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 ABSTRACT 

Functionally graded materials (FGM) are typically a mixture of two or more 

distinguished materials with a smooth and continuous variation of constituent material 

properties in one or more directions. FGM shows a heterogeneous characteristic that 

permits the structures to avoid and eliminate the stress concentration and delamination 

phenomena commonly observed in laminated composites. However, FGM is 

susceptible to developing pores due to manufacturing constraints which decreases the 

strength of FGM. Also, vibrations caused in functionally graded (FG) structures exhibit 

large amplitudes due to the structures' flexibility. Therefore, it is crucial to investigate 

the effect of porosities on the geometrically nonlinear behavior of porous FG plates and 

shells. In this dissertation, the effect of porosities and their distributions on porous FG 

plates and shells subjected to different geometrical non-uniformities, temperature, two-

directional gradation, and saturated porosities are considered for the analysis.  

The effects of nonlinear temperature distribution and geometrical non-uniformities 

such as different types of variable thickness and skew angle are considered for the 

analysis. A nonlinear finite element model is developed by employing the first-order 

shear deformation theory in conjunction with von Kármán's geometric nonlinearity 

relations. The governing equations are derived using Hamilton's principle. Then, the 

direct iterative approach and Newmark's time integration method are utilized to extract 

the numerical results. Effective material characteristics of the porous FG plate 

constantly change in the thickness direction. The influence of porosity and its 

distributions on the nonlinear vibration and dynamic behavior of the geometrically non-

uniform porous FG plates are investigated. 

Generally, FGM has been limited to altering material properties in a single direction. 

However, this approach may be ineffective for designing components frequently 

subjected to considerable temperature changes in different directions. Therefore, the 

numerical evaluation is extended to analyze two-directional functionally graded porous 

(TDFGP) plates and shells with four different materials. The influence of porosities and 

two-directional gradation profiles for four distinct materials with longitudinal and 

transverse gradation are considered for the analysis. The vibration and dynamic 
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responses of TDFGP plates and shells are evaluated for various shell forms such as 

spherical, hyperboloid, ellipsoid, and cylindrical shells. 

It is inevitable to produce flawless FGM devoid of the entrapment of fluids in pores 

using contemporary production procedures, which drastically vary the performance of 

FGM. Thus, the influence of fluid-filled pores on the nonlinear vibration and supersonic 

flutter analysis of FG saturated porous materials (FGSPM) plates in the thermal 

environment has been studied. The effects of pore fluid pressure and temperature-

dependent elastic stiffness coefficients on the nonlinear flutter behavior of FGSPM 

plates are evaluated using poroelasticity theory and Piston theory. 

The results reveal that the porosity nature and its distributions significantly affect the 

nonlinear behavior of the geometrically non-uniform FG porous plates under thermal 

load. In addition, the nonlinear behaviors can be changed and controlled considerably 

by altering the volume fraction gradation profiles in the required direction for each 

material with an appropriate combination of materials. The FGSPM plates exhibit 

enhanced stiffness without increasing weight compared to the FG plates with void 

porosity. It is believed that the research work presented in this dissertation may 

considerably help in the usability of porous FG plates and shells in the advanced 

engineering domains of aerospace, bio-medical, electronics, nuclear energy, and smart 

structures.  

 

 

KEYWORDS: Functionally graded materials; Porosity; Two-directional gradation; 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

This chapter presents a brief introduction and a comprehensive literature 

survey on advanced composite materials. In particular, functionally graded materials 

(FGM) are unveiled. Significant contributions by many researchers with respect to 

FGM and its broad spectrum of applications have been discussed. The literature on 

basic structural characteristics such as linear and nonlinear free vibration, dynamic 

responses, and flutter bounds with various configurations is briefly discussed. In 

addition, the porosity influence on the structural characteristics of porous FGM is 

presented comprehensively. From the extensive literature survey, the prominent 

research gaps have been identified and incorporated as the research objectives of this 

dissertation. In the end, the organization of the thesis chapters has been delineated.  

1.1.  ADVANCED COMPOSITE MATERIALS 

Composite materials are a class of advanced materials produced by a solid-state 

combination of one or more materials having specific chemical and physical properties. 

These composite materials offer superior properties and are more lightweight than their 

parent materials. Besides, composite materials with microstructures are tailored to 

achieve the desired characteristics. For laminated composite plates, customizations are 

accomplished generally by varying the stacking sequence, ply thickness, and ply 

material. However, traditional composites have several disadvantages that cannot be 

mitigated, such as interfaces, generation of residual stresses, stress concentration, 

delamination, thermal stresses, and the occurrence of cracks. Besides, in engineering, 

metals have been utilized for decades due to their superior strength and toughness. 

Similar to traditional composites, the metal's strength declines at elevated temperatures. 

The ceramic materials have strong heat resistance properties. However, the low 

toughness of ceramics typically limits their applicability.  



2 
 

Hence, a new class of composite material has emerged to overcome the drawbacks of 

traditional composite and isotropic materials, known as functionally graded materials 

(FGM). FGM is not new to humankind; bone, teeth, human skin, and bamboo trees are 

all nature-built FGM forms (Saleh et al. 2020). The idea of FGM was first proposed by 

material scientists from Japan in 1984 (Koizumi 1997). The concept of developing the 

new functionally graded (FG) material was to enhance the adhesion and reduce the 

thermal stresses in ceramic-metal composites developed for reusable rocket engines. 

Meanwhile, FGM principles have stimulated worldwide research and have been applied 

to ceramics, metals, and organic composites to create enhanced materials with superior 

physical properties. Hence, in recent years, great attention has been focused on FGM 

because of its excellent performance and widespread applications in thermal, structural, 

biomedical, electronics, and optoelectronics.  

FGM is an inhomogeneous or heterogeneous composite material in which the 

composition and material properties vary smoothly and constantly in a preferred 

direction, as shown in Figure 1.1. Different microstructural phases within FGM have 

distinct functions, and the gradation of their properties confers multi-structural status 

on FGM as a whole. For example, a functionally graded (FG) plate is used as a thermal 

barrier/structural application in which the gradation is through the thickness. The top 

and bottom surfaces have isotropic constituent materials of ceramic and metal, 

respectively. The portion between the top and bottom surfaces has a varying 

composition of two constituent materials. Thus, in a single FG material, one can obtain 

the properties of two different materials with the variable volume fractions of each 

constituent material in a chosen direction, as shown in Figure 1.2. Due to the ceramic 

material's low thermal conductivity, the FG material's ceramic portion provides high-

temperature resistance. On the other hand, the FG's ductile metal portion prevents 

fracture due to high-temperature gradient stresses in a short period. Thus, FGM does 

not have well-defined boundaries or interfaces between their regions compared to 

traditional composite materials. Hence, FGM can easily avoid the drawbacks of 

composites.  

FGM is typically composed of two constituent materials: metal and ceramic, and is 

manufactured using various techniques, including deposition, solid-state, and liquid-
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state procedures (Naebe and Shirvanimoghaddam 2016; Saleh et al. 2020). Thin FGM 

is utilized in microscale coating applications. These are manufactured through 

deposition-based processes like vapor deposition, thermal spray, and electrophoretic 

deposition. Constructing a continuous or discontinuous graded layer and FGMs with 

gradient properties in one, two, or three orientations is feasible using these techniques. 

Furthermore, powder metallurgy, additive manufacturing, and friction stir additive 

manufacturing are the most promising solid-state FGM production techniques. Even 

though these techniques produce a discontinuous gradient, the gradation may be 

regulated to a higher degree, making them suitable for numerous industrial applications. 

 

Figure 1.1: Variation of properties in traditional composites and FGM. 

 

Figure 1.2: FGM with ceramic and metal as material constituents. 
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Additionally, numerous techniques, such as centrifugal force methods, slip casting, tape 

casting, and infiltration, fall within the liquid state principle when manufacturing FGM 

with gradient properties. These technologies may generate graded materials with 

continuous properties, most of which are less expensive than other processes. In 

addition to the difficulties associated with molten metal, it is challenging to manage the 

gradation and wettability between materials using these techniques. 

1.2. MATERIAL HOMOGENIZATION OF FGM 

FGM is microscopically inhomogeneous. The volume fraction of the two or 

more material constituents is varied smoothly and continuously as a continuous 

function of the material position in one or more directions in the structure. The 

mechanics of a material's primary task is to predict the material behavior, which 

requires the determination of the FG composition's effective material properties, termed 

homogenization. Homogenization is employed when precise information about the 

phases' size, shape, and distribution is unavailable. The graded microstructure's 

effective material properties are evaluated based on the volume fraction distribution of 

the dispersed phase. Hence, FGM is classified into three categories such as 

continuously, discretely, and multiphase graded microstructures. The continuously 

graded microstructure is the commonly used method for analyzing FGM structures. 

Further, the continuously graded microstructure uses several mathematical models to 

predict the effective material properties of FGM. The power-law model, exponential 

law model, sigmoid law model, rule of mixtures, Mori-Tanaka scheme, and self-

consistent estimation model are some of the most widely used mathematical models. 

However, the power-law model is the most common and accepted model to predict the 

effective material properties.  

The FGM with a continuously graded microstructure along the thickness direction 

comprises two isotropic and homogeneous materials: metal and ceramic. Besides, if the 

top surface of the FGM is solely ceramic ( 2 )z h
 and the bottom surface is 

exclusively metal ( 2 )z h  . An expression for the variation of the volume fractions 

of the ceramic material along the thickness direction for FGM can be written as follows: 
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1
2

m

C
z
h

V    
                (1.1) 

where Vc represents the volume fractions of the ceramic material, h is the thickness of 

the FGM structure, z is the distance from the mid-plane of the FGM  2 2h z h  

, and m (0 ≤ m ≤ ∞) is a volume fraction grading index (VFGI). VFGI (m) indicates the 

material variation profile through the FGM thickness. Then, changing the value of 

VFGI produces an infinite number of composition distributions of both the constituent 

materials in the thickness direction. i.e., the z-axis as depicted in Figure 1.3. 

 

Figure 1.3: Variation of the volume fractions of the ceramic material (Vc) along with 

the non-dimensional thickness (z/h). 

Furthermore, the properties depend on the position to accurately represent the effective 

material properties of FGM. Hence, the power-law series is used to obtain the effective 

material properties of the FGM. The position-dependent effective material properties 

of the FGM fg(P ( ))z
, such as Young's modulus 

( ( ))fgE z
, density 

( ( ))fg z
, and 

Poisson's ratio 
( ( ))fg z

, can be written as follows:  

                       
   fg

1
P j f jj

P Vz


 
                        (1.2) 

where Pfg (z) is the effective material properties of the FGM along the thickness 

direction. The material properties and volume fractions of the constituent material j are 
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denoted by Pj and (Vf) j. In addition, the sum of volume fractions of the constituent 

materials of FGM is always unity and forms the equation as follows: 

           
 

1
1f jj

V

 

               (1.3) 

 
Figure 1.4: The variation of effective Young's modulus for the different VFGI of the 

FGM along with the non-dimensional thickness (z/h). 

The position-dependent effective material properties such as Young's modulus 
( ( ))fgE z

, density 
( ( ))fg z

, and Poisson's ratio
( ( ))fg z

of the FGM can be obtained 

from Eqs. (1.1) - (1.3) and are as follows: 

                 
 fg

1)
2

(
m

b btE E Ez Ez
h

   


 
                      (1.4a) 

  
 fg

1)
2

(
m

b bt
zz
h

     
 

 
          (1.4b) 

        
 fg

1)
2

(
m

b bt
zz
h

     
 

 
          (1.4c) 

where E, ρ, and ϑ are Young's modulus, density, and Poisson's ratio of each constituent 

material. The subscripts t and b represent the ceramic and metallic constituent materials, 

respectively, of the FGM.  
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Eqs. (1.4) illustrates that the FGM structure becomes a fully ceramic isotropic material 

for m = 0, while the structure becomes a fully metal isotropic material for the greater 

values of m (say 100). Further, employing the effective Young's modulus of FGM 

obtained from Eq. (1.4a), the variation of effective Young's modulus 
( ( ))fgE z

for the 

different compositions of the FGM along with the non-dimensional thickness (z/h) is 

depicted in Figure 1.4. 

