The test sequences that have been used during the development of HEVC are listed in

Table 2.2. Video sequences of 8-bit depth are used to test the hardware architectures.

All sequences but two of the sequences in class A have a bit depth of 8 bits. The class

A sequences are cropped regions of 2560 × 1600 samples from ultra high resolution

sequences (Traffic: 3840× 2160 - 8 bit, PeopleOnStreet: 3840× 2048 - 8 bit, Nebuta

and Steam Locomotive: 7680× 4320 - 10 bit).
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2.9 Summary

The importance and development of video standards along with a general overview of

the HEVC coding tool is presented. Intra prediction and integrated in-loop filter is

discussed in more detail. A detailed overview of the hardware used in this work and

evaluation metrics and methods used in this study are presented.
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Chapter 3

Design and implementation of

area-efficient intra prediction

engine for HEVC encoder

If you keep proving stuff that others have done, getting confidence, increasing the

complexities of your solutions – for the fun of it – then one day you will turn

around and discover that nobody actually did that one!

— Richard P. Feynman, Physicist

3.1 Introduction

In this chapter, a new, area efficient mixed parallel-pipelined intra prediction archi-

tecture on hardware is proposed.

The highlights of this chapter are summarised as follows:

1. An efficient hardware architecture having a high throughput to support the real

time HD applications is designed for DC and planar intra predictions on FPGA.

Two different hardware architectures are designed and their performances are

compared.

2. An area efficient mixed pipelined-parallel intra prediction (MPPEIP) architec-

ture that supports all the angular prediction modes and prediction unit (PU)

sizes is designed and tested on FPGA.
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The rest of the chapter is organized as follows. Section 3.2, describes the design and

implementation details of DC and planar intra predictions. In Section 3.2.3, we discuss

the two architectures for DC and planar predictions, and their performance analysis

is presented in Section 3.2.6. Section 3.3 covers the implementation details of the

MPPEIP engine, and Section 3.3.3 presents the hardware architecture of directional

intra predictions in detail. Experimental results of the MPPEIP engine and analysis

is presented in Section 3.3.4. Section 3.4 concludes the chapter.

3.2 Implementation of planar and DC directional

predictions

Intra prediction predicts the current PU using the neighbouring samples that are

already predicted, capitalizing on the spatial redundancy present in the input video

frame.

3.2.1 Planar prediction

Figure 3.1: Planar prediction in a 4× 4 PU

Planar mode predicts the samples by taking the weighted average of the horizontal

and vertical reference samples (Wien (Jan. 2015), Sze et al. (2014)). This is illustrated

in Figure 3.1 for a sample in location (i, j). This sample is the average of the four

reference samples - m, n in the horizontal direction, and x, y in the vertical direction.

Planar mode generates smooth prediction samples. The predicted sample, PredB[i][j]

is given by (3.1), where PredH[i][j] and PredV [i][j] are calculated using relations in
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(3.2) and (3.3) respectively, where NBlock is the PU size, and NBlock = 4, 8, 16, 32.

Planar prediction is the most expensive mode in terms of computations (Sze et al.

(2014)).

PredB[i][j] = (PredH[i][j] + PredV [i][j] + NBlock) � (log2NBlock + 1) (3.1)

PredH[i][j] = (NBlock − 1− i)×Ref [−1][j] + (i + 1)×Ref [NBlock][−1] (3.2)

PredV [i][j] = (NBlock − 1− j)×Ref [i][−1] + (j + 1)×Ref [−1][NBlock] (3.3)

where, i, j = 0, 1, 2, ..., (NBlock − 1).

3.2.2 DC prediction

Figure 3.2: DC prediction in a 4× 4 PU

In DC mode prediction, the average value of the top and left reference samples is

generated as shown in Figure 3.2. The average value, DCavg, is computed using the

relation (3.4).

DCAvg =

(
NBlock−1∑

i=0

Ref [i][−1] +

NBlock−1∑
j=0

Ref [−1][j]

)
� (log2NBlock + 1) (3.4)

DC mode is applied to the flat regions of the video data. Filtering is applied to remove

blocking effects on PU blocks smaller than the size 32×32. For PUs of size 32×32, all

the samples in the current PU are replaced by DCavg. In the case of 4×4, 8×8, 16×16

PUs, filtering is applied to corner, top-row, and the left-column reference samples

using (3.5), (3.6) and (3.7), respectively. The corner sample smoothing is given by

relation (3.5). Boundary samples of the top-row and the left-column are filtered using
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(3.6) and (3.7) relations respectively. DC prediction is the least expensive mode in

terms of computations.

PredB[0][0] = (PredB[−1][0] + 2 ∗DCAvg+ PredB[0][−1] + 2)� 2 (3.5)

Filtering for the top horizantal and the left vertical boundary samples are given by

(3.6) and (3.7) respectively.

PredB[i][0] = (PredB[i][−1] + 3 ∗DCAvg + 2)� 2 (3.6)

PredB[0][j] = (PredB[−1][y] + 3 ∗DCAvg + 2)� 2 (3.7)

where, i, j = 0, 1, 2, ..., (NBlock − 1).

3.2.3 Implementation of area efficient hardware architectures

of planar and DC predictions

Two hardware architectures, parallel pipelined architecture (PPA), and parallel datap-

aths architecture (PDA), are proposed, and implemented on FPGA and they support

all the PU sizes. Planar and DC intra prediction operations can be grouped into

three stages, 1) Reference samples selection, 2) Prediction and filtering of the bound-

ary samples, and 3) Reconstruction. Reading the reference samples on to the FPGA

board, selecting and storing them in buffers for prediction are the key challenges faced

during hardware implementation.

3.2.4 Parallel Pipelined Architecture (PPA) for planar and

DC predictions

PPA is designed using pipeline and parallel techniques and is shown in Figure 3.3.

Reference samples reading, storing them into reference buffer procedures are pipelined.

Planar and DC mode predictions are on the last stage of the pipeline and produce

eight samples in parallel. One of the prediction modes is active at any given time.

Reconstruction is pipelined, and a throughput of 8 samples in every clock cycle is

produced.

In the reference selection module, corner, top, top-right, left and left-bottom reference
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Table 3.1: Pipeline analysis of the PPA architecture for a 4× 4 PU

Clock 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Reference
selection

- - R1 R2 - R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1

Planar
Prediction

- - - - PA1 PA2 PB1 PB2 PC1 PC2 PC1 PD1 PD2 P2 P2 P2

DC Prediction - - - - PA1 PA2 PB1 PB2 PC1 PC2 PC1 PD1 PD2 P2 P2 P2

Filtering - - - - - PA1 PA2 PB1 PB2 PC1 PC2 PD1 PD2 P2 P2 P2

Reconstruction - - - - - - RcA1 RcA2 RcB1 RcB2 RcC1 RcC2 RcD1 RcD2 Rc2 Rc2

(R1, R2) - Reference samples P - Predicted Samples Rc - Reconstructed Samples

samples are selected and then stored in the reference buffers. The reference sample

addresses are generated in the reference write control module. Samples are read and

tracked using reference read control module. The information about neighbouring

PUs, which is useful for the following predictions are stored in the reference read

control module. Reference samples undergo prediction in the planar and DC prediction

unit. Either planar or DC prediction is performed depending on the mode selected.

The boundary samples in DC mode are filtered in the filering module. The predicted

samples move to the next unit for reconstruction. Depending on lossy or lossless

encoding, ResiValue is used for reconstruction. The boundary samples are written

back into the reference buffers for future predictions.

Figure 3.4: Prediction and scanning of PUs within a LCU

The pipeline analysis of the PPA engine for a 4 × 4 PU is shown in Table 3.1 and 8

samples are processed in each clock cycle. One corner sample, eight top, and eight left

samples are required to predict one 4× 4 PU. R1 and R2 indicate fetching of top, left

and corner reference samples. PUs within a LCU are scanned in the Z order as shown
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in Figure 3.4, where, BlockA,B,C,D are 4 × 4 PUs. Reading and writing samples

into the reference buffers takes two lock cycles. In clock cycles, 3 and 4, reference

samples are available in the buffers. In clock cycle 5, prediction starts. Based on

the block position, the bottom row or the right column is predicted first, and the

samples are sent to reconstruction and written back into reference buffers (to use

for later predictions). Prediction is represented using P , PA1 − PA2 are predicted

samples of PU block A. It takes 2 clock cycles to prediction one 4 × 4 PU. At clock

cycle 6, filtering for DC mode takes place, the planar mode takes two clock cycles to

complete prediction. In clock cycle 7, reconstruction of samples is performed which is

represented using Rc. Boundary samples are written back into reference buffers, for

future predictions. The transition to a larger PU size is seamless in the PPA engine,

with no data delays and the produces the same throughput.

3.2.5 Parallel Datapaths Architecture (PDA) for planar and

DC predictions

Figure 3.5: Proposed parallel datapath architecture for intra prediction

PDA engine consists of two parallel datapaths, as shown in Figure 3.5. datapath0 and

datapath1 performs planar and DC predictions respectively. Both are independent

units. At any given time, both datapaths or any one of the datapaths can be active

depending on the prediction mode selected. Each datapath can process a throughput

of 8 samples per clock cycle. Each datapath has reference selection unit, reference
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buffer and angular prediction unit. The predicted samples are stored in the predicted

sample buffer, and reconstruction takes place. write and read control unit generates

and stores the address of the reference samples.

Limitations of PPA and PDA architectures: PPA and PDA are designed for

DC and planar directional modes. However, to extend these designs to support other

directional modes, the architectures need several modifications. Reference samples

are stored in on-chip memory, reading and writing the reference samples into these

buffers causes latency.

3.2.6 Experimental results and analysis of PPA and PDA

hardware architectures

Figure 3.6: Simulation results of planar prediction using PPA for a 4× 4 PU

Post-implementation reports for PPA and PDA are generated using Xilinx Vivado

and tabulated in Table 3.2. The behavioural simulation results of planar and DC

predictions using PPA architecture are shown in Figure 3.6 and Figure 3.7 respec-

tively. The pipeline analysis and simulation results show that, the PPA and PDA
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Figure 3.7: Simulation results of DC prediction using PPA for a 4× 4 PU

architectures in each clock cycle process and produce eight samples. In Table 3.2, the

results for PUs of size 4, 8, 16 and 32 are tabulated. PU sizes are compared in terms

of number of LUTs and registers used in the hardware designs, frequency of operation

and throughput achieved.

Resource utilization: From Table 3.2, it can be noticed that PPA fares better than

PDA in terms of the number of look-up tables (LUTs) and registers utilized by the

designs. There is a decrease in LUT consumption of 20% when PDA is adopted instead

of PPA configuration for 4 × 4 PUs. While PPA fares better for all other PU sizes.

PPA uses 20%, 46% and 62% less resources for PUs of size 8, 16 and 32 respectively.

It can also be noticed that PPA uses less registers than PDA.

Timing analysis: Pipeline analysis is shown in Table 3.1. Both in PPA and PDA

designs, their is an initial delay for selecting and reading the reference samples. Once

the prediction starts, samples are fed back to buffers, and prediction continues without

any delays. Table 3.1 shows the pipelining analysis for 4 × 4 PU size. There is an

initial delay of 2 cycles for PUs of size 4. Similarly, there is an initial delay of 4, 8,
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Table 3.2: Comparison of the PDA and PPA architectures

PDA PPA

PU size = 4×4

Number of LUTs 6.2K 8.2K

Registers 5.2K 4.2K

Frequency(MHz) 50.505 150

Throughput 8 pixels/cycle 8 pixels/cycle

PU size = 8×8

Number of LUTs 10.3K 8.2K

Registers 8.7K 4.2K

Frequency(MHz) 51.813 150

Throughput 8 pixels/cycle 8 samples/cycle

PU size = 16×16

Number of LUTs 15.3K 8.2K

Registers 13.1K 4.2K

Frequency(MHz) 43.478 150

Throughput 8 pixels/cycle 8 samples/cycle

PU size = 32×32

Number of LUTs 21.7K 8.2K

Registers 15.4K 4.2K

Frequency(MHz) 41.478 150

Throughput 8 pixels/cycle 8 samples/cycle

and 16 cycles for PUs of sizes 8, 16, and 32, respectively.

The proposed hardware architectures supports all PU sizes while Abramowski and

Pastuszak (2014) supports only 4× 4 PUs and Li et al. (2011) shows implementation

for only PUs of sizes 8 and 4. Min et al. (2017) is a fully pipelined architecture

and supports all block sizes with a throughput of 4 pixels while the proposed design

results in 8 samples in every clock cycle. Both PDA and PPA architectures produce

a throughput of 8 samples per clock cycle. So, in applications where the area is a

constraint, PPA is a better choice. If the video frames have large number of 4 × 4

PUs, then PDA is a better option. The same architectures can be extended to perform

all the other intra angular predictions.
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3.3 Design and implementation of the mixed parallel-

pipelined efficient architecture of intra predic-

tion (MPPEIP) engine for HEVC encoder

The proposed MPPEIP architecture supports all the 35 angular intra predictions.

Intra angular predictions are much denser in horizontal and vertical directions than

the diagonal directions (Sze et al. (2014)), (Wien (Jan. 2015)). This is an advantage as

the horizontal and vertical directions occur more frequently in any picture frame than

in the diagonal directions. A novel intra prediction engine is designed and implemented

on FPGA with a combination of parallel and pipelining techniques. A high throughput

of eight samples per clock cycle is engineered using the following techniques.

1. Efficient, reusable buffers are designed and managed for storing reference sam-

ples. The same buffers are reused by updating them with new values in the place

of old ones and unused samples are discarded. This buffer structure supports

all PU sizes and all angular prediction modes.

2. High throughput of 8 samples for each clock cycle is achieved to support 4 K

video applications. The proposed design predicts eight samples in parallel and

using pipeline techniques. The data loading delays are eliminated in the design.

3. Multiplication and addition operations in the prediction algorithm is carried out

in a separate dedicated module to reduce the number of digital signal processing

(DSP) slices used on the FPGA. The prediction algorithm structure has com-

plex and parallel computations. This unit takes advantage of the parallelism to

decrease hardware resources.

3.3.1 Semantics of directional intra predictions

In intra predictions, the basic unit used for prediction is the PU. The current PU is

predicted using the coded neighbouring boundary samples which are called as reference

samples. The steps outlined below are used to make angular intra predictions.
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Figure 3.8: Illustration of reference samples selection. Top: Selection of references
for positive vertical prediction mode 30. Bottom: Array extension of negative vertical
prediction mode 19 and reference selection

3.3.1.1 Reference samples selection

Reference samples selection is performed as explained in Section 2.3.1 and reference

array is generated. Reference sample index for vertical and horizontal angular predic-

tions is generated using relations from (3.8) to (3.11). Here ind is the index of the

reference samples used for prediction of a sample, and fracPrt is the weight of the

reference samples. Ang in relations from (3.8) to (3.11) is the direction associated with

each prediction. Intra prediction modes and the corresponding angles are tabulated

in detail in Table 3.3.

ind = ((i+ 1)× Ang)� 5, for horizontal directional modes (3.8)

ind = ((j + 1)× Ang)� 5, for vertical directional modes (3.9)

fracPrt = ((i+ 1)× Ang) & 31, for horizontal directional modes (3.10)

fracPrt = ((j + 1)× Ang) & 31, for vertical directional modes (3.11)

52



Table 3.3: Intra prediction modes, their associated directions and inverse angles

Mode Ang Inverse Mode Ang Inverse

(Horizontal) Angle (Vertical) Angle

2 32 18 -32 -256

3 26 19 -26 -315

4 21 20 -21 -390

5 17 21 -17 -482

6 13 22 -13 -630

7 9 23 -9 -910

8 5 24 -5 -1638

9 2 25 -2 -4096

10 0 26 0

11 -2 -4096 27 2

12 -5 -1638 28 5

13 -9 -910 29 9

14 -13 -630 30 13

15 -17 -482 31 17

16 -21 -390 32 21

17 -26 -315 33 26

34 32

where � is the bitwise shift right, and & is the bitwise AND operations.

Reference samples are selected from the reference array (RefAng). Every angular

prediction requires a unique reference array, which must be computed for each mode.

Reference array is classified as the main array and the extended main array. The main

array for horizontal predictions is the reference samples on the left side of the current

PU. Positive horizontal predictions (modes 2 to 10) use only the main array (left side

samples). Negative horizontal predictions (Modes 11-17) use an extended main array.

The main array is expanded to accommodate the samples projected from the top

array to form an extended main array. Similarly, for vertical predictions, the samples

above the current PU are used to form the main array, and the samples from the left

are projected on to the top, to form the extended main array as illustrated in Figure

3.8. The negative vertical predictions (modes 18-25) use extended main array, and

the positive vertical predictions (modes 26-34), use the main array. Relations (3.12)

and (3.13) are used to build the main array for the vertical and horizontal modes,

respectively. While the extended main array is generated using the relations (3.14)
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and (3.15).

RefAng[i] = Ref [−1 + i][−1], (i > 0) for vertical modes (3.12)

RefAng[j] = Ref [−1][−1 + j], (j > 0) for horizontal modes (3.13)

RefAng[i] = Ref [−1][−1 + ((i× IAng + 128)� 8)], (i < 0) for vertical modes

(3.14)

RefAng[j] = Ref [−1 + ((j × IAng + 128)� 8)][−1], (j < 0) for horizontal modes

(3.15)

IAng in (3.14) and (3.15) is inverse angle. Table 3.3 shows the mapping of these

inverse angles to their corresponding modes.

3.3.1.2 Reference samples filtering

After the reference array is built, the samples in the array are filtered based on the

PU size and the directional predictions to reduce the blocking effects. Filtering of

reference samples is explained in Section 2.3.2.

3.3.1.3 Angular predictions

Planar and DC predictions are better suited for smooth and gradually changing video

content, but they are not very useful for the high frequency and complex textured

content (Wien (Jan. 2015)), (Lainema et al. (2012)). In such cases, angular predictions

are most useful. The filtered reference samples are used for prediction. Planar and

DC predictions are explained in Sections 3.2.1 and 3.2.2 respectively. There are 33

intra angular predictions in which the samples in a PU are predicted by interpolation

of the reference samples using relations (2.10) and (2.11). Prediction of samples in

the current PU is performed as explained in Section 2.3.3.

After prediction, the samples are reconstructed using predicted samples and residu-

als. The residue is the difference between the current and predicted samples. The

reconstructed samples act as the reference data for later perditions.
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Figure 3.9: Block diagram of the top level architecture of the MPPEIP engine

3.3.2 Implementation of the proposed MPPEIP architecture

A mixed pipelined-parallel technique is introduced in the intra prediction unit that

can achieve a throughput of eight samples in each clock cycle. The proposed MPPEIP

architecture operates without any data dependency. The block diagram of the top level

architecture of MPPEIP engine is shown in Figure 3.9. The input is fed to the Encoder

Top layer. The Encoder Top layer generates and schedules the necessary control signals

to coordinate all the modules present in the encoder. The input samples and signals

for the intra prediction module are supplied from the Encoder Top. The inputs to the
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MPPEIP engine are reference samples and details about the LCU position, LCU size,

PU size, PU position, prediction type (horizontal or vertical) and prediction mode,

which come from the top layer. Samples from the rightmost column and the bottom

row are selected from the Encoder top to start the prediction of a PU. The Intra

Prediction Top module generates clock, enable, and reset signals to control the Intra

Prediction Unit and also communicates the control signals between the top layer and

the underlying Intra Prediction Unit. The Intra Prediction Unit predicts the PUs

and stores the predicted results in the Intra output buffer block. These samples are

reproduced in the Encoder Top. Once the input reference samples and the input

parameters necessary are available at the Intra Prediction Unit, the input parameters

ready signal is made high and the prediction starts.

3.3.2.1 Reference Selection

This module selects the necessary reference samples for the prediction of current PU.

The corner, top, top-right, bottom, and bottom-left samples are selected from the

neighbouring PUs. A 5-bit register is used to indicate the availability of all these

samples.

3.3.2.2 Reference Buffers

Figure 3.10: Illustration of updating reference buffers. (a) Reference buffer before the
current PU is predicted. (b) Reference buffer after the current PU is predicted

The reference samples are filled into the reference buffers from neighbouring PUs and

it is updated in a 5-bit register. The necessary buffer addresses are generated to
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facilitate the data exchange between the modules. Using buffer data, current PU is

predicted. The border samples from this PU become the new reference data and they

replace the older ones in the buffers. PUs are scanned in the Z-order as shown in

the Figure 3.10. The current PU that is under prediction and the reference samples

of interest are highlighted. Block C is the PU under prediction and it is located

within Block 2. Prediction is already completed in Block 1, Block A and Block B.

Hence the corner (C) sample, top (T ), top-right (TR), left (L) samples are available

in the reference buffers, as shown in Figure 3.10 (a). Left-bottom (LB) samples are

unavailable and reference extension is performed. Using these samples, current PU is

predicted. After the prediction, the border samples from Block C replaces the data in

the reference buffer, as illustrated in Figure 3.10 (b). The same reference buffers are

reused to store new data. Few samples get overlapped, few are replaced and unused

older samples are discarded. In the Figure 3.10, sample C gets replaced, older TR

becomes the new T samples, old L gets discarded and new samples take its place. The

size of the reference buffer used in the design is limited to 1032 bits.

3.3.2.3 Filtering

The reference samples are filtered before the prediction. A set of condition checks are

performed in this module to decide between strong filtering and weak filtering based on

the PU size, as explained in Section 2.3.2. Once the filtering type is decided, filtering

of the reference samples is carried out. This new set of filtered reference samples are

moved to the next module for prediction.

3.3.2.4 Reference Registers

The function of this module is to exchange data with the Addition and Multiplication

Unit based on the prediction modes. The filtered reference sample data is sent and

the accumulated data is collected back.