1.3. APPLICATIONS OF THE FGM 

The FGM is the perfect solution for the increasing demand for applications 

necessitating differing properties from the same constituent materials. Sometimes, 

these components require high hardness on one side versus high ductility on the other. 

Also, it requires wear, heat, mechanical shock, hardness with toughness, and corrosion 

resistance properties. Attaining these combinations of various properties in a single 

material without losing the constituent materials' actual properties is possible with 

FGM. However, it is also equally important to note that processed FGM properties 

depend on constituent material properties and various processing techniques to attain 

desired properties. Therefore, FGM with gradient properties has potential applications 

in aerospace, energy, automotive, machine parts, cutting tools, optoelectronics, 

semiconductors bio‐systems, and building (Saleh et al. 2020), as shown in Figure 1.5.  

Aerospace applications: FGM can withstand a high thermal gradient or extreme 

degradation. Hence, FGM is suitable for rocket engines, spacecraft gear structures, heat 

exchange plates, and structural applications such as reflectors, solar panels, camera 

bunks, turbine wheels, turbine blade coating, nose covers, and space shuttles.  

Automobile applications: FGM with gradient properties must withstand thermal, 

pressure, and stresses. Hence, the components that use FGM in automotive include 

diesel pistons, cylinder liners, combustion chambers, racing car brakes, drive shafts, 

flywheels, leaf springs, and CNG storage cylinders. 

Machinery and equipment applications: FGM is widely used in the manufacturing 

sector to improve the corrosion resistance, hardness, strength, surface wear, thermal 

and wear resistance of cutting tools, forming molds, machine engine blocks, grinding, 

milling cutters, and turning tools. 
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Figure 1.5: Practical applications of FGM. 

Bio-medical applications: The biocompatibility of medical components whose bonding 

strength, corrosion, and abrasion resistance cannot be obtained through a homogeneous 

structure. Therefore, FGM is widely used in prosthetic devices, artificial teeth, and bone 

components. 

Defense applications: The essential characteristics of FGM are the ability to reduce the 

weight of vehicles and inhibit crack propagation. This property makes it useful in 

defense applications as a penetration-resistant material for armor plates and bullet-proof 

vests. The other defense components that use FGM are the guide rods, precision rollers, 

shafts, tubes, latches, axle housings, and firing pins. 

Energy and electronics application: The FGM with a thermal grade is used in various 

energy systems rather than running a single material at very high or low temperatures, 

as in thermal power generators, solar power components, energy conversion devices, 

capacitors, sensors, and electrodes. Further, FGM can also be used in batteries, 
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semiconductors (transistors, diodes, and optoelectronic devices), piezoelectric devices, 

and integrated circuits for electronics applications. 

1.4. ANALYSIS OF FGM STRUCTURES 

1.4.1. Nonlinear vibration and dynamic responses of the FGM structures 

Mechanical systems tend to vibrate during their operations; this leads to 

resonant amplitudes of the system. Identifying the system's resonant amplitude and 

frequency is essential to avoid system failure. The nonlinear free vibration analysis of 

the structures provides the necessary information on the system's resonant values. 

Numerous investigations carried out on the nonlinear free vibration analysis of FGM 

plates are encapsulated in this section. The researchers have presented many 

computational techniques, such as the analytical approach, approximate method, semi-

analytical approach, state-space approach, finite element (FE) approach etc., to evaluate 

the FGM structure's nonlinear frequency. Among them, the most important articles are 

discussed here in detail. 

Praveen et al. (1998) presented the finite element formulation to study the static and 

dynamic thermoelastic responses of FG plates subjected to pressure and thermal 

loading. For the formalism of equations of motion, the first-order shear deformation 

theory (FSDT) was combined with von Kármán strain displacement relations. Reddy 

(2000) continued the same work to construct an analytical and nonlinear finite element 

formulation based on third-order shear deformation theory (TSDT) and the FSDT. The 

thermomechanical coupling, time dependence, and von Kármán nonlinearity were 

considered for the analysis. The gradation of properties through the thickness of the 

plate was based on power-law distribution. The stresses and deflection are computed 

for FG plates with different ceramic and metal mixture phases. It can be observed that 

the gradation was vital in determining the responses of the FG plates. Yang and Shen 

(2002) investigate the free and forced vibration of initially stressed FG plates in the 

thermal environment. A semi-analytical approach was developed using Reddy's TSDT 

and von Kármán's geometric nonlinearity. The material properties depend on the 

nonlinear functions of the temperature and gradation through the plate's thickness 

according to the power-law distribution. The FG plate was initially subjected to in-

plane loads and had both immovable boundary conditions. The authors found that the 
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intermediate material properties of the FGM do not necessarily have the intermediate 

properties of the constituent materials for the dynamic response of the plate under 

thermal loadings. 

Huang and Shen (2004) developed the analytical solution to study the nonlinear free 

vibration and dynamic response of FG plates under the thermal environment. The 

temperature-dependent material properties are graded along the thickness direction 

according to power-law distribution in terms of the volume fraction of the material's 

constituents. The authors assumed that the temperature is constant along the plate's 

surface. The formalism is based on the higher-order shear deformation theory (HSDT) 

in conjunction with von Kármán's assumptions about thermal loading. The perturbation 

techniques are adopted to extract the nonlinear frequencies and dynamic responses of 

FG plates. Besides, Huang and Shen (2006) continued the same work by applying 

piezoelectric actuators in thermal environments. The piezoelectric layer's material 

properties are assumed to be independent of thermal loadings and electric fields. A 

semi-analytical approach was developed along with transverse and in-plane loads in the 

framework of classical laminate plate theory (CLPT) with the elastic foundation to 

investigate the large deflection and post-buckling response of FG rectangular plates by 

Yanga and Shen (2003). According to the power-law distribution method, the material 

properties are temperature-dependent and graded along the thickness direction in terms 

of the constituent material's volume fractions. 

The nonlinear transient response of the geometrically imperfect FG plates subjected to 

uniform thermal loading on the plate surfaces was investigated by Yang and Huang 

(2007). The authors utilized the HSDT with von Kármán sense for the analytical 

formulation. The geometric imperfections considered are sine, global, and local types. 

Yang et al. (2010) presented work on nonlinear vibration and nonlinear transient 

analysis of FG plates having a surface crack exited by transverse force. The material 

properties of the FGM were distributed exponentially across the plate's thickness. The 

formulation relied on TSDT, von Kármán-type assumptions, and the rotational spring 

model. Their results show that cracked FGM plates have lower natural frequencies, 

lower nonlinear to linear frequency ratios, and higher dynamic deflections than perfect 

FGM plates. Wang and Zu et al. (2017b) developed an analytical formulation by 
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considering the effects of both material and geometrical nonlinearities for the large 

amplitude motions. The authors investigated the FG rectangular plate's dynamic 

behavior moving with longitudinal velocity under thermoelastic loadings. The change 

in velocity of the plate has a significant effect on the resonance amplitude of the plate. 

Further, the authors (Wang and Zu 2017d) continued investigating the geometrically 

nonlinear oscillations of FG plates moving with longitudinal speed without thermal 

loading. The material property gradation is through the thickness direction and obeys 

the sigmoid law. The frequency response characteristics of FG plates with longitudinal 

speed were affected by the excitation amplitude, moving speed, and the in-plane 

pretension force.  

Chen et al. (2005; 2006) derived an analytical formulation for the nonlinear equations 

of motion for arbitrary initial stresses on FG plates based on CLPT to investigate the 

linear and nonlinear frequencies. The initial stress considered for the problem is a 

combination of pure bending stress and extensional stress. Galerkin's approximate and 

Runge-Kutta methods are adopted to solve the analytical formulation. The simple 

power-law distribution was used to obtain effective material properties. They 

concluded that the nonlinear frequency parameter increases with an increase in the 

vibration amplitude and volume fraction grading index due to initial tensile stresses. 

Woo et al. (2006) presented an analytical solution to obtain nonlinear free vibration of 

FG plates. The governing equations were obtained using von Kármán's assumptions for 

large transverse deflections and mixed Fourier series analysis under thermal loading. It 

can be seen that the natural frequency increases with an increase in the amplitude of 

vibration.  

Talha et al. (2011) investigated the nonlinear free vibration of FG plates by using 

nonlinear FE equations based on HSDT associated with Green-Lagrange's nonlinear 

relations considered for large deflections of the plate. The material property gradation 

occurs along the thickness direction, utilizing the power-law distribution. It can be 

observed from the results that the nonlinear frequency ratio decreases with an increase 

in the volume fraction grading index. In contrast, it increases with the rise in amplitude 

ratio. Alijani et al. (2011) presented an analytical solution for the nonlinear free 

vibration of FG rectangular plates coupled with thermal effects by adopting a multi-
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modal energy method, pseudo-arc-length, and collocation methods. The formulation 

was based on the FSDT and the von Kármán assumptions. Malekzadeh et al. (2015) 

proposed in-plane material gradation effects and found the nonlinear vibration of FG 

plates for different boundary conditions by considering the differential quadrature 

method. The formulation was based on the classical plate theory (CPT). Green's strain 

tensor and von Kármán assumptions were used to model the FG plate's geometrical 

nonlinearity. The effective material properties were graded along with the in-plane 

directions of the plate. Parida et al. (2018) studied the nonlinear vibration behavior of 

the FG plate, which rests on an elastic foundation in the thermal environment. The 

mathematical formulation is based on the HSDT using the Green-Lagrange type of 

geometric nonlinearity. The material properties depend on the temperature and are 

graded along the plate's thickness direction using the power-law distribution. The direct 

iterative technique is adopted to extract the nonlinear frequency of the system.  

1.4.2. Influence of geometrical non-uniformities on FGM structures 

The literature reveals that the vibration and dynamic response analyses of the 

FGM porous structures focused on geometrically uniform beams and plates. However, 

geometrically nonuniform functionally graded structures are found to have minimal 

space, even though it facilitates an engineer to have various alignment opportunities in 

case of obstacles. The skewness and variable thicknesses in the geometry of the FG 

structures significantly affect the variation of the stiffness. Hence, geometrical non-

uniformities considerably affect the nonlinear frequency and dynamic responses of the 

FG plates. Sundararajan et al. (2005) developed nonlinear FE governing equations by 

adopting von Kármán assumptions to examine the nonlinear free vibration 

characteristics of FG rectangular and skew plates under the thermal environment. The 

temperature distribution along the thickness direction was obtained by solving a one-

dimensional steady-state heat conduction equation. The material properties were graded 

according to the Mori-Tanak method. A FE method coupled with the direct iterative 

technique was adopted to solve the nonlinear governing equation obtained from 

Lagrange's equations of motion. The results show that the skewness in the FG plate 

increases the frequency ratio compared to the rectangular plate. Prakash et al. (2008) 

investigated FG skew plate's post-buckling behavior in a thermal environment. The 
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formulation was developed based on the shear deformable FE approach. The Mori-

Tanaka method was used to determine the effective material properties of the FG skew 

plates from the temperature-dependent material constituents. The nonlinear governing 

equations developed using von Kármán nonlinearity are solved by the Newton-Raphson 

method to examine the FG skew plate's nonlinear behavior under thermal load. The 

bifurcation type buckling of the FG skew plate was studied by considering the skew 

angles, temperature rise, volume fraction grading index, and geometrical parameters.  

Upadhyay and Shukla (2013) presented nonlinear static analysis and nonlinear dynamic 

responses of FG skew plates. The analytical solutions were derived using the HSDT in 

conjunction with von Kármán's nonlinear kinematics, and equations of motion were 

derived using Hamilton's principle. The skewness of the FG plate was described with 

the skew angle to the x-axis. The authors concluded that the material's functionally 

grading has significant efficacy for cases of high or moderate skew angles (less skewed 

plates). Zhang et al. (2015) investigated the large deflection analyses of the FG skew 

plates reinforced with carbon nanotubes (CNT) resting on the Pasternal elastic 

foundation using an element-free IMLS-Ritz method. The formulation for the 

moderately thick skew plate considered for the study was developed based on the FSDT 

with von Kármán assumptions. Besides, Lei et al. (2015) adopted the same approach 

for the buckling analysis of FG skew plates reinforced with carbon nanotube 

composites resting on the Pasternak foundation. The effect of CNT distributions, CNT 

ratios, elastic foundation, and geometrical parameters under various boundary 

conditions was studied on the FG-CNT plates' buckling behavior. Parida et al. (2017) 

presented the nonlinear free vibration behavior of FG skew plates under thermal 

environments. The nonlinear FE model developed was based on the HSDT and Green 

Lagrange's geometric nonlinearity subjected to thermal loading. The material properties 

are temperature-dependent and vary according to the power-law distribution method. 

The governing equations were developed using Hamilton's principle and solved using 

a direct iterative technique. Tomar and Talha  (2019) developed the nonlinear FE model 

to investigate the FG laminated skew plate's nonlinear vibration behavior under a 

thermal environment. The gradation occurs in the thickness direction, and material 

properties were considered temperature-dependent. The nonlinear FE equations were 
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obtained from the HSDT in conjunction with von Kármán kinematics. The governing 

equation was derived using the variational principle and extracted the nonlinear 

response using the direct iterative technique. 

Xu and Zhou (2009) studied the stresses and displacement distributions of the FG plates 

with varying thicknesses. The material's properties were obtained according to the 

exponential law. The analytical formulations were developed based on the three-

dimensional elasticity theory, and the Fourier series was used to solve the unknown 

expressions. Bouguenina et al. (2015) investigated the simply supported FG plate's 

buckling under thermal loading with linearly variable thickness. The numerical 

formulation was developed using the finite difference method in the framework of 

FSDT. The uniform temperature distribution is assumed to occur along the thickness 

direction. Sigmoid and power-law distribution methods obtain the FG plate's material 

properties variation. Thang et al. (2016) proposed an analytical approach to investigate 

the effects of the variable thickness on buckling and post-buckling behaviors of the 

imperfect FG plates resting on the elastic foundation. The effective material properties 

were governed by the sigmoid law and graded through the FG plate's thickness. The 

formulation was developed based on the CPT in conjunction with von Kármán 

nonlinearity and solved using the Galerkin method and Airy's stress function. The 

results show that the variable thickness considerably affects the FG plate's nonlinear 

behavior. Lieu et al. (2018a) presented the flexural and free vibrational analysis of the 

in-plane bi-directional FG plates with variable thickness. The numerical formulation 

was based on iso-geometric analysis in which a non-uniform rational B-spline 

(NURBS) surface represents the volume fraction grading index and the plate's varying 

thickness. Power law distribution method for symmetrical and asymmetrical models 

were used to characterize the inhomogeneity of in-plane material. 

Minh et al. (2019) examined the FG plate's stability with an exponentially variable 

thickness with a central crack. A FE formulation was developed based on the TSDT, 

and phase-field theory was used to model the defects. The properties were assumed to 

vary along the thickness direction according to the simple power-law distribution 

method. The effects of exponential variable thickness, crack angle, length, and volume 

fraction index of the FG plate on critical buckling values in the plate's instability were 
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investigated. Chen et al. (2020) presented a mathematical model and analyzed the three-

dimensional vibration behaviors of the variable thickness parallelogram plates with in-

plane porous FGM. The geometrical models were established in the framework of the 

isogeometric approach and the three-dimensional theory. The porosities are assumed to 

be distributed along the in-plane direction of FG plates by considering symmetrical, 

non-symmetrical, and uniform distributions. Kumar et al. (2021) performed the free 

vibration analysis of the porous FG plates resting on an elastic foundation with variable 

thickness. The analytical formulation was based on the FSDT, and Hamilton's principle 

was used to solve the governing equation. A simple customized power, exponential, 

and sigmoid law were used to obtain the porous FG's material properties in the thickness 

direction. 

1.4.3. Porosity influence on FGM structures 

Plates, beams, and shells made of FG porous structures are commonly used in 

structural design problems. The porosity generation in the FG structures is due to the 

difference in solidification temperature of each constituent material and the fabrication 

limitations that arise during FGM manufacturing. Many authors researched the 

nonlinear vibration analysis and dynamic responses of FG porous structures. Wang et 

al. (2017c) presented the nonlinear vibration of porous FG rectangular plates moving 

in a thermal environment. The material properties of imperfect FG plates were 

formulated according to the modified power-law distribution method, incorporating the 

porosities along the thickness direction. The equations of motion developed were based 

on D'Alembert's principle with von Kármán's nonlinearity. Galerkin's approach and the 

harmonic balance method were used to discretize and solve differential equations. 

Furthermore, the authors (Wang and Zu 2017a) continued their work investigating the 

nonlinear vibration of the thin porous FG plates. According to the sigmoid law, the 

effective material properties of the plate vary continuously in the thickness direction. 

Besides, the authors extended their work on porous FG with piezoelectric smart 

materials plates. The results show that the material's electric potential, volume fraction 

grading index, and porosity volume index affect the porous FG plates' resonant 

response and resonance region. Besides, Wang et al. (2017a) presented the nonlinear 

vibration of porous FG rectangular plates, and the solution was obtained by adopting a 
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harmonic balance method. It was found that the different porosity distribution affects 

the vibration characteristics of the FG plates.  

Gupta and Talha (2018) investigated the flexural response and nonlinear vibration of 

FG plates with porosities under a thermal environment. A finite element formulation 

was developed using HSDT with four unknowns. The temperature-dependent material 

properties of the porous FG plates constantly change in the thickness direction in terms 

of the modified rule of mixtures method. The temperature models used in the study are 

uniform, linear, nonlinear, exponential, and sinusoidal temperature rise. It can be 

observed that the effect of porosity has a significant impact on the metal and diminishes 

as ceramic content increases in the porous FG plates. Furthermore, the authors (Gupta 

and Talha 2017) continued their work on the initial geometrically imperfect FG plates. 

Two mathematical models, the Mori-Tanaka and Voigt models, were used to obtain the 

FG plate's material properties. They concluded that imperfect FG plates significantly 

affect the plate's nonlinear flexural and vibrational responses. Huang et al. (2019) 

focused on finding the nonlinear natural frequency and dynamic responses of FG 

porous plates with nonlinear elastic foundations. Evenly distributed and unevenly 

distributed porosities across the FG porous plate’s thickness were considered for the 

study. The material properties varied in the thickness direction according to the sigmoid 

distribution law. Based on the HSDT in conjunction with von Kármán nonlinearity, an 

analytical formulation for the equations of motion with the effects of nonlinear elastic 

foundations was developed. 

Phung-Van et al. (2017) investigated the porous FG nanoplate's geometrically size-

dependent nonlinear transient responses. The formulation was developed using the iso-

geometric FE method based on the HSDT using the von Kármán assumptions and the 

Newmark integration technique. The gradation was through the plate's thickness, and 

the material properties were based on the Mori-Tanaka model and the rule of mixtures. 

The non-local approach to the FG nanoplates' behaviors for different volume fraction 

grading indexes was studied. Further, the authors (Phung-Van et al. 2019) continued 

the same work and demonstrated that the geometrically nonlinear transient responses 

are affected by various geometrical and material parameters. The results revealed that 

the porous FG nanoplate's porosity distributions reduce the plate's stiffness. Besides, 
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the authors (Phung-Van et al. 2020) extended their work to investigate the nonlinear 

transient responses of the porous FG plates under hygro-thermo-mechanical loadings. 

The TSDT with von Kármán assumptions was used to formulate the governing 

equations in the iso-geometric approach. The effects of moisture concentration, change 

in temperature, porosity volume index, and geometrical parameters on porous FG plates 

were studied. It was found that nonlinear transient responses are significantly affected 

by the porosity volume index, moisture concentration, and changes in temperature 

gradient and dynamic load characteristics. Xie et al. (2020) investigated the nonlinear 

free vibration of rectangular porous FG plates based on the energy balance approach 

with local concordant deformation assumption. The formulation was developed using 

the von Kármán assumptions and Lagrange's equations to obtain the governing 

equations of the FG plates. They found that the linear frequency is more sensitive to the 

porosity volume index than the nonlinear frequency ratio. 

1.4.4. Analysis of bi / multi-directional gradation of FGM structures 

Conventional FGM has been restricted to altering the material characteristics in 

only one direction (Boggarapu et al. 2021; Jha et al. 2013; Swaminathan and Sangeetha 

2017). However, this approach may be ineffective when developing components for 

propulsion systems and space applications, which are frequently subjected to 

considerable temperature variations in various directions (Nemat-Alla 2003, 2009; 

Nemat-Alla et al. 2009). As a result, bi-directional FGM (BDFGM) was developed by 

adding another material into the traditional FGM to withstand the induced extreme 

thermal stresses in advanced engineering applications such as spacecraft and space 

shuttles. The BDFGM has inherited the advantages of the higher capability to reduce 

the thermal, mechanical, and residual stresses and contributes to a more flexible design 

than the traditional FGM by varying volume fractions of the constituent materials in 

two or more directions (Asemi et al. 2011; Van Do et al. 2017a; Nemat-Alla 2009; Nie 

and Zhong 2007; Shariyat and Alipour 2011; Sobhani Aragh and Hedayati 2012). As a 

result, the best understanding of the porous BDFGM structure is a critical challenge 

owing to the wide range of applications.  

Recently, a series of investigations were performed to study the linear vibration and 

dynamic analysis of the BDFGM hollow cylinder and cylindrical shells in the 
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framework of three-dimensional elasticity equations (Asgari and Akhlaghi 2011), 

analytical methods (Ebrahimi and Najafizadeh 2014; Gao et al. 2019; Lü et al. 2009), 

finite element methods (Asgari et al. 2009), and an iso-geometric approach (Chen et al. 

2020). Besides, a third-order shear deformation theory (TSDT) was used to analyze the 

buckling behavior of BDFGM thick cylindrical shells strengthened by axial stiffeners 

(Satouri et al. 2015). In addition, the meshfree radial point interpolation method (RPIM) 

was employed to extract the natural frequency of BDFGM thick cylindrical shells 

(Pilafkan et al. 2013).  

Furthermore, several investigations were carried out to analyze the BDFGM plate 

structures in the framework of three-dimensional elasticity equations, analytical 

methods, finite element methods, and an iso-geometric approach, along with several 

shear deformation theories (Adineh and Kadkhodayan 2017; Alinaghizadeh and 

Shariati 2016; Do et al. 2020; Van Do et al. 2017a; Ghatage et al. 2020; Lü et al. 2009; 

Tang et al. 2019; Truong et al. 2019). Many studies on BDFGM plates have been 

carried out to examine the flexural (Adineh and Kadkhodayan 2017; Behravan Rad 

2018; Esmaeilzadeh and Kadkhodayan 2019; Nemat-Alla 2009; Nemat-Alla et al. 

2009; Nie and Zhong 2007; Rad and Shariyat 2013; Shariyat and Mohammadjani 2014; 

Zafarmand and Kadkhodayan 2015), vibrational (Alipour et al. 2010; Chen et al. 2021; 

Hong 2020; Katiyar and Gupta 2021; Kermani et al. 2012; Lieu et al. 2018b; Nie and 

Zhong 2010; Ramteke and Panda 2021), and stability (Ahlawat and Lal 2016; Van Do 

et al. 2017b; Lal and Ahlawat 2017; Rad and Shariyat 2013) behavior. 

Additionally, investigations on BDFGM Euler Bernoulli/Timoshenko, along with 

nanobeams, have been carried out to examine the vibration behavior (Barati et al. 2020; 

Karamanlı 2018; Nejad and Hadi 2016; Nguyen et al. 2017; Tang and Ding 2019), 

nonlinear bending (Li et al. 2018), and buckling analysis (Nejad et al. 2016; Şimşek 

2016). Besides, Lezgy- Nazargah (2015) employed the NURBS-dependent iso-

geometric FE approach to examine the thermo-mechanical behavior of BDFGM beams. 