3.3.2.5 Addition and multiplication unit

This module performs arithmetic operations necessary for intra prediction. Angular

prediction computations are consistent for all the modes and for all PU sizes. For the

prediction of each sample, the filtered reference samples are multiplied, accumulated

and then shifted. In this module, filtered reference samples are selected based on the
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prediction mode, then multiplied and added. These accumulated values are sent to the

Reference registers module. This module helps to significantly reduce the number of

DSP slices used by the proposed MPPEIP design. A multiplexer logic is used to feed

the input to the DSP slice and also to tell the DSP slice to perform addition or multi-

plication. To predict one sample, two multiplication and three addition operations are

required, i.e to predict just one 4×4 PU, 32 multiplication and 48 addition operations

are required. By using a dedicated module for these operations, the number of DSP

slices used in the MPPEIP is reduced to a minimum.

3.3.2.6 Intra angular predictions

In this module, sample by sample prediction is performed. There are three prediction

modules in parallel, Viz. Planar, DC, and Angular Predictions.

Planar Prediction: In this module, each sample involves multiplication followed

by accumulation of the multiplied results as explained in Section 3.2.1. The module

produces an output of 8 samples in each single operation cycle.

DC Prediction: This module executes two operations to process 8-samples in par-

allel.

1. Calculation of DCavg: DCavg value for the current PU is calculated using the

Top and Left filtered reference samples using the relation (3.4).

2. Filtering of boundary samples and output calculation: Filtering conditions for

the current PU block are checked. If the PU size is 32, then DCavg is the final

output, and all the samples in the current PU are replaced with DCavg. In the

case of chroma PUs, DCavg is the final output. For other size luma PUs, the

final output is the filtered samples of the first row and the first column of the

current PU. The filtered output is generated using the relations (3.5) - (3.7) as

explained in Section 3.2.2.

Angular Predictions: This module performs angular predictions in three steps

processing eight samples in parallel.

1. Filling the reference array: The angular modes needs reference data in a unique

way compared to planar and DC predictions. The reference samples array range
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for every prediction mode is calculated. The maximum range of the array can

extend from −64 to +64. Following the range calculation, reference samples

array is selected and stored in registers. Reference samples array for all angular

prediction modes and all the possible PU sizes are pre determined and stored in

registers and they are used to fill up the register buffers as and when required.

This is possible as angular modes and PU sizes are fixed and pre allocation

of reference arrays reduces the number of cycles required to load the reference

samples. Data loading delays are completely eliminated and the savings in terms

of clock cycles is as follows. For one 4× 4 PU, 8 Top reference samples, 8 right

reference samples and, 1 corner sample is required for prediction. It requires 3

clock cycles to load the data operating at 8 samples per cycle. Similarly, for one

8×8 PU, 33 reference samples are required, and it takes 5 clock cycles. Similarly,

in the case of one 16 × 16 PU, 65 reference samples needs to be fetched, and

it requires 9 clock cycles. A 32 × 32 PU needs 129 reference samples, and it

takes 17 clock cycles for data loading. These data loading delays are completely

eliminated in the proposed MPPEIP design.

2. Calculating index and weight: Two reference samples at locations ind and (ind+

1) are required to predict one sample in the current PU. fracPrt gives the

weight for the references. The ind and fracPrt values are required to pick the

appropriate reference data from the buffers and to apply prediction based on

the prediction mode.

3. Prediction and output calculation: The final predicted output is computed using

the selected reference samples, ind value, fracPrt value, angular mode and PU

size. The border samples from the predicted PU are fed back to the reference

buffers and used to predict the next PU.

3.3.2.7 Intra Prediction Output Buffer

Output samples from the intra prediction block are concatenated and stored in the

output buffers after completing the prediction. The sample values are stored in buffers

to be accessed by other modules of Encoder Top that use the predicted samples. This

module generates the output valid signal to indicate the availability of output.
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Figure 3.11: Block diagram of detailed architecture of the MPPEIP engine

3.3.3 Detailed architecture of the proposed MPPEIP engine

The detailed architecture of the proposed MPPEIP engine is shown in Figure 3.11.

The reference samples are read into the reference selection module. The neighbouring
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PUs reg module contains the information of the neighbouring corner, top, top-right,

left, left-bottom samples and also indicates the availability of these samples. The read

and write addresses are generated for these samples. Addr TopRef is the address for

both T and TR samples together and Addr LeftRef is the address for both L and

LB samples. Once the selection of reference samples is complete, it is indicated by a

5-bit register. After selection, the samples are stored in the reference buffer module.

The reference read control module generates the corresponding read addresses rd addr

for the buffer data. The reference write control module generates the necessary write

addresses wr addr for these samples.

Based on the PU size and the prediction mode, reference samples are moved into the

filtering module. Decision to perform weak or strong filtering is made in this module.

Accordingly, samples are filtered and stored in the registers. If smoothing is not re-

quired, the samples are directly read into the registers. For negative angular modes,

the extended main array is computed, selected and stored in the Extended Reference

Array module. The samples at Addr, TopRef, Addr LeftRef are used to generate ex-

tended main array for horizontal and vertical negative modes. The filtered reference

samples are moved into the reference registers module. This module exchange data

with the addition and multiplication unit module. In addition and multiplication unit,

the arithmetic operations required for the prediction are carried out. The reference

registers module sends filtered reference data and collects the accumulated data from

the addition and multiplication unit. Arithmetic operations in the addition and mul-

tiplication unit are performed using DSP slices. The proposed design uses just forty

DSP slices. The accumulated results in the reference registers module are passed on

to perform prediction.

The current PU is predicted in the prediction module by either Planar, DC, or Angular

predictions, depending on the prediction mode selected. Eight samples are predicted

in parallel during every clock cycle. The bottom row and the right column samples

of the current PU are used as the reference samples for the next PU prediction.

They are written back to the reference buffers. The next PU starts the prediction

without having to wait for the reconstruction of samples. The predicted samples are

concatenated and stored in the intra prediction output buffers. It takes just 2 cycles

to predict one 4 × 4 PU, 4 clock cycle for one 8× 8 PU prediction, 32 cycles for one

16 × 16 PU and 128 cycles to predict one 32 × 32 size PU. The samples from the
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Figure 3.12: Mode 19 angular prediction simulation results

intra prediction output buffers module are sent to the reconstruction module. This

module reconstructs the predicted samples using residue, ResiVal. The bottom row

and right column samples of the PUs are written back into the reference buffers for

later predictions. The entire architecture operates in a pipeline and there is no data

dependency between any modules. Eight samples are produced in each clock cycle

and there is no waiting period for data loading in any intermediate cycles.

Limitations of the MPPEIP architecture: The MPPEIP engine supports HD

video applications. MPPEIP can be modified to be flexible, so that this engine can

be used for a range of target applications but at the cost of using more hardware

resources.

3.3.4 Experimental results and analysis of the MPPEIP hard-

ware architecture

Behavioural simulation results of the intra angular predictions of modes 19 and 30

are shown in Figures 3.12 and 3.13 respectively. The simulation results show the

eight samples predicted in every clock cycle. The proposed MPPEIP engine and other
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Figure 3.13: Mode 30 angular prediction simulation results

state-of-the-art counterparts are compared in terms of supported PU sizes, technology

used, clock speed, throughput, hardware cost (in terms of LUTs and registers used

by the design), supported video applications, and the reference buffer size used in

the designs in Table 3.4. In Table 3.4 works (Huang et al. (2014)), (Chiang et al.

(2016)), (Pastuszak and Abramowski (2016)), (Fan et al. (2019)) represent implemen-

tations using Application-specific Integrated Circuits (ASIC) and works (Amish and

Bourennane (2016)), (Choudhury and Rangababu (2017)), (Min et al. (2017)) are

all implementations on FPGA. In (Huang et al. (2014)), the architecture produces

a throughput of four samples. But reference data loading requires additional clock

cycles, limiting the throughput to 2.46 samples/cycle. Due to the implementation on

ASIC platform, frequency is much higher. In (Chiang et al. (2016)), the entire HEVC

decoder is designed and implemented on ASIC platform. Table 3.4 lists only intra

unit data. The throughput is limited to 1.78 samples/cycle due to data dependency.

The frequency is higher due to the ASIC implementation, but the design area, the

buffer size is much larger than the proposed design. In (Pastuszak and Abramowski

(2016)), the design uses 64 processing units in one intra encoder datapath and 16

processing units in another datapath for prediction. However, the throughput is lim-
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ited to 16 samples at the cost of more hardware and a larger buffer memory size of 6

KB. In (Fan et al. (2019)), the architecture has 32 parallel processors in parallel for

prediction. More units in parallel results in requirement of more hardware resources.

However, with the 32 samples throughput, 2 clock cycles are utilised to process one

4× 4, which is same as our proposed design. In (Amish and Bourennane (2016)), five

parallel paths are implemented to achieve high throughput. However, the strategy is

limited to 4 K @ 24 fps video applications. Also, the design uses 77 K LUTs and 110

K registers. This design does not use register buffers and is implemented on Virtex-

6 and 7 FPGA platforms. In (Choudhury and Rangababu (2017)), throughput is 16

samples/cycle. Due to data loading, it takes 6 cycles to predict a 4× 4 block making

the throughput average to 2.33 samples/cycle. Also, the parallel structure uses 112 K

LUTs and 112 K registers. In (Min et al. (2017)), the number of LUTs used is slightly

less than our proposed design, but considerably more slice registers are used and the

reference buffer memory size is 6 KB with just 4 samples/cycle throughput.

3.4 Summary

The proposed planar and DC architectures produce a throughput of 8 samples in

every operation cycle which can process and support HD video applications. Based

on the simulation analysis of PDA and PPA architectures the conclusions drawn are,

in applications where the area is a constraint, PPA is a better choice. If the video

frames have large number of 4×4 blocks, then PDA is a better option. Since the PPA

architecture produce better throughput using optimum silicon area irrespective of PU

size, this technique was extended to support all the angular intra predictions.

The proposed MPPEIP engine is designed to produce eight samples per clock cycle

in parallel and operates in a full pipeline. A compact reusable reference buffer of

size 1 KB is implemented that reduces the buffer memory size. Data loading of

reference samples causes significant delays limiting the throughput, which is eliminated

by assigning the reference data manually for all the angular modes and all PU blocks

as they are fixed. A dedicated unit for arithmetic operations is introduced to reduce

the number of DSP slices used and to optimise the design. The proposed MPPEIP

design uses only 40 DSP slices. These two optimisations in the proposed design play

a key role to significantly reduce the resources used on the hardware. The hardware

resources used by the proposed MPPEIP design is 16 K LUTs and 122 registers, which

is considerably less than most of the existing works.
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Chapter 4

Implementation of an efficient

parallel-pipelined intra prediction

architecture to support DCT/DST

engine of HEVC encoder

Everything should be made as simple as possible, but not simpler.