Furthermore several investigations into the bi-directional FG plates have been carried 

out to study the free vibrations and bending analysis based on the FE and iso-geometric 

approaches (Van Do et al. 2017a; Lieu et al. 2018a, 2019). The authors reported that 

extracting results for bi-directional FG plates is more complicated than for 
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unidirectional FG plates due to the gradation in two different directions. Besides, 

Allahkarami et al. (2020b; a) studied the dynamic buckling of bi-directional FG porous 

cylindrical and truncated conical shells. They concluded that porosity distributions 

could significantly affect the dynamic instability region in the FG structures.  

1.4.5. Analysis of FG saturated porous material structures 

Fabricating the perfect FGM without the entrapment of fluids in the pores is 

inevitable using modern-day manufacturing techniques. Hence, more research has been 

attributed to designing and analyzing the FG saturated porous material (FGSPM). 

Furthermore, Biot (DETOURNAY and CHENG 1993) was the first to develop the idea 

of saturated porosities in solid materials. 

However, most researchers overlooked the fluid phase's effect and concentrated on the 

impact of porosity and porosity distributions on the mechanical properties of FG porous 

structures under drained conditions. Recently, Soleimani-Javid et al. (2021) 

investigated the vibrational behavior of saturated porous cylindrical micro-shells made 

of FGM coupled with nano-composite coverings in a viscoelastic medium. Based on 

classical plate theory, Arshid and Khorshidvand (2018) investigated free vibration 

response analysis utilizing a differential quadrature approach for the saturated FG 

porous circular plate. Arshid et al. (2021) studied the vibrational analysis of sandwich 

curved microbeams mounted on an elastic base in a high-temperature environment. In 

addition, Arshid et al. (2019) studied the FG saturated porous circular plates relying on 

the visco-Pasternak elastic foundation for various shear deformations.  In the modified 

coupled stress theory paradigm, Amir et al. (2019) investigated the free vibration 

behavior of a saturated FG circular sandwich plate exposed to multi-physical stresses. 

Panah et al. (2019) numerically investigated a saturated porous FG circular plate's post-

buckling and nonlinear bending behavior under a thermal environment. Feyzi and 

Khorshidvand (2017) examined the axisymmetric post-buckling response of a saturated 

porous FG circular plate under uniform radial compressive force. The results were 

compared to those obtained using CPT and solved by the shooting method on a 

homogeneous isotropic plate. Jabbari et al. (2014b; a; 2016) examined the mechanical 

buckling of a saturated porous FG circular plate. They derived the closed-form solution 

of critical buckling loads using the CPT and HSDT. Babaei et al. (2021; 2020) used the 



20 
 

two-dimensional axisymmetric elasticity theory to analyze the static and dynamic 

behavior of the FG saturated porous rotating truncated cone. 

Additionally, the authors extended the work on the annular and elliptical sector 

saturated plates in the framework of 3D elasticity theory (Babaei et al. 2020c; a). The 

free vibration behavior of the cylindrical sandwich panel with FG saturated porous core 

was studied by Akbari et al. (2020). The formulation was based on linear Biot's theory 

in conjunction with the HSDT. The large amplitude deflection analysis of the FG 

saturated porous plate exposed to the transverse load was explored by Alhaifi et al. 

(2021). Ebrahimi and Habib (2016) investigated the natural frequencies and lateral 

deflections of rectangular plates with transverse variances in porosity with saturated 

fluid in pores. From the literature mentioned above, it can be accomplished that the 

fluid-saturated pores significantly affect the linear and geometrically nonlinear 

behavior of the FGSPM structures. 

1.4.6. Analysis of vibration and flutter characteristics of supersonic FGM 

structures 

Flutter is a type of dynamic instability that occurs while aircraft are in flight. It 

is a self-excited oscillation of the outer skin of an aircraft when subjected to supersonic 

airflow along its surface (Ibrahim et al. 2007a; Marzocca et al. 2011). The concept of 

flutter analysis of thin structures was first developed by Dowell (1966, 1970). 

Therefore, thin plates made of FGM are a common structural component due to their 

enhanced strength when subjected to thermal loads owing to aerodynamic or solar 

radiation heating.  

In recent decades, various authors have investigated the flutter characteristics of the 

supersonic FG structures. An application of analytical and numerical methods such as 

the Rayleigh-Ritz method, Galerkin method, differential quadrature method, and FE 

method has been used to obtain the solutions for the flutter behavior of the FG structures 

at high speeds (Grover et al. 2016; Ibrahim et al. 2009; Li and Song 2014; Marques et 

al. 2017; Navazi and Haddadpour 2011; Prakash and Ganapathi 2006; Torabi and 

Afshari 2019; Yazdi 2019; Zhou et al. 2018). Moreover, numerous researchers have 

investigated the temperature effects on the analysis of flutter behavior of the FG 
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structures, where thermal effects have significant influences on the static and dynamic 

behavior of the flights in cruise at supersonic and hypersonic regimes (Barati and 

Shahverdi 2017; Chen et al. 2020; Ibrahim et al. 2009; Khorshidi and Karimi 2019; 

Navazi and Haddadpour 2007; Prakash and Ganapathi 2006; Sohn and Kim 2009, 2008; 

Su et al. 2019). Hence, aero-thermo-elastic analysis of FG structures for various 

geometrical non-uniformities has been investigated by various authors. Further, the 

nonlinear flutter behavior of the supersonic and hypersonic FG panels has been 

investigated by several authors (Farsadi et al. 2021; Ibrahim et al. 2007b, 2008; Navazi 

and Haddadpour 2011; Prakash et al. 2012; Sohn and Kim 2009; Yu et al. 2016). The 

results reveal that the aerodynamic pressure depends on the large amplitude deflections 

of FG structures, and piston theory is the most commonly applied methodology for 

analyzing the flutter characteristics. Besides, the authors concluded that the structure is 

more stable for higher critical aerodynamic pressure. Additionally, a few researchers 

have investigated the FG porous structures' linear vibration and flutter behavior at 

higher speeds with yawed angles (Bahaadini et al. 2019; Barati and Shahverdi 2017; 

Khalafi and Fazilati 2022; Muc and Flis 2021; Zhou et al. 2018). The authors revealed 

that the porosity distributions significantly affect the flutter bounds of the FG porous 

structures. 

1.5. SCOPE AND OBJECTIVE OF THE DISSERTATION 

The exhaustive literature review emphasizes the growing attention of 

researchers and the significance of geometrical nonlinearities in designing and 

analyzing FGM structures. Besides, the literature concerning the porosities in the FGM 

structures suggests that porosity distributions and their volume significantly affect the 

plate's structural behavior. Further, the literature in section 1.4.2 suggests that the 

different geometrical non-uniformities substantially influence the FG’s structural 

behavior. Hence, several approaches, including analytical, semi-analytical, state-space, 

and FE models, are used to examine the structural behavior of FG plates. However, FE 

modeling is widely recognized for its simplicity, versatility, and efficacy. Consequently, 

FE modeling is appropriate for investigating FGM structures.  

The evaluation of the structural behavior of FGM plates through nonlinear free 

vibration and dynamic analysis has been extensively investigated. The literature on the 
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nonlinear analysis of the geometrically non-uniform FG plate with and without being 

subjected to thermal loads is limited. However, the open literature contains a few 

investigations on FG plates with geometrical non-uniformities, although the most 

prevalent uses of FG structures are in these hostile environments. Further, during the 

manufacturing of FGM plates, a generation of porosities cannot be avoided due to the 

limitations of fabricating techniques. It is difficult to completely infiltrate the first and 

second constituent materials into the middle of the FG plate without leaving any pores. 

However, the materials can be easily infiltrated with fewer porosities at the top and 

bottom portions of the plate. In addition, porosities may generate due to the difference 

in the solidification temperature of each constituent material (Wattanasakulpong et al. 

2012; Zhu et al. 2001). Consequently, the existence of porosities can weaken the 

strength of FGM. Therefore, it is essential to investigate the effect of porosities on the 

nonlinear vibration characteristics of FGM plates with geometrical non-uniformities. 

A literature review reveals that traditional FGM can only alter material characteristics 

in a single direction. However, this paradigm may be ineffective when developing 

components for advanced engineering applications, which are frequently subjected to 

considerable temperature changes in several directions (Nemat-Alla 2003, 2009; 

Nemat-Alla et al. 2009). Hence, there is enormous scope for studying bi/Multi-

directional FGM structures by adding another material into the traditional FGM to 

withstand the induced extreme thermal stresses that occur in multiple directions. The 

influence of the porosity distributions on the FG structures with different materials is 

primarily unknown and offers numerous opportunities for future research. This 

motivated the present research to explore the nonlinear analysis of the multi-directional 

FG porous structures (plates and shells). 

The literature shows that it is unavoidable to produce flawless FGM devoid of fluid 

trapped in the pores. Consequently, increasing research has been devoted to designing 

and analyzing FGSPM. However, most research ignored the effect of the fluid phase, 

and researchers focused on the influence of porosity and porosity distributions on the 

analysis of the FG porous structures under drained conditions. However, the quantum 

of research related to the nonlinear analysis of FGSPM structures using the finite 

element method is scarce. Further, dynamic instability such as flutter occurs while the 
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aircraft is on a supersonic cruise. It oscillates an aircraft's outer skin when subjected to 

supersonic airflow along its surface.  

Further, thin FG plates are a common structural component of aircraft and spacecraft 

due to their enhanced strength when subjected to thermal loads. Consequently, it is an 

important and challenging issue to consider the influence of saturated porosity 

distributions on the nonlinear analysis of FG plates under thermal loads for accurate 

design. This acts as a driving force to develop an FE formulation and evaluate the 

influence of fluid saturated porosities on the nonlinear analysis of FGSPM plates. 

The prominent aim of this dissertation is to develop a nonlinear FE formulation to 

investigate the influence of porosity distributions on the nonlinear behavior of FG plates 

and shells under different geometrical non-uniformities and thermal loads. Further, the 

evaluation is expanded to analyze two-directional FG plates and shells with porosities. 

In addition, the effect of saturated fluids on the nonlinear vibration analysis of the FG 

saturated porous plates with different external loads, such as thermal and aerodynamic 

loads, needs to be analyzed. In this regard, the following analyses have been carried 

out: 

• To develop a finite element formulation based on shear deformation theory for 

functionally graded porous plates and shells. 

• To investigate the influence of porosity distributions on the nonlinear behavior 

of functionally graded porous plates with geometrical non-uniformities. 

• To analyze the effects of nonlinear temperature variation on the nonlinear 

vibration and dynamic behavior of functionally graded porous skew plates.  

• To evaluate the influence of porosity and its distributions on the nonlinear 

analysis of two-directional FG porous plates and shells. 

• To study the effects of fluid saturated porosities on the nonlinear behavior of 

functionally graded saturated porous plates. 

• To perform the flutter characteristics of fluid saturated porosities on the 

nonlinear behavior of functionally graded saturated porous plates subjected to 

thermal loads. 
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1.6. CONTRIBUTIONS FROM THE DISSERTATION 

The following contributions have been made in the area of FG porous structures 

towards the preparation of the dissertation: 

• The nonlinear FE model is developed successfully based on the shear 

deformation theory in conjunction with von Kármán's strain-displacement 

relations to study the nonlinear vibration, dynamic, and flutter behavior of 

porous functionally graded plates and shells.  

• A detailed geometrically nonlinear analysis of FG porous plates is presented by 

considering the different porosity distributions and geometrical non-

uniformities. 

• A special emphasis has been placed on investigating the influence of 

temperature distribution across the thickness on the nonlinear behavior of the 

FG porous skew plates for various porosity distributions. 

• The influence of two-directional gradation in FG porous plates and shells 

comprised of four distinct materials and different porosity distributions is 

studied.  