— Albert Einstein, Theoretical physicist

4.1 Introduction

Intra prediction and discrete cosine transform/discrete sine transform (DCT/DST)

modules are two fundamental and consecutive units that play a vital role in improv-

ing the compression performance of the HEVC encoder. According to the encoding

standard, the input/output formats of the intra module and DCT/DST engines are

different. Intra module process the PU blocks both row-wise and column-wise based

on the directional modes. The DCT/DST module process row-wise samples from the

variable sized TUs. Due to this inconformity in the data exchange between both the

modules, the MPPEIP engine cannot be utilised to its full potential. In this chapter

a novel area-efficient parallel-pipelined intra prediction architecture to support DCT/

DST engine is proposed.
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Due to the inconformity in data processing of intra prediction and DCT/DST engine

the output from the intra prediction needs to be stored in an memory buffer. The

intermediate buffer is shown using dotted lines in Figure 4.1. Generally, in horizontal

predictions, column-wise samples are produced which cannot be directly processed by

the DCT/DST engine and needs to wait until the entire block is predicted. This affects

the overall throughput of the HEVC encoder, which is not utilising the advantages of

intra module fully. Apart from this, using the intermediate buffer is an unnecessary

hardware overhead. Hence in this chapter an intra prediction design which always

process row-wise samples so that they can be directly transform coded is proposed.

Figure 4.1: Block diagram of HEVC encoder with the predicted samples buffer shown
using the dotted lines

Analysing the implementations available in the literature and keeping the current

HD/UHD applications in view, the following observations are drawn.

� It is important to design an intra prediction engine that can support all the PU

sizes and all the directional modes while achieving high throughput.

� Adding more parallel processing elements may increase the throughput but that

comes with an increased hardware cost and power requirements. Hence it be-

comes very crucial to maintain a balance among the parallel/pipeline/sequential

elements used in the design to achieve an efficient hardware engine.

� Most of the hardware architectures implemented in the literature requires an
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intermediate reference buffer between the intra prediction and the DCT/DST

engines. This is because the intra prediction output is in the form of PU blocks

whereas DCT/DST engine requires TU blocks as inputs. Furthermore, the sam-

ples to the DCT/DST engine is scanned row-wise first and then column-wise

from variable sized TUs.

In order to cater to all the above requirements, an efficient improved intra predic-

tion architecture is proposed with the following key techniques, which are the major

contributions of this chapter.

1. The intra prediction engine is configured to generate 8 samples in parallel in

every clock cycle with support to all 35 directional modes and all possible PU

sizes. Further, this novel intra prediction engine is implemented on the FPGA

to achieve a high throughput to support 4 K videos. A reconfigurable compact

reference buffer to hold the source references is included in the engine, which

reduces the time required to fetch the references considerably.

2. A fully pipelined DCT/DST based intra prediction engine is proposed. The

samples are always operated and generated row-wise in the intra prediction

module. With this, DCT/DST and intra prediction engines can operate in

parallel ensuring the high throughput.

3. The hardware consuming interstage memory buffer between transform and intra

prediction modules is eliminated by introducing row-wise processing of samples

in the proposed design.

4. Arithmetic operations in the directional angular predictions are one of the causes

to increase the complexity of intra prediction engine. The prediction function

is uniform for all 33 directional modes. Hence, we have proposed a dedicated

module to process multiplication and addition operations to ensure the reuse of

multipliers present in the digital signal processing (DSP) slices of the FPGA,

which in turn improves the efficiency of the hardware engine.

The rest of the chapter is organized as follows. The semantics of intra prediction en-

coding procedure is discussed in Section 4.2. Next, the proposed hardware architecture

of the DCT/DST based intra prediction engine and its timing analysis are explained

in Section 4.3. The detailed performance analysis of the proposed DCT/DST based

prediction engine is presented and discussed in Section 4.4. Finally, conclusions are

drawn in Section 4.5.
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4.2 Semantics of the DCT/DST based intra pre-

diction engine in HEVC encoder

Figure 4.2: Demonstration of reference samples mapping for negative vertical and
horizontal predictions in the case of a 4× 4 PU. Main array and the extended array are
shown. In (b), all the symbols are rotated by 90 degrees in the clockwise direction

In intra module, the neighbouring samples, which are often coded ones, are used as

references to predict the current PU block and is shown in Figure 2.7. Each PU is

subjected to 35 directional predictions. Modes 0 and 1 are planar and DC predictions,

respectively. Directional prediction modes (2 − 34), are grouped into the horizontal

(2− 18), and the vertical (19− 34) predictions.Steps involved to perform intra predic-

tions is explained in detail in Sections 2.3 and 3.3.1. Planar and DC predictions are

coverd in Sections 3.2.1 and 3.2.2 respectively . For directional predictions (vertical

or horizontal), the references are grouped as the main array and the side array. In

vertical directions, the main array is composed of top-left, top, and top-right samples,

with the left column samples used as the side array. Top-left, left, and left-bottom

column samples make up the main array for horizontal predictions, with the top row

samples as the side array. Only main array samples are used for positive directional

predictions, whereas for negative directional predictions, both main and side arrays

are used. In negative directional modes, the side array is extended to complete the

reference array, and this is demonstrated in Figure 4.2 for a 4× 4 PU.
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4.3 Hardware architecture of the area efficient

DCT/DST based intra prediction engine

The key aspects of the proposed engine are to enable row-wise predictions and operate

in a pipelined manner to achieve eight samples throughput with an optimum hardware

cost. This section gives the techniques involved to implement the architecture.

4.3.1 Design details of the proposed efficient DCT/DST

based intra prediction engine

Figure 4.3: Block diagram showing the top-level architecture of the DCT/DST based
intra prediction engine

The block diagram of the proposed DCT/DST based intra prediction engine is outlined

in Figure 4.3 which consists of the following stages.

1. Reference selection (RS): The source references from the neighbouring left,

left-bottom, top-left, top, top-right positions of the current PU are fetched for

prediction. The availability of the neighbouring references is updated using a
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5-bit register.

2. Reference buffer (RB): Using the selected references, reference arrays for all

the directional modes and PU sizes are pre-determined and stored in registers.

Reference samples and extended reference samples modules store the positive

and negative directional mode references. For any given directional mode and

PU size, the corresponding reference array is chosen and stored in the reconfig-

urable reference buffer for further processing. Pre determining of the references

saves the clock cycles required to fetch them and thus avoid latency associated

with data loading.

3. Intra Prediction Processing Element (IPE): Intra prediction engine con-

sists of 8 parallel IPEs, which can process 8 samples in one clock cycle. Each

IPE has a filtering stage, arithmetic operations unit, prediction unit, as shown

in Figure 4.4, and are explained below.

Figure 4.4: Block diagram of the proposed Intra Prediction Processing Element (IPE)

� Filtering (F): In this stage, reference samples undergo filtering based on
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the following conditions. The first decision is to check between three-tap or

strong filters based on the threshold value of the sample. Then, based on

the directional modes and PU sizes, filtering is applied to the references.

The filtered samples move to the next stage. For 4× 4 PUs, smoothing is

not required. They are moved to the next stage through registers without

the need of any filtering.

� Arithmetic operations (O): Data feeding registers and Addition-

Multiplication (AM) modules are part of this stage. The data feeding

module is an intermediate stage solely designed to exchange data between

filtering - AM modules and AM - prediction modules. Directional predic-

tions for 2− 34 modes are uniform operations, given by (2.10) and (2.11).

The addition and multiplication functions in the prediction process are car-

ried out in the AM module. Dedicated AM module reuses the multipliers

efficiently and ensures the reuse of DSP slices. The FPGA platform used to

test the prediction engine uses DSP48, and the proposed DCT/DST based

intra prediction engine uses only forty DSPs.

� Prediction Unit (P): Three predictors that processes and produce eight

samples is the last stage of the architecture. Each predictor is explained in

detail in the later Section 4.3.4.

The proposed DCT/DST based intra prediction engine efficiently processes eight sam-

ples in parallel using a pipelined design supporting all the directional modes and the

variable sized PUs.

4.3.2 DCT/DST engine based intra prediction unit

The proposed engine is designed to continuously provide unified row-wise predictions.

In Figure 4.5, row-wise scanning and selection of PU samples used for prediction

are shown. The largest TU is 32 × 32, with an 8 bit depth video content, a buffer

of size 8 KB is required to store the references to predict a current TU/PU. Also,

row-wise prediction saves up to 128 clock cycles in case of horizontal predictions,

enables DCT/DST and intra engines to operate in parallel to maintain the required

high throughput. In addition to this, the hardware consuming intermediate buffer is

completely eliminated in the proposed design, which results in an efficient hardware
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Figure 4.5: Illustration of row-wise prediction of samples in the proposed DCT/DST
based intra prediction engine

engine.

4.3.3 Efficient reconfigurable reference buffers

Figure 4.6: Illustration of reference buffers. (a) Reference buffer before the current
PU is predicted. (b) Updated reference buffer after the current PU is predicted

Source references are located in five neighbouring positions of the current PU (PU

under prediction). Source references are selected in the first stage and are stored in

buffers/registers to facilitate the prediction in the second stage. The largest PU used

in the implementation is 32× 32. Hence in the proposed design, a reference buffer of

size 776 bits is incorporated. i.e, the range of references for a 32×32 PU, is limited to
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−32 to +64 reference samples. For an 8 bit-depth video input, the maximum buffer

size required is 776 bits.

The mechanism of reference buffer management is demonstrated in Figure 4.6. The

PU and the necessary references used for prediction are highlighted. The PUs are

scanned in the Z-order. Block C is the PU under prediction which, is a sub-block

of Block 2. Prediction is already completed in Blocks 1, A and B and samples are

available to use for prediction and are shown highlighted in Figure 4.6. Border samples

from predicted Block C act as the references for predicting Block D. These samples

replace the older data in the reference buffer, as demonstrated in Figure 4.6 (b). The

same reference buffers are reused to store new data. Some samples get overlapped in

the reference buffer, some get replaced, while the unused older samples are discarded.

Thus using the reference buffer makes the management and storing of neighbouring

samples simpler. Availability and validity of source references is easily determined

using the reference buffer. The reference buffer used in the design simplifies fetching

operation and saves the clock cycles required to fetch reference samples. For example,

a 4 × 4 PU requires 17 references for prediction. With eight samples processing

engine, 3 clock cycles are required to fetch the references. Similarly, PUs of sizes

8, 16, 32 require 33, 65 and 129 references for prediction, which needs 5, 9 and 17

clock cycles respectively to fetch the references. In the proposed design, references are

pre-determined and stored in temporary registers, so reading/writing of the references

takes just one clock cycle which results in a high speed operation. Also, 776 bits buffer

used in the proposed design is the smallest compared to other state-of-the-art designs

available in the literature.

4.3.4 Planar, DC and directional prediction architectures to

support DCT/DST intra prediction engine

The final stage in the proposed DCT/DST based intra prediction architecture is

equipped with three prediction engines, viz. planar, DC, and the directional pre-

diction (for predicting 33 directional modes) modules. The predicted bottom row

and the right column samples of the current PU act as the source references for the

next PU prediction and gets updated in the reference buffer. All three predictors are

designed to process and produce eight samples in each clock cycle.
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4.3.4.1 Planar prediction engine

Figure 4.7: Block diagram showing the architecture of planar prediction engine for a
4× 4 PU

Block diagram of the planar predictor, for a PU of size 4× 4 is shown in Figure 4.7.