• The influence of saturated porosities and their distributions on the nonlinear 

analysis of the FG saturated porous plates is investigated. 

• Special attention has been paid to investigating the effect of saturated porosities 

on the nonlinear vibration and flutter behavior of supersonic FG saturated 

porous plates subjected to thermal loads.  

1.7. OVERVIEW OF THE DISSERTATION BY CHAPTER  

The present dissertation investigates the influence of porosity distributions on 

nonlinear free vibration and dynamic responses of the FG porous plates and shells using 

nonlinear FE formulation. The effects of temperature, geometrical non-uniformities, 

two-directional gradation with four different materials, saturated porosities, and 

aerodynamic loading are thoroughly studied. In this regard, the total potential energy 

principle and thermo-poro-elastic constitutive equations of FG porous material have 

been used to derive the governing equations of motion. An emphasis has been placed 

on evaluating the effects of different porosity distributions, porosity volume index, 
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volume fraction grading index, thermal loads, skew angle, variable thickness, 

aerodynamic loading, Skempton coefficient, and geometrical parameters (thickness 

ratio, aspect ratio, boundary conditions), etc. 

This thesis comprises nine chapters. The first chapter presents a brief introduction and 

a comprehensive literature review on FG porous structures, bi-directional FG 

structures, FG saturated porous structures with geometrical non-uniformities, and 

temperature. Subsequently, the scope and objectives of the current research are stated 

based on the research gaps discovered during the literature review. 

In chapter 2, a detailed nonlinear FE formulation based on the FSDT and von Kármán’s 

geometric nonlinearity is presented to study the nonlinear responses of the FG porous 

skew plates. The position-dependent functional variation of effective material 

properties is determined using modified power-law series. The influence of the various 

porosity distributions, porosity volume index, volume fraction grading index, skew 

angle, thickness ratio, and aspect ratio on the nonlinear free vibration and transient 

responses of the FG porous skew plate is investigated.  

Chapter 3 is concerned with evaluating the influence of porosity distributions on the 

nonlinear free vibration analysis of the FG porous plates with different geometrical non-

uniformities. The different geometrical non-uniformities considered for the analysis are 

skewness and variable thickness, such as linearly, bi-linearly, and exponentially. This 

chapter extends the nonlinear FE formulation for FG porous plates analogous to the FG 

porous skew plates discussed in Chapter 2. The influence of porosity volume index, 

volume fraction grading index, taper ratio, skew angle, boundary conditions, thickness, 

and aspect ratio have also been evaluated. 

The effect of temperature distribution across the thickness on the nonlinear responses 

of the FG porous skew plate for different porosity distributions has been discussed in 

Chapter 4. The nonlinear FE formulation derived in Chapter 2 is extended to include 

the effect of thermal loading. The temperature-dependent elastic coefficients are 

considered for the analysis. The influence of geometrical non-uniformity such as skew 

angle, porosity volume index, volume fraction grading index, thermal loads, aspect and 

thickness ratio on the structural behavior of the FG porous skew plate is assessed.   
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The influence of two-directional gradation of the FG porous shells with four different 

materials on the nonlinear free vibration and central deflection has been discussed in 

Chapter 5. The plate's volume fraction gradation profiles are considered in thickness 

and longitudinal directions. The nonlinear FE formulation derived in Chapter 2 has been 

extended to present the nonlinear central deflection and consider the influence of two-

directional gradation with porosities. The effect of volume fraction grading profiles in 

different directions, porosity distributions, and porosity volume index for various 

geometrical parameters and shell geometries has been evaluated in detail. 

Chapter 6 encapsulates the comprehensive investigation of the influence of two-

directional gradation of the FG porous plates with four different materials on the 

nonlinear free vibration and central and transient deflection. The formulation derived 

in Chapter 5 has also been extended to FG porous plates. The effects of volume fraction 

grading profiles in different directions, porosity distributions, and porosity volume 

index for various geometrical parameters have been evaluated in detail. 

In Chapter 7, the predominant influence of the pore fluid pressure on the nonlinear 

vibration and dynamic responses of the supersonic FGSPM plates has been assessed. 

The formulation of nonlinear FE obtained in Chapter 2 is expanded to include the 

saturated-fluid effects in the constitutive equations. The influence of the various 

saturated porosity distributions, Skempton coefficient, porosity volume index, volume 

fraction grading index, thickness ratio, and aspect ratio on the nonlinear free vibration 

and dynamic responses of the supersonic FGSPM plate is investigated.  

The influence of fluid-saturated pores on the nonlinear vibration and flutter bounds of 

the supersonic FGSPM plate under thermal load has been encapsulated in Chapter 8. 

The formulation of nonlinear FE from Chapter 7 is enriched to include the effects of 

temperature and aerodynamic loading. The influence of the various saturated porosity 

distributions, aerodynamic loading, Skempton coefficient, porosity volume index, 

volume fraction grading index, thickness ratio, and aspect ratio on the nonlinear free 

vibration and flutter bounds of the supersonic FGSPM plate is evaluated.  
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The dissertation's significant findings are finally summarised in Chapter 9. Future 

possible work to enhance the applicability of FG porous structures has also been 

described. The appendix and reference list appear after the dissertation.  
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CHAPTER 2 

INFLUENCE OF POROSITY DISTRIBUTION ON 

NONLINEAR FREE VIBRATION AND TRANSIENT 

RESPONSES OF POROUS FUNCTIONALLY GRADED 

SKEW PLATES 

This chapter investigates the effects of porosity distributions on the nonlinear 

free vibration and transient responses of porous functionally graded skew (PFGS) 

plates. The effective material properties of the PFGS plate are obtained from the 

modified power-law series in which gradation varies through the thickness of the PFGS 

plate. A nonlinear FE formulation for the overall PFGS plate is derived by adopting 

FSDT in conjunction with von Karman's nonlinear strain displacement relations and 

the principle of virtual work. The direct iterative method and Newmark's integration 

technique are espoused to solve nonlinear mathematical relations. Influences of the 

porosity distributions and porosity volume indices on the nonlinear frequency 

responses of the PFGS plate are studied for various geometrical parameters with plate 

skewness. The effects of volume fraction grading index and skew angle on the plate's 

nonlinear dynamic behavior for various porosity distributions are illustrated in detail. 

The results indicate that the nonlinear frequency ratio is less sensitive to the increase 

in porosity volume index. The porosities in the gradation region and an increase in the 

plate's skewness significantly impact the nonlinear frequencies. In contrast, central 

deflections are more susceptible to evenly distributed porosity.  

2.1. INTRODUCTION 

FG plate is the amalgamation of two constituent materials with a gradation of 

material properties that varies from ceramic phase to metallic phase smoothly and 

continuously in a thickness direction. For a plate, if the gradation is through the 

thickness, the top and bottom surfaces have isotropic constituents of ceramic and metal 
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materials, respectively. The portion between the top and bottom surfaces has a varying 

composition of two constituent materials. Further, geometrical non-uniformities in the 

FG plates are significant in many engineering applications, as geometric modifications 

to a rectangular plate with uniform thickness affect the response properties. Despite 

tremendous developments in manufacturing techniques, the generation of porosities 

during the fabrication of FG plates cannot be avoided due to the limitations of 

fabricating techniques. Consequently, the existence of porosities can weaken the 

strength of FGMs. 

In this chapter, a nonlinear FE model based on the FSDT and concatenated with von 

Karman's assumptions to assess the nonlinear free vibration and transient responses of 

the PFGS plate is developed. The governing equations are derived using the principle 

of virtual work, and the nonlinear natural frequency of the PFGS plate is computed by 

using a direct iterative technique. Newmark's integration technique is employed to 

extract the dimensionless nonlinear transient results. The PFGS plate's effective 

material properties are derived from the modified power-law distribution in which 

gradation varies through the thickness of the plate in terms of the volume fraction of 

the material constituents. The predominant effects of porosity distributions and 

skewness on the PFGS plate on the large amplitude free vibration and nonlinear 

transient responses are thoroughly investigated. 

2.2. PROBLEM DESCRIPTION AND GOVERNING EQUATION 

2.2.1. Materials and Methods 

 The dimensional parameters of the PFGS plate are length a, width b, and 

thickness h, as shown in Figure 2.1. The plate's skewness is considered by rotating the 

y-axis at an angle Φ called the skew angle. The PFGS plate comprises two isotropic and 

homogeneous materials; metal and ceramic. The volume fractions of the material 

constituents of the PFGS plate change continuously in the thickness direction. i.e., z-

axis. The top surface of the PFGS plate is ceramic ( 2)z h , and the bottom surface is 

metal ( 2)z h  , as depicted in Figure 2.1.  
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Figure 2.1: The geometry of the PFGS plate. 

The effective material properties of the PFGS plate fg(P ( ))z
 are Young's modulus 

( ( ))fgE z , the density ( ( ))fg z , and the Poisson's ratio ( ( ))fg z  at any point in the plate 

are determined by employing the modified power-law distribution method (Srividhya 

et al. 2018) by using Eq. (2.1).  

                                               
 fgP

2 2
p p

c b mtz
e e

P V P V
   

      
                (2.1) 

where Pfg(z) is the effective material properties of the PFGS plate along the thickness 

direction. Pt and Pb are the ceramic and metal constituent material properties, 

respectively. Vc and Vm indicate volume fractions of the ceramic and metal, 

respectively. The ceramic material's volume fractions in the plate's thickness direction 

are represented identically to Eq. (1.1). ep (ep ˂˂ 1) is the porosity volume index and 
0pe 

 for a perfect (without porosity) FG skew plate. The sum of the volume fractions 

of ceramic and metal is always unity and forms the equations as follows: 

                                                               1c mV V                (2.2) 

From Eqs. (1.1), (2.1), and (2.2), the generalized effective material properties of the 

PFGS plate  (Kiran et al. 2018) can be written as  

    
     fgP

2
p

c dt b b t b

e
P P V P Pz P P

 
     

             (2.3) 
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where Pd is the generalized representation of types of porosity distributions (Pe, Pc, & 

Ptb). The schematic representation of the imperfect plate with different porosity 

distributions is shown in Figure 2.2.  

     
       (a) Pe         (b) Pc 

 

     (c) Ptb 

Figure 2.2: Porosity distribution in PFGS plate (a) Pe (b) Pc, and (c) Ptb. 

The different types of porosity distributions considered for the present analysis of the 

PFGS plate are given as follows: 

a) Evenly distributed porosity (EDP) (Pe): The porosities are distributed evenly across 

the PFGS plate thickness, as shown in Figure 2.2(a). Further, the effective material 

properties incorporating the evenly distributed porosities are obtained by putting 

the value 1dP 
 in Eq. (2.3), and the modified equation becomes as follows: 

                                                
     fgP

2t b b t b
p

c Pz
e

P P V P P
 

     
             (2.4) 

b) Centrally distributed porosity (CDP) (Pc): The high density of porosities is 

distributed at the middle portion of the PFGS plate, as shown in Figure 2.2(b). The 

effective material properties for the centrally distributed porosities can be expressed 

as follows: 

substituting 

2
1d

z
P

h
 

  
 

 
in Eq. (2.3), as follows: 
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     fg

2
P 1

2
p

ct b b t b

z
z

e
h

P P V P P P
  

       
                           (2.5) 

c) High porosity distribution near the top and bottom surface while narrow at the 

middle (Ptb): In this case, the high density of porosities is distributed nearer to the 

top and bottom surfaces while the low density of porosity distribution at the middle 

span of the PFGS plate as shown in Figure 2.2(c). The effective material properties 

for this type of porosity distribution, i.e., high porosity distribution closer to the top 

and the bottom surface while shallow at the middle span of the PFGS plate. The 

modified equation can be obtained as follows: 

substituting 

2
d

z
P

h
 

  
 

 
in Eq. (2.3), as follows: 

                                      
     fg

2
P

2
p

t b b t bc

e
P P V P P

z
h

Pz
  

       
                           (2.6) 

The plate is assumed to have no pores in the ideal FG skew (FGS) plate. As a result, 

the weight and stiffness of the FGS plate remain constant. In the evenly distributed 

porosity (Pe), all the pores are presumed to be uniformly distributed across the PFGS 

plate thickness. Hence, the plate's weight and stiffness reduce abruptly, as shown in 

Figure 2.2 (a). Besides, in centrally distributed porosity (Pc), all the pores are assumed 

to be unevenly proportionally distributed across the plate's thickness. Therefore, the 

weight and stiffness reduce steadily, as shown in Figure 2.2 (b). Further, a reversed 

trend of Pc is followed for the case of Ptb type of porosity distributions, as shown in 

Figure 2.3 (c). 

Additionally, the variation of Young's modulus as a function of different porosity 

distributions and VFGI of Si3N4 / SUS304 functionally graded porous (FGP) plates is 

shown in Figure 2.3. For the evenly distributed porosity (Pe) case, the variation profile 

of Young's modulus of Pe is the same as the ideal FG plate, but a decrease in amplitude 

can be observed. For the centrally distributed porosity (Pc) case, the amplitude matches 

the ideal FG plate at the top and bottom surfaces; meanwhile, it matches the Pe at the 

middle surface. It is because the porosity distribution is concentrated in the middle 

region and tends to zero at the top and bottom surfaces. In contrast, for the Ptb case, the 

amplitude matches with the ideal FG plate at the middle portion of the plate; meanwhile, 
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it matches with the Pe at the top and middle surface of the FGP plate. This is because 

the porosity distribution is concentrated at the top and bottom portion of the FGP plate 

and tends to zero at the middle surface. 

    
         (a) m = 0                 (b) m = 0.5 

 
     (c) m = 2       (d) m = 10 

Figure 2.3: Variation of effective Young's modulus of FGP plate made of Si3N4 / 

SUS304 for different porosity distributions and VFGI (m). 

2.2.2. Kinematics of deformations 

 The PFGS plate deformation's kinematics is based on the FSDT (Alimirzaei et 

al. 2019; Praveen and Reddy 1998; Tran et al. 2020). Accordingly, the displacements 
0u , 0v , and 0w  at any point in the overall plate along x, y, and z-coordinate directions, 

respectively, are given by 
     0 1, , ,xu x y u x y z x y   

     0 1, , ,yv x y v x y z x y   
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             0 1, ,w x y w x y              (2.7) 

where (u1, v1, and w1) are the generalized displacements at a reference point (x, y) lying 

on the midplane (z = 0) of the PFGS plate in the direction of x, y, and z, respectively. 
x
 and y are the corresponding generalized rotations of a normal to the reference point 

at the reference plane about the y-axis and x-axis, respectively. For the simplicity of 

analysis, the generalized displacements are separated into variables of translational 
 td and rotational  rd as follows: 

   1 1 1
T

td u v w ;    T

r x yd                                          (2.8) 

The state of strain at any given point in the overall PFGS plate can be expressed by the 

following strain vectors  εb and εs , where the  εb contains the in-plane and 

transverse normal strains and  εs  contains the transverse shear strains. 

      
   ε ε  ε  γ

T

b xx yy xy
; 

   ε γ  γ
T

s xz yz
           (2.9) 

Employing von Karman's nonlinear strain-displacement relations, the geometric 

nonlinearity of the plate is presented for the strain-displacement relations in terms of 

middle plane deformations as 

  

2
0 0ε 1

2xx
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x x
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2
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0 0 0 0γxy
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  
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0 0γxz

u w
z x

 
 
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0 0γ yz

v w
z y

 
 

            (2.10) 

Eq. (2.10) can be written as ε ε εL NL               (2.11) 

where the terms ε L and ε NL are the linear and nonlinear strains, respectively.  

substituting Eq. (2.7) into Eq. (2.10) gives 
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           (2.12) 
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The in-plane strain vectors and the transverse shear strain vectors at any point in the 

plate can be expressed as  
       ε ε ε εb tb rb tbNLz    ;      ε ε εs ts rs           (2.13) 

where the generalized strain vectors  εtb ,  εrb ,  εtbNL ,  εts and  εrs appeared in 

Eq. (2.13) are given by 
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T

rs x y             (2.14) 

The state of stress and the corresponding state of strain at any point in the overall PFGS 

plate are described by 

      εb b bQ z      ;      εs s sQ z               (2.15) 

where,    T

b xx yy xy   
;    T

s xz yz  
            (2.16) 

The terms appearing in Eq. (2.16) xx and yy are the normal stresses in the direction 

of the x-axis and y-axis, respectively. xy
 is the in-plane shear stress, xz and  yz are the 

transverse shear stresses. T indicates transpose,  bQ z  
 
and  sQ z  

 
are the elastic 

coefficient matrices and are the function of z- coordinate. 
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where sk
 is the shear correction coefficient. The value of the shear correction 

coefficient is considered as
2 12 . The elastic constants appearing in Eq. (2.17) can be 

expressed as 
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The in-plane stress resultants, moment resultants, and transverse force resultants acting 

on the plate can be expressed as  /2

/2

xx xxh

yy yy
h

xy xy

N
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   


;         (2.19) 

                                                  

/2

/2

h
y yz

s
x xzh

Q
Q dz

Q



   
    

   


                                 (2.20) 

Then, the strain energy of the overall PFGS plate can be expressed as follows: 

                  
 

/2

0 0 /2

1
2

a b h

xx xx yy yy xy xy xz xz yz yz
h

U dz dy dx         


      
    (2.21) 

Substituting Eqs. (2.13) and (2.17) into Eq. (2.21), and by employing the principle of 

virtual work (Kattimani and Ray 2015), the first variation of the total potential energy 

of the overall PFGS plate can be expressed as  

   
               

/2

0 0

..

/2

1
2

a b h
T T T T

p b b s s t t t
h

T d d dz d F dx dy         


       
  

  

                  (2.22) 

where   F 0 0 p T is externally applied surface traction acting over a surface area, p 

is transverse load, ρ is the mass density of the PFGS plate, and δ is the symbol that 

describes the first variation. 

2.2.3. Nonlinear finite element modeling of PFGS plate 

 The overall PFGS plate is discretized into eight-node iso-parametric 

quadrilateral elements with five degrees of freedom (three translational and two 

rotational) for each node. Making use of Eq. (2.8), the generalized displacement vectors 
 t nd

 
and  r nd

 associated with the nth (n = 1,2,3, …,8) node of an element can be 

written as  

  1 1 1

T

t n n n nd u v w    ;   T

r n x n y nd                (2.23) 

subsequently, the generalized displacement vectors at any given point within an 

element can be expressed as 

                  e
t t td N d

;     e
r r rd N d

          (2.24) 
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in which,  e
td

and  e
rd

 are the nodal generalized translational and rotational 

displacement vectors, respectively;  tN and  rN are the shape function matrices of the 

order  3 24 and  2 16 , respectively, and are expressed as 

 
         1 2 3 8...

TT T T Te e e e e
t t t t td d d d d     ; 

         1 2 3 8...
TT T T Te e e e e

r r r r rd d d d d     ; 

    1 2 3 8...t t t t tN N N N N    ;   1 2 3 8...r r r r rN N N N N    ; 

n It n n tN   and n Ir n n rN                        (2.25) 

where nn is the shape function in which the natural coordinates are associated with node 

n. It and Ir are the identity matrices. Now, from Eqs. (2.13) and (2.25), the generalized 

strain vectors at any point within an element are obtained as follows: 

    ε ß e
tb tb td

 ; 
     1 22
ε ß ß1 e

tbNL td
;     ε ß e

rb rb rd  

         ε ß e
ts ts td  and     ε ß e

rs rs rd                      (2.26) 

in which,  ßtb ,  1ß ,  2ß ,  ßrb ,  ßts
 and  ßrs

 are the generalized nodal strain 

displacement matrices and are given as follows: 

     1 2 3 8ß ß ß ß ... ßtb tb tb tb tb  ,      1 2 1 21 21 23 28ß ß ß ß ß ß ... ß ,  

       1 2 3 8ß ß ß ß ... ßrb rb rb rb rb  ,    1 2 3 8ß ß ß ß ... ßts ts ts ts ts ,  

    1 2 3 8ß ß ß ß ... ßrs rs rs rs rs              (2.27a) 

whereas,  ßtbn ,  1ß n ,  2ß n ,  ßrbn , ßtsn  and  ßrsn (n=1,2,3, …, 8) are the sub-

matrices and are given by 

    

 

n 0 0

ß n0 0

n n 0

n

n
tbn

n n

x

y

y x

 
 

 
 

   
  
     , 

 
1 1

1
1 1

0

0
ß

Tw w
x y

w w
y x

  
   

  
    , 

 2

n0 0

n0
ß

0

n

n
n

x

y

 
  

 
    ; 
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 

n 0

nß 0

n n

n

n
rbn

n n

x

y

y x

 
 

 
 

   
  
     , 

  n
ß

n0 0

0 0

n

tsn
n

x

y

 
  

 
     and 

  0
ß

n 0
n

n
rsn

n

 
  

     (2.27b) 

substituting Eqs. (2.13), (2.15), and (2.26) into Eq. (2.22) and applying the principle of 

minimum total potential energy, i.e., 0e
pT  , and simplifying, the elemental equations 

of motion for PFGS plate are as follows 

         Fe e e e e e e
t tt t tr r tM d K d K d            


          (2.28) 

      0e e e e
rt t rr tK d K d                   (2.29) 

where, 
eM   is the elemental mass matrix,

e
ttK   , 

e
trK   , 

e
rtK   and 

e
rrK   are the 

elemental elastic stiffness matrices and  Fe
t  is the elemental mechanical load vector. 

For the sake of simplicity, elemental bending stiffness matrices and shear stiffness 

matrices are developed separately and computed using the selective integration method.  

On simplification, the elemental matrices and vectors are obtained as follows: 

        
e e e e
t t t b t s t b N LK K K K                  ; 

e e e e
t r t r b t r b N L t r sK K K K                  

         

1
2

T T Te e e e
r t t rb t r b N L t r sK K K K                 ; 

e e e
r r r r b r r sK K K            ;   and  

   
     

0 0
F

ba Te
t tN f dx dy            (2.30) 

The elemental stiffness matrices, which correspond to bending and stretching 

deformations and transverse shear deformations, evolved in Eq. (2.30), and the various 

rigidity matrices and vectors appearing in the elemental matrices are presented as 

follows:  
    

0 0
ß Ð ß

a b Te
tb tb tb tbK dxdy      , 

    
0 0

ß Ð ß
a b Te

trb tb trb rbK dxdy       

           
    

0 0
ß Ð ß

a b Te
rrb rb rrb rbK dxdy       

                    1 2 2 1 2 1 1 20 0
ß Ð ß ß ß ß Ð ß ß ß1 Ð ß ß1

2 2
a b T T T T Te

tbNL tb tb tb tb tbK dxdy          
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       2 10 0
ß ß Ð ß

a b T Te
trbNL trb rbK dxdy      , 

1
2

Te e
rtbNL trbNLK K        

   
0 0

a b Te
t tM ymN N dxd       where,  

 
/2

/2

h

h

z dzm 


 
 

             
    

0 0
ß Ð ß

a b Te
ts ts ts tsK dxdy      , 

    
0 0

ß Ð ß
a b Te

trs ts trs rsK dxdy       

   
    

0 0
ß Ð ß

a b Te
rrs rs rrs rsK dxdy                         (2.31a) 

The various rigidity vectors and the rigidity matrices are given by 
   

/2

/2

Ð
h

tb b
h

Q dzz


   
 ; 

   
/2

/2

Ð
h

trb b
h

Q z dzz


   
; 

 
/2

2

/2

[Ð ]
h

rrb b
h

Q z dzz


   
; 

   
   

/2

/2

Ð s

h

ts
h

Q dzz


   
; 

   
/2

/2

Ð
h

s

h

trs Q dzz


   
 ;  

   
/2

/2

Ð
h

s

h

rrs Q dzz


   
   (2.31b) 

The elemental governing equations are assembled into the global space in a 

straightforward manner to obtain the global equations of equilibrium as follows: 

            Ft t t t t r rM X K X K X        


 

      0r t t r r rK X K X                           (2.32) 

in which,  M is the global mass matrix, t tK   , t rK   , r tK   and r rK  
 
are the global 

stiffness matrices, it may be noted that the stiffness matrices t tK   , t rK   and r tK  
 

include both global linear and nonlinear components.  F
 is the global mechanical load 

vector,  tX
 and  rX  are the global generalized translational and rotational 

displacement vectors, respectively. After enforcing the displacement boundary 

conditions, the global rotational degrees of freedom are reduced to obtain the global 

equilibrium equations concerning the global nodal translational degrees of freedom as 

follows: 

                      Ft tM X K X 
                   (2.33) 

in which,  

           1

t t t r r r r tK K K K K


                          (2.34) 
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Eq. (2.33) presents the nonlinear FE model for the PFGS plate. The eigenvalues and 

eigenvectors for the PFGS plate can be obtained using Eq. (2.33) and rearranged in the 

form as follows: 

         2 0K M X                        (2.35) 

Where,   and X are the natural frequency and corresponding eigenvector of the PFGS 

plate, respectively. The transient response of the plate can be obtained by incorporating 

Newmark's integration technique. Further, the nonlinear frequency-amplitude 

relationship is determined from Eq. (2.35) using a direct iterative method associated 

with FE formulations. 