Sample by sample prediction is carried out by taking the weighted average of horizon-

tal and vertical references. Each sample prediction involves multiplication followed

by accumulation of the multiplied results. In the proposed planar predictor, accu-

mulators are used to ensure row-wise predictions during both horizontal and vertical

modes.

4.3.4.2 DC prediction engine

DC prediction takes place in two steps:

� Computation of DCavg: The neighbouring top and left filtered references of the

current PU are used to compute DCavg, using the relation (3.4).
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� Boundary sample filtering and output computation: The decision to filter the

boundary samples is made first. If the PU size is 32, then DCavg is the final

output. For chroma PUs, DCavg is the final output. For PUs of luma with sizes

4, 8, 16, the final output is the filtered samples from the neighbouring top row

and the left column.

A reusable adder module is used for DC prediction. This module comprises four three-

input adders. The adder module computes the DC value and is also used for filtering

the boundary samples.

4.3.4.3 Directional prediction engine

Directional prediction takes place in three steps, which are as follows:

� Reference samples for each angular predictions are selected in a unique way. For

negative modes, side and main arrays are used, which are stored in extended ref-

erence samples and reference sample modules, respectively. For positive modes,

only the main reference array is selected. Two references are required to predict

one sample and are chosen from the array.

� Index and weights are generated. The index gives the position of the source

reference, using which its offset is also found.

� Each sample is predicted using the index - ind, and weight - fracPrt.

The engine ensures row-wise predictions by following a mechanism to select reference

samples from the filter stage. For the vertical predictions, the position (ind) of its

input references sample given by relation (3.9), and its offset (ind+1) are determined.

Using these two source references, the prediction is derived from (2.11). In the case

of horizontal predictions, source reference and its offset are from neighbouring left

column, which are not in the same row. Therefore, each prediction sample has to follow

its own source selection logic. However, all predictions in the same column will always

have the same set of references in the vertical direction. In this case, the reference

registers are operated as the shifting window. In the case of each set of horizontal

predictions, the projection of each prediction in the same row is maintained constant,

and the main registers perform the right shift operation on the sample pattern to

complete the row prediction. Index and weights for directional modes for all the PU

sizes are fixed. Hence in the proposed design, index and weights for all the directional
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modes and PU sizes are pre calculated and stored using registers in the design.

Limitations of the proposed DCT/DST based intra prediction engine: Row-

wise predictions in the case of planar and horizontal directional predictions takes more

cycles to process. The current PU requires neighbouring PU samples for prediction,

which results in latency.

4.3.5 Timing analysis of the proposed DCT/DST based intra

prediction engine

Intra prediction is fully pipelined and the timing analysis of a 4×4 PUs is demonstrated

in Table 4.1. The same analysis holds good for larger size PUs. In Figure 4.6, assume

Block A, B, C and D to be 4× 4 PUs, and Block 1, 2, 3 and 4 to be 8× 8 PUs. Block

A is the first PU under prediction considered in the analysis. In reference selection

(RS) stage all the required references for all PU sizes are loaded into the reference

registers in one clock cycle. Reference arrays for all prediction modes and all PU sizes,

are determined and saved in registers in this stage. In the next clock cycle, based on

the prediction mode, corresponding reference buffers (RB) are updated.

The intra prediction engine, consists of 8 IPEs in parallel that perform filtering (F),

arithmetic operations (O) and predictions (P) on eight samples in every clock cycle.

Hence for a PU of size 4×4, 2 clock cycles are required for each of the above operations.

This is demonstrated in Table 4.1, A1 represent processing the first and second rows

(8 samples) of Block A. A2 stands for processing third and fourth rows of the Block

A - PU. Thus, Block A (A1 and A2) completes filtering in clocks 3 and 4; arithmetic

operations in clocks 4 and 5; and predictions in clocks 5 and 6. RS operation for

Block B starts in clock 3, however RB is stalled till Block A is predicted. Once PA1

is completed in clock 5, RB for Block B can resume followed by FB, OB and PB.

Similarly, as there is a dependency of Block D on the reference samples of Block C,

RB operation for Block D is stalled till clock 11. Block 3 prediction follows in the

similar fashion.
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4.4 Experimental results and analysis of the DCT/

DST based intra prediction engine

The proposed DCT/DST based intra prediction engine is implemented on a 28nm

Artix-7 FPGA board with a dual-core ARM Cortex-M1 processor to test the perfor-

mance. The prediction engine is described using Verilog hardware description language

(HDL). For analysis, simulation, synthesis, and implementation reports are generated

using the Vivado design suite. The behavioural simulation results of angular predic-

Figure 4.8: Simulation results of mode 19 angular prediction

tion mode 19 is shown in Figure 4.8. The simulation results shows that eight row-wise

samples are predicted in each clock cycle. The experimental results in Table 4.2 sum-

marizes the hardware cost in terms of gate count (LUTs), slice registers and DSPs

for each pipeline stage of the proposed engine. The intra top module in the table

combines all the five stages into one module. The DCT/DST based intra prediction

engine uses 16.2 K LUTs, 5.7 K registers and 40 DSPs, and operating frequency is 150

MHz. Engine supports all PU sizes and all directional modes, and produce an output

of 64 samples/clock cycle. The engine processes 8 samples in every clock cycle, each
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Table 4.2: Resource utilisation of each pipeline stage of the proposed DCT/DST based
intra prediction engine

Module Sub Gate Register DSP

module count count count

Reference - 259 129 -

selection

Reference - 4268 1199 -

buffer

Filtering - 2879 1047 -

Arithmetic data feeding reg 967 213 -

operations AM 755 563 40

Prediction DC 625 109 -

Planar 242 66 -

directional 5401 1087 -

Intra top - 802 1360 -

Total - 16216 5773 40

sample is represented using 8 bits, which results in 8 × 8 = 64 samples output. Ta-

ble 4.3 compares the performance of the proposed DCT/DST based intra prediction

engine with other state-of-the-art counterparts in terms of technology, clock speed,

supported PU sizes, supported directional modes, hardware cost (in terms of LUTs

and registers used by the design), hardware efficiency, supported video applications

and the reference buffer size used in the architecture. Hardware efficiency is equal to

(Max Frequency × Througput / Hardware cost).

In Abeydeera et al. (2016), a HEVC decoder is designed, and in Table 4.3 only the

intra prediction module parameters are listed. Hardware cost is 63.3% higher, and

the buffer memory size is 90% larger than the proposed architecture. Design in Amish

and Bourennane (2016), includes five parallel datapaths in order to achieve higher

throughput. However, the strategy is limited to 4 K @ 24 fps video applications, with

a hardware resource utilisation of 77 K LUTs, using 90.4% more hardware. Design

doesn’t mention using register buffers and performance is tested on both Virtex- 6

and 7 FPGA platforms.
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Intra predictor in Choudhury and Rangababu (2017), process 16 samples/cycle. De-

sign is PU based, which requires intermediate memory. The design predicts one 4× 4

PU using 6 cycles, which gives an average throughput of 2.33 samples/cycle. The de-

sign uses 85.5% more LUTs and 94% more registers than the proposed design. Fully

pipelined intra predictor in Min et al. (2017) predicts 4 samples in parallel for each

clock cycle. LUTs count is 13% less than the proposed design, but the reference

buffer memory size is 86.6% larger and throughput is 50% less. Data dependency in

intra module is avoided with modified scanning techniques, which produces both row-

wise and column-wise prediction samples, and hence an intermediate memory buffer

becomes necessary.

In Ding et al. (2019), a flexible intra encoder engine is proposed, and in Table 4.3

only the intra prediction parameters are listed. This engine has 17% better hardware

efficiency than the proposed design, but at the cost of 48% more hardware and 9.5

times larger buffer size and runs at 16% higher frequency. Also, because of more

parallel elements in the design most of the hardware remains unused most of the time.

The intra predictor engine in MPPEIP stores the predicted samples in the buffer

memory, which is a hardware overhead, and the reference buffer size is 20% larger

than the proposed design. Pre determining and storing ind and weights for all PUs

and directional modes result in a higher slice register count in the proposed design,

which doesn’t affect the hardware efficiency or throughput.

Figure 4.9 and Figure 4.10 shows the graphical representation of the proposed work

with other similar state of the art works available in the literature. In Figure 4.9,

hardware cost and throughput are compared. The hardware cost of the designs in

Abeydeera et al. (2016), Amish and Bourennane (2016), (Choudhury and Rangababu

(2017)) are significantly higher. Ding et al. (2019) and MPPEIP engines uses almost

the same amount of hardware. But Ding et al. (2019) achieves the same throughput

as the proposed engine, but uses 9.5 times larger reference buffer and runs at 16%

higher frequency as shown in Figure 4.10. The MPPEIP engine achieves the same

throughput as the proposed design, using almost the same amount of hardware but

uses 20% larger reference buffer memory. Figure 4.10 clearly shows that the proposed

work uses smaller reference buffer memory than other similar works.

The novelty of the proposed DCT/DST based intra prediction hardware architecture

is in the elimination of intermediate buffer memory by designing a row-wise intra
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Figure 4.9: Graphical representation of hardware cost and throughput of the proposed
DCT/DST based intra prediction engine with other similar works

Figure 4.10: Graphical representation of comparison of reference buffer memory size
used in the proposed DCT/DST based intra prediction engine with other similar works
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prediction engine. This enables the intra and DCT/DST modules to operate in parallel

in the HEVC encoder to achieve high throughput. The proposed DCT/DST based

intra prediction engine has a smallest reference buffer compared to the other works and

achieves a throughput to support HD video applications at a low hardware cost.

4.5 Summary

In this chapter, an improved efficient DCT/DST based intra prediction architecture

to support DCT/DST engine in HEVC encoder is proposed. This design supports all

PU sizes and 35 directional modes to process 64 samples (8 samples each with 8-bit

depth) in parallel in each clock cycle. The proposed DCT/DST based intra prediction

architecture is designed using combination of parallel and pipelined techniques that

aims to achieve higher throughput. Moreover, the engine is configured to always

perform row-wise predictions to maintain the required high throughput and ensures

that no extra intermediate buffer memory of 8 K is required to store the predicted

samples and saves up to 128 clock cycles in case of horizontal predictions. The compact

reconfigurable 0.8 KB reference buffer reduces the data loading delays and hardware

cost. A dedicated arithmetic unit ensures the reuse of multipliers to enhance the

engine’s hardware efficiency. The DCT/DST based intra prediction design uses only

40 DSP slices. Using a 28 nm technology FPGA board operating at 150 MHz, a

throughput of 64 samples is achieved with the hardware cost of 16.2 K LUTs and 5.7

K registers to support real time 4 K video encoding.
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Chapter 5

Design and implementation of a

hardware efficient integrated

in-loop filter for HEVC encoder

If four things are followed - having a great aim, acquiring knowledge, hard work,

and perseverance - then anything can be achieved.

— A. P. J. Abdul Kalam, Scientist

5.1 Introduction

In HEVC, the in-loop filter is present in both the encoder and the decoder. The

in-loop filter consists of a deblocking filter (DF) and a sample adaptive offset (SAO)

filter, which helps to improve the subjective quality of the image. The in-loop filter

significantly increases the computational load on the HEVC encoder. It is difficult

to design an in-loop filter on the hardware that can handle high computations and

use the least amount of on-chip memory. The in-loop filter must be able to han-

dle the external memory traffic, dependencies and yet deliver a high throughput to

support Ultra HD video applications. In this chapter, an efficient SAO filter that

addresses these issues is proposed. This SAO filter is integrated into the in-loop filter

and implemented on FPGA. The area efficient architecture implemented on hardware

overcomes these latencies and storage overheads to support the real-time high-speed

video applications.
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The deblocking filter (DF) smooths out blocking artifacts around transform edges in

the reconstructed image to improve picture quality (Norkin et al. (2012)). The DF

is more simple and include parallel operations in HEVC. The SAO filter is designed

to improve video quality objectively and subjectively (Fu et al. (2012)). H.264 uses

macro blocks in all of its modules, whereas in-loop filter in HEVC is picture-based.

The input to the in-loop filter is a picture (series of CTUs), where as all other modules

use coding tree units (CTUs). Due to the use of distinct processing elements, long

delays are caused during encoding and decoding. There is a latency between the

DF and SAO filters because the SAO filter uses nearby CTU samples from the DF as

references. In DF, vertical edges are filtered first, next the horizontal edges are filtered.

Because of this, the edge samples must be stored in memory, which is an overhead

causing read-write latencies. There is no data dependency in the band offset (BO)

mode of the SAO filter, but it exists in the edge offset (EO) mode. When the DF and

the SAO filter are combined, data dependency is a significant factor. The proposed

integrated in-loop filter and SAO filter designs employ the following techniques to

address the aforementioned issues.

The following are the key contributions of this chapter:

1. An area-efficient DF with high throughput is proposed where transpose data

between vertical and horizontal filtering is not stored on, on-chip memory but

using registers. The picture data is stored in temporary registers using a novel

mechanism that takes advantage of the read address coming from the memory

to filter. A relation between the addresses of normal and transposed images

is formulated, enabling a transposed image to be loaded directly without the

use of an external transpose block.

2. A mixed parallel-pipelined SAO architecture is proposed to support Ultra HD

video applications.

The remainder of the chapter is organised as follows: Section 5.2 gives an overview of

DF and SAO filters. The implementation of the proposed integrated in-loop architec-

ture is explained in Section 5.3. The detailed performance analysis, and experimental

results are discussed in Section 5.4. Finally, conclusions are drawn in Section 5.5.
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5.2 Semantics of in-loop filter

In-loop filter in HEVC specifies two modules: a DF that is applied initially, and an

SAO filter that is applied to DFs output (Sze et al. (2014)). The input video frame is

divided into 64× 64 LCUs. The LCUs are further subdivided into CUs of size 32× 32

down to 4 × 4 samples in a quadtree form. The CUs are subdivided into prediction

units (PUs) and transform units (TUs). Prediction and transform tools are applied

on PUs and TUs respectively. A series of 64 × 64 LCUs/picture is applied as inputs

to the in-loop filter.

5.2.1 Deblocking Filter (DF)

Figure 5.1: Deblocking decisions flow chart (Source: Sze et al. (2014))

The DF applies an adaptive smoothing filter to smooth out the discontinuities that

arise between the PU and the TU block boundaries in a reconstructed picture frame

(Wien (Jan. 2015)). The working of DF is explained in detail in Section 2.4.1. The

flowchart shown in Figure 5.1 explains the functional flow of the DF. As seen in the

flowchart, several decisions are made in the DF. If filtering needs to be applied or not,
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and the level of filtering required are decided based on the relations given in Section

2.4.1.

5.2.2 Sample Adaptive Offset (SAO) Filter

Figure 5.2: Sample adaptive offset filter functional flow chart

The SAO filter in HEVC is CTU-based and applies an offset to the reconstructed

pictures to reduce degradation of the reconstructed image (Fu et al. (2011)). The use

of high QP values in transform module causes ringing artifacts at the edges and this

detracts the input image from its subjective quality. The SAO filter reduces ringing

effects and thereby reduces the difference between original and restored images. In the
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SAO filter, luma and chroma components of the image are filtered in the same way.

In SAO, offset is applied using two methods; edge offset and band offset methods,

explained in detail in Section 2.4.2. The functional flow of the SAO filter is explained

using the flowchart shown in Figure 5.2. Fast rate-distortion method is used to find

the best offset in SAO filter (Fu et al. (2012)). Encoder decides the best mode among

EO, BO or not to apply SAO filtering. The best offset to apply is also decided at the

encoder. The method used to generate offset is explained in Section 2.4.2.

5.3 Hardware implementation of the proposed in-

tegrated in-loop filter

The top-level architecture of the proposed integrated in-loop filter hardware design is

shown in Figure 5.3. The design supports pipeline, parallel, and sequential techniques.

The DF, SAO filter, an in-loop filter scheduler are the main functional modules in

the architecture. The functional flow of the DF is shown in Figure 5.1. The in-loop

filter scheduler is responsible to generate all of the control signals required to transmit

input data to the DF, manages data transfer between the DF and the SAO filters

using the intermediate DF buffer, and finally assists in the storage of the output from

the SAO in the output buffer.

The 8× 8 block boundaries are filtered using horizontal filter (HF) and vertical filter

(VF) which are the main functional units in the DF module. Each of the VF and

HF modules has four edge filters that can process four samples simultaneously. The

control unit generates the signals required for operating the HF and VF modules,

such as select, enable, reset, end, etc. In the average buffer, the outputs from VF and

HF are averaged before being saved in the DF buffer.

The SAO module is made up of three important parts: a mode decision (MD) unit that

is used to determine the best mode, an EO, and a BO functional modules. The EO

and BO modules receive an input from the DF buffer, which is divided into blocks of

8 samples. The sample difference (SD) module generates the difference between the

original and restored samples, whereas EO and BO generate the offset and perform

the filtering processes. The distortion calculation is carried out in the MD module to

calculate the ideal offset based on the offset information and the sample difference, and

the best mode for SAO is chosen. The output is populated in the output buffer.
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5.3.1 Hardware design of the deblocking filter (DF)

The proposed hardware design of the DF is shown in Figure 5.3, which includes the

control unit, VF, and HF modules, as well as average and DF buffers. The VF and

HF units work in parallel to filter data using edge filters and conditional datapaths,

which are detailed in Section 2.4.1.

5.3.1.1 Vertical and horizontal filters

The general order followed in DF implementation is to first perform HF, then store the

data, transpose the data, and finally apply VF. This method necessitates the use of

a memory block to store the samples before and after the transpose operation, which

is an overhead. Additionally, at any given time, only one unit either HF or VF can

operate, reducing hardware efficiency. To address this issue, a novel feature is included

in the proposed integrated in-loop filter design, where both HF and VF operate in

parallel. To load the input image data into the input memory, a new approach is used,

allowing the transposed image to be loaded directly into temporary registers without

the use of an external transpose block.

To load an image from memory, the usual method is to first create an address variable,

then iterate from top to bottom and read data from each address location, then apply

HF. Data is stored in a buffer memory, transpose the data, and then repeat the

process, finishing with VF. The same concept is used in the proposed design, but data

for both normal and transposed images are selected at the same time. By formulating

the relationship between the original image and its transpose, the read address of the

input image is used to obtain the address of the transposed image. The transposed

address for the 8 × 8 blocks is generated in the control unit, shown in Figure 5.3.

These samples are sent to both the HF and the VF at the same time.

Figure 5.4 shows a 8 × 8 image and its transpose. The relationship between the

original and transposed image addresses is given by relations (5.1) and (5.2), where

F is the LSB and A is the MSB. An 8× 8 image has 64 samples and thus requires a

6-bit address. To formulate the relationship between normal and transposed images,

a 6-variable K-Map is used and manually solved. The results are shown in (5.3).

Input image address = {A,B,C,D,E, F} (5.1)
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Figure 5.4: Address matrix of the input image and the transposed image

Tranasposed image address = {AT , BT , CT , DT , ET , F T} (5.2)

F T = C, ET = B, DT = A,

CT = F, BT = E, AT = D
(5.3)

The 6-bit variable is iterated from 0 to the image’s last address and used to create a new

address with the above-shown relation to obtain its transposed addresses directly. The

control unit employs this mechanism. This eliminates the need for a separate transpose

block, reducing memory overhead. By operating HF and VF in parallel, hardware

efficiency of the design is improved. Filter processing time is reduced as read-write

latencies that arise due to storing data in transpose buffers is eliminated.

5.3.1.2 Datapath overflow and underflow solution

The conditional datapaths used to make decisions in the DF uses a lot of additions and

subtraction operations due to which filter selection functions are prone to overflows

and underflows. This poses as a major problem which continues throughout the

image calculations and is exacerbated when the corner values of the input samples

are evaluated using (2.13) and (2.14). Overflow and underflow produce an extra

output bit; if this extra bit is not handled appropriately, the conditional datapaths

produce incorrect decisions. The registers used in the hardware to store the samples

are 8-bit wide, storing this one extra bit requires the use of one extra register, which

is an overhead. This overhead issue is much larger, when the number of decision

operations required for one picture frame is taken into account. Handling this extra

register requires more conditional evaluations for proper operation. This method is
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complex and inefficient in terms of memory and area requirements.

This issue is addressed in the proposed design by lowering the brightness of the input

image. The average of the input image is taken, and this is used for processing. This

allows to use the eighth bit of the same register to store the overflow and underflow

bits.

Figure 5.5: Input image, output image, and mismatch map to visualize underflow and
overflow problem

Figure 5.6: Input image, output image, and mismatch map where underflow and
overflow problem is solved

The input image is processed by the DF, and the results are shown in Figure 5.5.

Although the overflow bit is saved, the signing conventions were ignored. Due to

this, the conditional datapaths make incorrect decisions. The input image, the output

image of the DF, and the mismatch map is ahown in Figure 5.5. The mismatch map is

the difference between the output and the input images. Mismatch map in Figure 5.5,

shows the disparity due to the incorrect decisions. Then the average of the input image
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is taken, this reduces the brightness of the image, and it can be represented using 7-

bits. The overflow bits generated are stored as the 8th bit and the same registers is

used in decision making operations. The results of the image with reduced brightness

are shown in Figure 5.6, where the mismatch is significantly reduced without the use

of additional registers or extra calculations. In the case of Figure 5.6, correct filtering

decisions were made in the conditional datapaths. However, the output image shows

visual irregularities in the filtered regions. Section 5.3.1.3 explains how this problem

is addressed.

5.3.1.3 The over-brightness problem

The DF includes a clipping operation to deal with excessive brightness, clipping alone

did not produce satisfactory results, particularly with low-brightness input images.