2.2.4. Skew Boundary Transformation 

 It can be observed from the PFGS plate shown in Figure 2.1 that the boundary 

elements support two adjacent edges. These edges may or may not be parallel to the 

global coordinate axes (x, y, z). Therefore, the nodal displacements are defined in terms 

of axes of local coordinates. Then, the axes of local coordinates are transformed into 

the global coordinate axes. Further, the boundary conditions are defined in terms of the 

axes of the global coordinates. The transformation of coordinates between the global 

degrees of freedom and local degrees of freedom of each node can be written as (Garg 

et al. 2006; Vinyas et al. 2020) 
'

1L Ln s nT                (2.36) 

where, L n and 
'Ln are displacement vectors in the global edge and local edge coordinates 

at the nth node, respectively, and are given by 

      
T

1 1 1Ln n n n xn ynu v w      ; 
T' ' ' ' ' '

1 1 1Ln n n n xn ynu v w               (2.37) 

The transformation matrices for node n on the skew boundary is 
1

0 0 0
0 0 0

0 0 1 0 0
0 0 0
0 0 0

s

c s
s c

T
c s
s c

 
  
     
 
              (2.38) 

where,  =cos Φc and  =sin Φs . 
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It can be noted from the above transformation matrices that the transformation from the 

global coordinate system to the local coordinate system is unnecessary for the nodes 

not resting on the skew edges of the FG plate. In such a case, the transformation matrix 

has diagonal matrices, and the values assigned to the principal diagonal elements are 

equal to one. 

The transformation matrices for the complete element is  
 1s sT eye T               (2.39) 

where, eye is the identity matrices of the order  8 8 , the order of identity matrices is 

equal to the number of nodes in an element. The elemental mass and stiffness matrices 

of an element having the nodes which lie on skew edges are as follows 
T

e s e sk T k T                ; 
T

e s e sM T M T                        (2.40) 

where ek   and eM    are transformed stiffness matrix and mass matrix, respectively. 

2.3. Solution methodology  

2.3.1. Nonlinear frequency parameter analysis 

 The solutions to the vibration problems are obtained using the eigenvalue 

formulation while an iterative method is adopted to solve the nonlinear eigenvalue 

problems of the PFGS plate (Han and Petyt 1997; Sundararajan et al. 2005). Firstly, 

utilizing a standard eigenvalue extraction algorithm, Eq. (2.35) is used to extract the 

linear eigenvalue and eigenvectors from the global mass and stiffness matrices by 

neglecting nonlinear stiffness matrices. Next, by normalizing the mode shape vector, 

and then the normalized eigenvector is scaled up to the amplitude ratio. Thus, the 

desired value should be equal to the maximum displacement values. This provides the 

initial vector. The initial nonlinear vector is then obtained by computing the nonlinear 

stiffness matrices by numerical integration technique and then solved for the nonlinear 

eigenvalues and corresponding eigenvectors. These steps are repeated until the values 

of nonlinear frequency, and its mode shape converges (Bergan and Clough 1972) at a 

specified rate as given by 

         

1 0.0001itr itr

itr

 


 
 

            (2.41) 
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where the suffix itr indicates the iteration number. 

2.3.2. Nonlinear transient analysis 

 In the nonlinear dynamic analysis, the nonlinear governing equation (Eq. (2.33)) 

depends on both linear and nonlinear stiffness matrices. The nonlinear stiffness matrix 

( N LK ) depends on both unknown displacement (Xt) and time-domain (ti). Therefore, 

for the complete discretization of the nonlinear governing equation, the time derivatives 

appearing in Eq. (2.33) are approximated using Newmark's direct integration technique 

and Picard's methods. Here, the initial values of displacement, velocity, and 

acceleration are set to zero at time ti = 0. Now, determining the velocities and 

accelerations at (ń 1)i it t   can be written as  

      ń 1 1 ń 1 ń 2 ń 3 ń( )X a X X a X a X      
          (2.42) 

   ń 1 ń 4 ń 5 ń 1X X a X a X      
           (2.43) 

where, 
1 2

1
β i

a
t


  ; 2 1 ia a t   ; 

3
1 1

2β
a

 
  

   ;  4 1 η ia t      and 5 η ia t   ,  with 

the constants β= 0.25 and η=0.50 are taken. 

Substituting Eqs. (2.42) and (2.43) into Eq. (2.33), we get 

          ń 1 ń 1K X F    
 

                      (2.44) 

with,    1K K a M    


 ; 

               ń 1 ń 1 1 ń 2 ń 3 ńF F M a X a X a X      
         (2.45) 

It may be noted that all the parameters can be determined at the initial time ńi it t 
 

from Eqs. (2.44 - 2.45) except for the nonlinear stiffness matrix ( N LK ), which depends 

on the unknown displacement ń 1X  . Therefore, the nonlinear equation from Eq. (2.44) 

is re-approximated by adopting the Picard-type iteration method. After re-

approximation, the equation appears as follows: 

        
      1

ń 1ń 1 ń 1

itr itrK X X F
 

    
 

          (2.46) 

where the superscript itr indicates the number of iterations and successive iterations 

continue until the error of ń 1X   is satisfied as 
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1
ń 1 ń 1

ń 1

0.0001
itr itr

itr

X X

X


 






                      (2.47) 

2.4. RESULTS AND DISCUSSIONS 

 The PFGS plate is considered to investigate the effects of porosity distributions 

and skewness on the large amplitude free vibration and nonlinear transient responses. 

The PFGS plate consists of a ceramic surface at the top and a metallic surface at the 

bottom; in between, there is a gradation of these two constituent materials in 

conjunction with porosities. Validation studies have been conducted to evaluate the 

accuracy of the proposed FE model. Parametric studies are conducted for various 

parameters to evaluate the nonlinear frequency and dynamic response of the PFGS 

plate. 

Further, to decrease the number of unknowns and to avoid the rigid body motion, 

various boundary conditions simply supported (S), clamped (C), free (F), and their 

combinations employed in this study are shown as follows: 

Clamped (CCCC) :   1 1 1 0x yu v w        

Free (FFFF):    1 1 1 0x yu v w         

Simply supported (SSSS) :  1 0xu    ; 1 1 0yv w     at x = 0, a 

             1 0yv   ; 1 1 0xu w     at y = 0, b         (2.48) 
 

Table 2.1: The Properties of isotropic materials (Huang and Shen 2004). 

Materials Properties 

 E (N/m2) ϑ ρ (kg/m3) 

ZrO2 (Zirconium Oxide) 151.00×109 0.300 3000 

Ti-6Al-4V (Titanium Alloy) 105.70×109 0.298 4429 

Si3N4 (Silicon Nitride) 322.27×109 0.280 2370 

SUS304 (Stainless Steel) 207.79×109 0.280       8166 

 



45 
 

2.5. Convergence and validation 

Example 1: To examine the accuracy and effectiveness of the present FE model. The 

fundamental natural frequency parameter for a simply supported Si3N4 / SUS304 FG 

square plate for different volume fraction grading indexes (m) is compared with the 

results that Huang and Shen  (2004) reported for the similar geometrical parameters and 

material properties of the plate. It can be observed from Table 2.2 that the results 

obtained with the present model closely resemble the reference literature (Huang and 

Shen 2004). The mesh size of [8 × 8] is adequate based on the progressive mesh 

refinement to model the PFGS plate.  

Table 2.2: Comparing the fundamental natural frequency parameter for Si3N4 / SUS304 

FGM square plate (a = 0.2; b = 0.2; h = 0.025, SSSS). 

Sources 
α 

0.0 0.5 1.0 2.0 ∞ 

Reference (Huang 

and Shen 2004) 
12.495 8.675 7.555 6.777 5.405 

Present [2 ×2] 12.3944 8.5641 7.5151 6.7418 5.3616 

Present [4 ×4] 12.5893 8.6977 7.6357 6.8544 5.4459 

Present [6 ×6] 12.6166 8.7160 7.6519 6.8692 5.4577 

Present [8 ×8] 12.6251 8.7218 7.6569 6.8738 5.4614 

Difference in % 1.030 0.536 1.330 1.408 1.032 

 

Table 2.3: Comparison of fundamental frequency for an isotropic skew plate (a/b = 1, 

SSSS). 

a/h Sources Skew Angle (Φ) 

  0° 15° 30° 45° 

10 
Present 1.9441 2.0852 2.5250 3.3911 

Liew et al. (1993) 1.9311 2.0379 2.4195 3.3548 

5 
Present 1.8010 1.8888 2.1727 2.7318 

Liew et al. (1993)  1.7661 1.8560 2.1719 2.9129 
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Example 2: An additional validation study is carried out for the dimensionless natural 

frequency of the isotropic skew plate with skew angles of 0°, 15°, 30°, and 45° with 

SSSS boundary condition for the aspect ratio a/b = 1 and thickness ratio a/h = 5 and 10. 

It can be seen that the results reported in Table 2.3 display excellent agreement with the 

reference literature (Liew et al. 1993). 

Example 3: To validate further, a dimensionless frequency parameter for porous FG 

plates is determined and compared with the results reported in the literature by Rezaei 

et al. (2017) for the Al2O3 / Al FG porous plate with simply supported boundary 

conditions for various volume fraction grading index (m) and porosity volume index 

(ep). It can be witnessed from Table 2.4 that the results hold a firm agreement for both 

evenly distributed porosity (Pe) and centrally distributed porosity (Pc) with the reference 

(Rezaei et al. 2017).  

Table 2.4: Comparison of fundamental natural frequency for different porosity volume 

index for simply supported square Al2O3 / Al porous FGM plate. 

b/a ep 
Sources (Rezaei et 

al. 2017) 

         m = 0       m = 0.5         m = 1 

   Pe     Pc    Pe    Pc    Pe     Pc 

h/a = 0.05 

1 

0 
Rezaei et al.  0.0291  0.0291 0.0247  0.0247  0.0222  0.0222  

Present 0.0292 0.0292 0.0247 0.0247 0.0223 0.0223 

0.2 
Rezaei et al.  0.0300  0.0300  0.0246  0.0252 0.0210 0.0225  

Present 0.0296 0.0299 0.0242 0.0251 0.0207 0.0224 

0.4 
Rezaei et al.  0.0314 0.0310 0.0242 0.0259 0.0182 0.0227 

Present 0.0305 0.0308 0.0235 0.0257 0.0177 0.0225 

h/a = 0.1 

0.5 

0 
Rezaei et al.  0.0719  0.0719  0.0610  0.0610  0.0550 0.0550  

Present 0.0721 0.0721 0.0611 0.0611 0.0551 0.0551 

0.2 
Rezaei et al.  0.0742  0.0740  0.0607  0.0624  0.0521  0.0555  

Present 0.0732 0.0739 0.0599 0.0622 0.0513 0.0554 

0.4 
Rezaei et al.  0.0775  0.0765  0.0599  0.0640  0.0450  0.0561  

Present 0.0755 0.0762 0.0584 0.0636 0.0438 0.0557 
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Example 4: The nonlinear frequency ratio (NLFR) for different amplitude ratios 

Wmax/h is validated with the results reported by Sundararajan et al. (2005), and good 

agreement with the present model for the simply supported Si3N4 / SUS304 FG plate is 

observed as shown in Table 2.5. 