This problem is solved in the proposed design by averaging the input and output

images. The effects of excessive brightness are significantly reduced in the filtered

areas of the image, and this is shown in Figure 5.7. The visual irregularities in the

output image is reduced compared to the results in Figure 5.6, despite the fact that

the mismatch map is the same.

Figure 5.7: Input, output images and mismatch map where excess brightness problem
is solved

5.3.2 Hardware implementation of the SAO filter

The proposed SAO filter architecture is shown in Figure 5.3, and the functional flow

is explained using the flowchart shown in Figure 5.2. The DF output is selected

as 8 × 64 sample sets, which are then buffered, processed, and filtered. EO and
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BO is applied on all samples within each LCU block in the SAO module which is

a computationally intensive process (Wien (Jan. 2015)), (Bossen et al. (2012)). The

SAO control unit is clock-controlled and performs sequential operations for the SAO

module. The sample sets are computed in parallel to improve overall throughput. The

input data flow is properly regulated by accessing 8 sample sets from the buffer in

an incremental order by generating read addresses. After reading the input data and

storing it in the buffers, the sample sets are processed in a pipelined fashion until all

of the data sets are processed. This procedure is carried out for each sample set.

Data dependency is a significant factor when the DF is combined with the SAO

filter. In BO mode, no data dependencies exist, whereas in EO mode, there is a data

dependency between the current CTU and its neighbouring CTUs. These factors

are considered in the hardware design. As shown in Figure 5.3, the SAO filtering is

made up of SD, EO, BO, and mode decision (MD) modules, and their functions are

as follows. The SD module is responsible for calculating the difference between the

restored and original samples. Edge offsets are calculated by sending data (sample)

blocks to the EO module, where the class and category information from each sample

is used to generate offsets. Samples that have been restored are sent to the BO module,

which generates band position information for each sample. The SD module collects

sample data and generates differences based on the band position information. The

offset is generated after receiving the sample differences from the EO and BO modules,

and the optimal offset type is chosen in MD using the rate-distortion method.

Each EO class and category is processed in the EO module and compared with their

adjacent neighbours when required, as shown in Figure 2.15. For example, for the EO

class 0 category, the horizontal adjacent neighbours are picked and processed. Simi-

larly, in the case of 45◦, 90◦, or 135◦ class operations, requires neighbouring samples

are selected and offset is determined. In each clock cycle, the EO block filters 8 sam-

ples. The neighbouring samples are stored in a memory buffer. In one clock cycle, the

BO module processes 8 samples. Because there is no data dependency in this block,

sample preservation is not required, and thus no buffer is used to store the filtered

samples. The offsets are generated in the MD module, the best mode is chosen, and

the output is saved in the output buffer.

Limitations of the integrated in-loop filter: Intermediate storage buffer is used

between DF and SAO. Edge offset requires neighbouring samples for processing which
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are stored in buffers, which is an overhead increasing latency.

5.4 Experimental results and analysis of the SAO

filter and integrated in-loop filter

(a) Input image (b) Output image

Figure 5.8: Input and output images from the integrated in-loop filter

The input and output images obtained from the proposed integrated in-loop filter

engine are shown in Figure 5.8. The outcome is compared using two quality metrics:

structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR). SSIM values

range from 0 to 1, with 1 indicating perfect match. The recorded SSIM of the output

image from the proposed design is 0.99. The PSNR value recorded is 48.28 db which

is very close to the ideal values.

The proposed in-loop filter contains both DF and SAO modules, which can be oper-

ated separately or together. More DF hardware implementations are available in the

literature, so comparison of the DF filter with other similar works is presented in Table

5.1. In Table 5.1, several ASIC and FPGA implementations of the DF are compared

using the following parameters: device (ASIC/FPGA), operating frequency, technol-

ogy used for the implementation, LCU size considered in the design, silicon footprint

in terms of hardware cost (gates in the case of ASICs and LUTs in the case of FP-

GAs), number of cycles taken for processing one LCU, resolution video supported and

finally number of frames per second. The proposed DF produces a throughput of 8
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samples per clock cycle. As seen in Table 5.1, it is clear that the proposed DF uses

the least hardware and supports ultra HD video applications.

Table 5.2 summarises the performance comparisons of the proposed integrated in-loop

filter design with other designs available in the literature. The proposed in-loop filter

produces a throughput of 8 samples per clock cycle. Table 5.2 shows the comparisons

in terms of device, technology, frequency of operation, supported LCU size, number

of cycles required for processing one LCU data, hardware cost (in terms of LUTs and

registers used in the design), throughput, and hardware efficiency (HWE). HWE is

used as a metric for a common and fair comparison with other works as there is no

common metric available. Higher the HWE value, better is the design. The HWE is

generated using the following relation:

HWE =
Supported resolution × fps

Hardware Cost
(5.4)

A pipelined in-loop filter is designed for an HEVC decoder and implemented on an

ASIC platform in Zhu et al. (2013b). ASIC implementation gives the benefit of a higher

frequency. But the hardware cost is 300.8% higher, resulting in an HWE of 26.04, thus

making the proposed integrated in-loop filter design 6 times more efficient. The in-loop

filter designed and tested on the ASIC platform supports ultra HD video applications

in Shen et al. (2016). However, the proposed design uses 50% less hardware, resulting

in a better HWE. The design in Park et al. (2016), tests DF and SAO separately.

Each module is tested at two different frequencies. The results of both modules being

processed together are not mentioned.The closest operating frequency match with this

proposed work is considered and the corresponding throughput is compared. In this

case HWE of the proposed design is 47% better even though it is operating at 73.3%

lower frequency.

The architecture is implemented with reconfigurable processors in Liu et al. (2017).

This design’s processing capacity is higher but at the expense of extremely high hard-

ware utilization, which reduces its HWE. To achieve higher throughput, Baldev et al.

(2018), implements a pipelined-parallel in-loop filter, but the LCU size considered in

the design is smaller. Furthermore, the hardware cost is nearly eight times higher,

and HWE is 144.43% less than the proposed design. A power efficient integrated DF

and SAO filter architecture in Singhadia et al. (2021), supports all CTU sizes and the

design is implemented on both ASIC and FPGA. In Table 5.2 only FPGA implemen-
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tation values are updated. The design uses less number of clock cyles, but at the cost

of 76.4% more hardware, due to which the efficiency is 72.8% less than the proposed

integrated in-loop filter architecture.

Figure 5.9: Graphical representation of comparison of hardware efficiency of the pro-
posed integrated in-loop filter engine with other similar works

The HWE of the proposed integrated in-loop filter engine and other works (from the

Table 5.2) are shown in Figure 5.9. From the graph, it is clear that the proposed

integrated in-loop engine outperforms in terms of hardware efficiency when compared

to other hardware implementations. With an HWE of 171.61, the proposed design has

the best hardware efficiency. The proposed design is the most optimised architecture

and produces high throughput, making it highly suitable for portable consumer devices

.

The graph in Figure 5.10 compares the HWE and hardware area used by the proposed

integrated in-loop filter design with architectures in Zhu et al. (2013b), Shen et al.

(2016), Park et al. (2016), and Singhadia et al. (2021). The hardware area depicted in

the graph is rounded to the nearest thousand. The area utilised by the designs in Liu

et al. (2017), and Baldev et al. (2018) is very high and their HWE is very low, they

are omitted in Figure 5.10. The graph in Figure 5.10 shows that the proposed design

is the most efficient and uses the least amount of hardware.
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Figure 5.10: Graphical representation of comparison of hardware efficiency and hard-
ware area utilized by the proposed integrated in-loop engine with other similar works

5.5 Summary

Area-efficient hardware architectures of the DF and SAO filters for a HEVC encoder

are implemented on FPGA. The proposed design includes a balanced parallel-pipeline

scheme that can process 7680 × 4320 videos @ 40 fps, clearly supporting Ultra HD

video applications. The design is optimised, using only 7.73 K LUTS and 2.8 K slice

registers, which makes it suitable for low-power real-time video applications. The

proposed area-efficient reprogrammable in-loop filter is well suited to support higher

resolution video applications and suitable for portable consumer devices. The PSNR

and SSIM values, at 48.28 dB and 0.99, respectively are close to the ideal values,

showing the ability of the design to deliver quality output.
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Chapter 6

Conclusion and future scope

Think left and think right, and think low and think high. Oh, the thinks you can

think up if only you try!

— Dr. Seuss, Author

6.1 Conclusion

A dedicated HEVC hardware is very useful for many high quality video applications,

especially they are suitable for on-the-go video consumption. In the area constrained

devices like laptops, cellphones, and dedicated streaming devices, the proposed HEVC

hardware can be integrated into the encoder to efficiently encode a high definition

video stream. The architectures described in this thesis achieve high throughput with

low latencies while using a very low silicon area. The main objective of this research

work is to design area-efficient hardware architectures of the intra prediction engine

and the integrated in-loop filter for the HEVC video encoder, that supports HD and

UHD video applications.

The proposed PDA and PPA architectures perform planar and DC predictions to

produce a throughput of eight samples in every operation cycle. The experimental

results for PUs of size 4, 8, 16 and 32 are tabulated and compared in terms of number

of LUTs and registers used by the hardware architectures. There is a decrease of 20%

in LUT consumption in PDA, compared to PPA configuration for 4 × 4 PUs. The

PPA engine uses 20%, 46% and 62% less resources for 8, 16 and 32 PUs respectively

than the PDA design. Results show that PPA architecture supports all PU sizes
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and produce high throughput, hence better suited for area constrained applications.

While PDA achieves better results only in the case when the input video frames have

a large number of 4 × 4 PUs. The PPA architecture is extended to support all the

angular intra predictions as it produces better throughput using the optimum silicon

area regardless of the PU size.

The MPPEIP engine is designed to produce eight samples in parallel in every clock

cycle. Techniques such as reusable reference buffers, manual assignment of directional

predictions for all PU blocks, and use of a dedicated arithmetic operations unit are

implemented in the design. All these features contribute to a significant reduction in

hardware resources. A compact reusable reference buffer of size 1 KB is used in the

MPPEIP engine. Data loading delays are reduced and the design uses only 40 DSP

slices. The experimental results show that the proposed MPPEIP design uses 16 K

LUTs and 122 registers of hardware resources which is significantly less hardware than

the majority of the existing designs.

An improved efficient intra prediction architecture is designed to support DCT/DST

engine in HEVC. The proposed architecture achieves higher throughput by combin-

ing parallel and pipelined mechanisms. Techniques such as row-wise predictions that

completely eliminate 8 KB intermediate memory buffer; an improved compact recon-

figurable buffer of just 776 bits; a dedicated arithmetic unit that uses only 40 DSP

slices, are used, which enhance the hardware efficiency of the engine. The experimen-

tal results show that the design uses 16.2 K LUTs and 5.7 K registers to produces

a high throughput. The proposed DCT/DST based intra prediction engine has low

hardware cost, uses the smallest reference memory buffer compared to all the other

works, and achieves a throughput to support HD video applications.

An area-efficient hardware architecture of the SAO filter is designed and integrated

into the in-loop filter of the HEVC encoder. The design is a balanced parallel-pipeline

scheme that supports UHD applications. The hardware cost of the architecture with

7.73 K LUTS and 2.8 K slice registers is the lowest compared to the other state-of-

the-art designs, which makes it suitable for low-power real-time video applications

especially for portable consumer devices. The experimental results show that the pro-

posed in-loop architecture has the best hardware efficiency (171.61 × 103) compared to

other works. The PSNR and SSIM values at 48.28 dB and 0.99, respectively are close

to the ideal values, showing the ability of the design to deliver quality output.
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6.2 Future scope

In this thesis, area-efficient hardware architectures for two modules (intra prediction

and in-loop filter) of HEVC encoder are deigned and implemented on FPGA to support

HD and UHD video applications. A balanced parallel-pipeline scheme is used to

achieve the research objectives. With the high demand for dedicated HEVC hardware,

area-efficient architectures are always sought after.

� The balanced parallel-pipeline and sequential technique used in this thesis can be

extended and merged to design an entire intra prediction based HEVC encoder.

� The methodologies presented in this thesis can be extended to design and im-

plement the hardware architecture of the versatile video coding (VVC)/H.266

codec.

� Input image/video stream used for testing the FPGAs is mapped to an SD Card

and HDMI input and is not possible to modify in real-time. This is a limitation.

The inputs used to test the architectures are also pre-generated. It would be

interesting and challenging to test the HEVC modules with the real-time input

data.

� The degree of parallelization adopted in the design is set by the throughput

required to support certain video applications. Loosening this constraint would

lead to other optimal solutions.
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Appendix I

FPGA board details

Searching for new ideas is an endless process.

— R. K. Laxman, Cartoonist

A field-programmable gate arrays (FPGAs) are reprogrammable semiconductor ICs,

that are made up of a matrix of configurable logic blocks (CLBs). FPGA’s contain

large number of CLBs that are connected via programmable interconnects. In addition

to CLBS there are lookup tables, flip-flops, shift registers and other elements which

can be configured to perform various logic functions. FPGAs are dynamically repro-

grammable and suitable for various applications like video processing, data analytics,

image inference, encryption, compression etc. Optimized FPGAs are power-efficient

and faster than running equivalent workloads on a CPU. In short, FPGAs are ver-

satile, efficient, and offer better performance. All these features makes FPGA good

choice for implementing the HEVC’s intra prediction and in-loop filter architectures.

In this section, the characteristics of the FPGA used in this work, and other interfaces

used in the design are discussed.

Modern FPGAs consist of up to two million logic cells that can be configured to

implement a variety of algorithms. The basic structure of an FPGA is composed of

the following elements:

� Look-up table (LUT) - performs logic operations

� Flip-Flop (FF) - register that stores the result of the LUT

� Wires - connects elements to one another

� Input/Output (I/O) pads - these physical ports get data in and out of the FPGA
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A-1 Xilinx Artix-7 AC701 Evaluation board de-

tails

Figure A.1: Block diagram of the Xilinx AC701 evaluation board (Source: Guide to
AC701 (2013))

The FPGA used in this work is the Xilinx Artix-7 FPGA AC701 Evaluation Kit which

is a part of the Xilinx 7 series FPGAs. The block diagram of the AC701 and all its

interfaces is shown in Figure A.1. AC701 board is used for the following reasons. First,

the AC701 board contains a variety of communication interfaces, including a Secure

Digital (SD) card connector and an HDMI Video interface, both of which are discussed

in more detail in the following sections. Second, the AC701 board features 1 GB of

DDR3 RAM and 13 MB of BRAM storage, which is ideal for storing intermediate

data during processing. Third, the AC701 board allows high speed operations with a

maximum clock frequency of 200 MHz. AC701 also supports clock domain variability,

i.e board permits to use a wide range of user- defined clocks which is very useful while

working with board interfaces.
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A-2 SD Card interface

Figure A.2: SD card interface on the AC701 FPGA board. (Source: Guide to AC701
(2013))

Table 1 lists the SD card interface connections to the FPGA board. The SD card is

a non-volatile, detachable memory storage device that is based on flash technology.

Due to the qualities such as high throughput, low cost, high capacity, and low power

consumption, SD cards are extensively used in multi-media applications. SD cards

are available in a variety of memory storage capacities in the market. For typical

operations, SD cards draw only 100 mA of current. All of these qualities combine to

make the SD card an excellent medium for transferring image/video stream data into

hardware architectures.

The SD card protocol supports 3 modes of operations: 1-bit, 4-bit and serial peripheral

interface (SPI) modes. A Verilog code is written to implement the SPI mode of the

SD card protocol and created a Verilog wrapper module to integrate it to the FPGA

board and the other modules. Figure A.2 shows the block diagram and the signals

present in the SD card interface. The AC701 board access non-volatile SDIO memory

cards and peripherals using the secure digital input/output (SDIO) interface. The

board supports 50 MHz high speed SD cards. The SDIO signals are connected to I/O

bank 14, which has its VCCO set to 3.3 V.
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Table 1: SDIO connections to the FPGA

FPGA pin (U1) Schematic net I/O Standard U 29 SDIO connector

name count Pin number Pin name

R 20 SDIO SDWP LVCMOS33 11 SDWP

P 24 SDIO SDDET LVCMOS33 10 SDDET

N23 SDIO CMD LVCMOS33 29 CMD

N 24 SDIO CLK LVCMOS33 5 CLK

P 23 SDIO DAT2 LVCMOS33 9 DAT2

N 19 SDIO DAT1 LVCMOS33 8 DAT1

P 19 SDIO DAT0 LVCMOS33 7 DAT0

P 21 SDIO CD DAT3 LVCMOS33 1 CD DAT3

(Source:Guide to AC701 (2013))

A-3 HDMI interface

High-definition multimedia interface (HDMI) is a digital video interface, designed to

transmit uncompressed HD video data to a device that can display the data. HDMI’s

capabilities, compatibility and portability makes it the ideal protocol to use. The

AC701 board uses Analog Devices ADV7511 chip to provide video output (U48). The

ADV7511 is wired to support 1080P at 60 Hz, YCbCr 4:4:4 encoding using 24-bit

input data mapping.

The AC701 board supports the following HDMI device interfaces:

� 24 data lines

� Independent VSYNC, HSYNC

� Single-ended input CLK

� Interrupt Out Pin to FPGA

� I2C

� SPDIF

Table 2 shows the list of connections between the codec and the FPGA. Table 3 lists

the connections between the codec and the HDMI connector P2.
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Table 2: FPGA to HDMI codec connections (ADV7511)

FPGA pin (U1) Schematic net I/O Standard ADV7511 (U48)

name count Pin number Pin name

AA24 HDM I R D4 LVCMOS18 92 D4

Y25 HDMI R D5 LVCMOS18 91 D5

Y26 HDMI R D6 LVCMOS18 90 D6

V26 HDMI R D7 LVCMOS18 89 D7

W26 HDMI R D8 LVCMOS18 88 D8

W25 HDMI R D9 LVCMOS18 87 D9

W24 HDMI R D10 LVCMOS18 86 D10

U26 HDMI R D11 LVCMOS18 85 D11

U25 HDMI R D16 LVCMOS18 80 D16

V24 HDMI R D17 LVCMOS18 78 D17

U20 HDMI R D18 LVCMOS18 74 D18

W23 HDMI R D19 LVCMOS18 73 D19

W20 HDMI R D20 LVCMOS18 72 D20

U24 HDMI R D21 LVCMOS18 71 D21

Y20 HDMI R D22 LVCMOS18 70 D22

V23 HDMI R D23 LVCMOS18 69 D23

AA23 HDMI R D28 LVCMOS18 64 D28

AA25 HDMI R D29 LVCMOS18 63 D29

AB25 HDMI R D30 LVCMOS18 62 D30

AC24 HDMI R D31 LVCMOS18 61 D31

AB24 HDMI R D32 LVCMOS18 60 D32

Y22 HDMI R D33 LVCMOS18 59 D33

Y23 HDMI R D34 LVCMOS18 58 D34

V22 HDMI R D35 LVCMOS18 57 D35

AB26 HDMI R DE LVCMOS18 97 DE

Y21 HDMI R SPDIF LVCMOS18 10 SPDIF

V21 HDMI R CLK LVCMOS18 79 CLK

AC26 HDMI R VSYNC LVCMOS18 2 VSYNC

AA22 HDMI R HSYNC LVCMOS18 98 HSYNC

W21 HDMI INT LVCMOS18 45 INT

T20 HDMI SPDIF OUT LS LVCMOS18 46 SPDIF OUT

(Source:Guide to AC701 (2013))
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Figure A.3: HDMI codec circuit on the FPGA board. (Source: Guide to AC701
(2013))

A-4 System clock source

The AC701 board has a 2.5 V low voltage differential signalling (LVDS) 200 MHz

oscillator. The clock is soldered onto the back side of the board and wired to the

multi-region clock capable (MRCC) clock input present on the board. The 200 MHz

signal pair is named SYSCLK P and SYSCLK N, which are connected to FPGA

U1 pins R3 and P3 respectively. The AC701 board system clock has the following

features.
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Table 3: ADV7511 connections to HDMI connector

ADV7511 (U48) Schematic net HDMI connector P2 Pin

name

36 HDMI D0 P 7

35 HDMI D0 N 9

40 HDMI D1 P 4

39 HDMI D1 N 6

43 HDMI D2 P 1

42 HDMI D2 N 3

33 HDMI CLK P 10

32 HDMI CLK N 12

54 HDMI DDCSDA 16

53 HDMI DDCSCL 15

52 HDMI HEAC P 14

51 HDMI HEAC N 19

48 HDMI CRC 13

(Source: Guide to AC701 (2013))

Figure A.4: System clock source present on the FPGA board. (Source: Guide to
AC701 (2013))

� Oscillator: Si Time SiT9102AI-243N25E200.00000 (200 MHz)

� PPM (parts per million) frequency tolerance: 50 ppm

� Differential output
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The block diagram of the system clock circuit is shown in Figure A.4. The FPGA

board allows to use programmable low-jitter 3.3 V differential oscillator (U34) driving

the FPGA MRCC inputs of bank 14. The board allows to connect to an external high-

precision clock signal to be used with the FPGA bank 15 by connecting differential

clock signals through the onboard 50 ohm surface mount assembly (SMA) connectors

J31 (P) and J32 (N).

A-5 DSP48 block

Figure A.5: Structure of a DSP48 block on the FPGA board. (Source: Guide to
AC701 (2013))

The most complex computational block on the Xilinx FPGA is the DSP48 block,

shown in Figure A.5. The DSP48 consists of an arithmetic logic unit (ALU) embedded

into the FPGA fabric. There is a chain of three different computational blocks in

the DSP48. This block chain is made of an add/subtract unit that is connected

to a multiplier, which is then connected to a final add/subtract/accumulate engine.

This chain allows a single DSP48 unit to implement functions of the form: P =

B× (A+D)+C or P+ = B× (A+D). In this work, DSP slice is used to perform the

function where A and B inputs are multiplied and the result is added to the C.
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