Table 2.5: Comparison of nonlinear frequency ratio (NLFR) (ωNL/ω) with different 

values of amplitude ratios for Si3N4 / SUS304 FGM square plate (a/h = 10, m = 1, and 

SSSS). 

Amplitude ratio 

(Wmax/h) 
0.2 0.4 0.6 0.8 1 

Present 1.0066    1.0663    1.1719    1.3132    1.4805 

Sundararajan et al. 

(2005) 
1.0063 1.0654 1.1707 1.3155 1.4789 

% Difference 0.029 0.084 0.102 0.174 0.108 

 

Example 5: Furthermore, to check the reliability and accuracy of the approach adopted 

for the analysis of nonlinear transient responses, the present method is also validated 

with the Chen et al. (2000) for an orthotropic plate with a = b = 0.250, h = 0.005, E1 = 

525 GPa, E2 = 21 GPa, G12 = G23 = G13 = 10.50 GPa, ϑ = 0.25, and ρ = 800 kg/m3 under 

the uniform step load of q0=1N/mm2. It can be observed from Figure 2.4 that in this 

case also, the dimensionless nonlinear transient deflection ( / )cw w h  exhibits a very 

close agreement compared to the reference (Chen et al. 2000). 

 
Figure 2.4: Comparison of dimensionless nonlinear transient deflection of the simply 

supported orthotropic plate. 
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2.6. Parametric Studies 

 Based on the comparison studies presented in section 2.3.1, the proposed 

approach extracts accurate results for carrying out the parametric studies on the PFGS 

plate. The influence of various boundary conditions like SSSS (simply supported), 

CCCC (clamped and clamped), SCSC (simply supported and clamped), SSSF (simply 

supported and free edge), and CCCF (clamped and free edge) are considered in the 

present analysis. The mesh size [8 × 8] used for the validation is adopted to extract the 

results for all parametric studies. The porous FG plate consists of two sets of 

combinations of materials: Si3N4/SUS304 and ZrO2/Ti-6Al-4V. The properties such as 

Young's modulus (E), density (ρ), and Poisson's ratio (ϑ) of these constituent materials 

are provided in Table 2.1. 

Further, the nonlinear frequency parameter (NLFP) of ZrO2 / Ti-6Al-4V PFGS plates 

for various geometrical parameters, the following non-dimensional NLFP (ωNL) 

equation is adopted. 2
c

NL
c

NL
a
h E

 
 

  
                         (2.49) 

where, c   and cE    are the density and Young's modulus, respectively, for the ceramic 

material.  

2.7. Nonlinear frequency analysis 

2.7.1.   Effect of volume fraction grading index (m) 

 In this section, the nonlinear free vibration characteristics of the PFGS plate are 

analyzed considering the parameters that influence the nonlinear frequency ratio 

(NLFR), such as skew angle, porosity distributions, porosity volume index, volume 

fraction grading index, and geometrical parameters of the plate. The results presented 

in Table 2.6 are focused on investigating the influence of porosity distributions for the 

skew angle Φ = 0°, volume fraction grading index (m = 0, 0.5, 1, 2, 5, and 10), and 

porosity volume index ep = 0.10 on the fundamental NLFR (ωNL/ω). It can be seen that 

for a given porosity distribution, increasing the value of volume fraction grading index 

(m) leads to a decrease in the NLFR till m = 2 whereas, from m = 5, it enhances. It 

indicates that the NLFR has the lowest values in the gradation region m = 1 to 5 for all 

porosity distributions. 
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Table 2.6: Effect of volume fraction grading index for different porosity distributions 

on the NLFR (ωNL/ω) of Si3N4 / SUS304 PFGS plate (a/b = 1, a/h = 50, ep = 0.10, Φ  = 

0°, and SSSS). 

Pd m 
Amplitude Ratio (Wmax/ h) 

0.2 0.4 0.6 0.8 1.0 1.2 

Pe 

0.0 1.0256 1.0989 1.2120 1.3557 1.5220 1.7049 

0.5 1.0091 1.0691 1.1729 1.3112 1.4752 1.6577 

1.0 1.0031 1.0569 1.1552 1.2889 1.4492 1.6286 

2.0 1.0011 1.0514 1.1453 1.2743 1.4297 1.6045 

5.0 1.0061 1.0593 1.1540 1.2818 1.4348 1.6062 

10 1.0122 1.0710 1.1703 1.3014 1.4567 1.6297 

Pc 

0.0 1.0251 1.0971 1.2083 1.3498 1.5137 1.6940 

0.5 1.0095 1.0687 1.1708 1.3066 1.4677 1.6471 

1.0 1.0040 1.0573 1.1542 1.2855 1.4430 1.6194 

2.0 1.0021 1.0523 1.1450 1.2719 1.4248 1.5964 

5.0 1.0068 1.0598 1.1531 1.2789 1.4294 1.5981 

10 1.0125 1.0705 1.1680 1.2969 1.4494 1.6194 

Ptb 

0.0 1.0264 1.1020 1.2183 1.3657 1.5361 1.7230 

0.5 1.0105 1.0733 1.1812 1.3240 1.4927 1.6792 

1.0 1.0046 1.0617 1.1644 1.3030 1.4684 1.6525 

2.0 1.0027 1.0565 1.1551 1.2893 1.4502 1.6303 

5.0 1.0077 1.0644 1.1639 1.2972 1.4558 1.6328 

10 1.0137 1.0760 1.1800 1.3166 1.4777 1.6565 

 
It is due to the decrease in ceramic composition as the volume fraction grading index 

increases and thus reduces the stiffness of the plate. As the stiffness of the plate 

decreases for higher values of volume fraction grading index, the linear frequency also 

decreases rapidly, and the difference between nonlinear frequency and linear frequency 

increases. Hence, the NLFR increases for higher volume fraction grading index values. 

Analogously, for a given value of m, the effect of porosity distributions on the NLFR 

follows the trend as centrally distributed porosity (Pc) < evenly distributed porosity (Pe) 

˂ Ptb type of porosity distribution. This signifies that the presence of porosity in the 
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gradation region has considerably less impact on the NLFR and that the distribution of 

porosities in the FG material can vary the NLFR. 

Furthermore, the influence of various volume fraction grading indexes on the NLFP 

(ωNL) for clamped and simply supported boundary conditions of the PFGS plate for all 

the porosity distributions is depicted in Figure 2.5. The geometrical parameters a/b = 1, 

a/h = 40, Φ = 30°, and ep = 0.2 are considered for the investigation. It can be observed 

from these figures that as the amplitude ratio increases, the NLFP also increases 

monotonically. Hence, it displays the hardening behavior characteristics. Further, the 

NLFP decreases with the increase in the volume fraction grading index m. It can also 

be seen that NLFP is maximal for the clamped case compared to simply supported 

boundary conditions of the plate. Moreover, each type of porosity distribution exhibits 

a different impact on influencing the NLFP. The Pc type of distribution has the highest, 

and the Ptb type of distribution has the lowest influence on the NLFP. The influence of 

porosity distributions on NLFP follows the trend as Pc > Pe > Ptb. The change in the 

NLFP is attributed to the decrease and variation of the stiffness of the plate due to the 

presence of a different type of porosity distribution, which significantly decreases the 

NLFP values as porosity volume increases. 

 
          (a) Pe 
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        (b) Pc 

 
          (c) Ptb 

Figure 2.5: Effect of different volume fraction grading indices on NLFP of ZrO2 / Ti-

6Al-4V PFGS plate for various porosity distributions and boundary conditions. 
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2.7.2. Effect of skew angle on porosity distributions 

The influence of porosity distributions for different skew angles on the 

fundamental NLFR (ωNL/ω) is shown in Table 2.7. The effect of porosity distributions 

(Pe, Pc, and Ptb) with porosity volume index ep = 0.10 for different skew angles (Φ = 0°, 

10°, 20°, 30°, and 40°) are considered. Further, the porous FG plate comprises of 

Si3N4/SUS304 with the boundary condition SSSS is considered for the analysis.  

Table 2.7: Influence of Skew angle for different porosity distributions on the NLFR 

(ωNL/ω) of Si3N4 / SUS304 PFGS plate. (a/b = 1, a/h = 50, ep = 0.10, m = 2, and SSSS). 

Pd Skew angle (Φ) 
Amplitude Ratio (Wmax/ h) 

0.2 0.4 0.6 0.8 1.0 1.2 

Pe 

0° 1.0011 1.0514 1.1453 1.2743 1.4297 1.6045 

10° 1.0022 1.0458 1.1266 1.2384 1.3744 1.5290 

20° 1.0038 1.0393 1.1039 1.1934 1.3034 1.4298 

30° 1.0047 1.0358 1.0913 1.1681 1.2626 1.3717 

40° 1.0051 1.0335 1.0835 1.1526 1.2378 1.3363 

Pc 

0° 1.0021    1.0523    1.1450    1.2719    1.4248    1.5964 

10° 1.0030    1.0465    1.1265    1.2368    1.3710    1.5234 

20° 1.0042    1.0395    1.1032    1.1916    1.3001    1.4246 

30° 1.0049    1.0356    1.0901    1.1655    1.2585    1.3657 

40° 1.0052    1.0331    1.0820    1.1497    1.2331    1.3295 

Ptb 

0° 1.0027    1.0565    1.1551    1.2893    1.4502    1.6303 

10° 1.0036    1.0500    1.1347    1.2510    1.3919    1.5513 

20° 1.0048    1.0424    1.1099    1.2030    1.3168    1.4472 

30° 1.0055    1.0382    1.0961    1.1758    1.2736    1.3860 

40° 1.0057    1.0356    1.0876    1.1592    1.2472    1.3486 

From Table 2.7, it can be observed that in the presence of porosities, the NLFR 

increases as the amplitude ratio Wmax/h increases for all porosity distributions and skew 

angles. This indicates that the amplitude ratio exhibits hardening-type behavior in the 

presence of porosity and the amplitude ratio determines the extent of nonlinearity. 

Where Wmax indicates the maximum flexural amplitude of the plate and h is the 
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thickness of the plate. If the amplitude ratio is set to zero, the porous FG plate undergoes 

linear vibration and gives a linear frequency.  

Table 2.8: Effect of thickness ratio for various skew angles on the fundamental NLFR 

(ωNL/ω) for different porosity distributions of Si3N4 / SUS304 PFGS plate (a/b = 1, m 

= 2, ep = 0.10, Wmax/ h = 1.0, and SSSS). 

Skew angle (Φ) a/h 
Porosity distributions (Pd) 

Pe Pc Ptb 

0° 

10 1.4485 1.4443 1.4692 
20 1.4338 1.4290 1.4543 
50 1.4297 1.4248 1.4502 
100 1.4291 1.4242 1.4496 

10° 

10 1.4311 1.4273 1.4508 
20 1.4052 1.4012 1.4241 
50 1.3744 1.3710 1.3919 
100 1.3385 1.3356 1.3538 

20° 

10 1.3888 1.3858 1.4061 
20 1.3474 1.3442 1.3631 
50 1.3034 1.3001 1.3168 
100 1.2764 1.2725 1.2882 

30° 

10 1.3411 1.3383 1.3555 
20 1.2962 1.2929 1.3089 
50 1.2626 1.2585 1.2736 
100 1.2493 1.2445 1.2593 

40° 

10 1.3008 1.2979 1.3126 
20 1.2603 1.2564 1.2708 
50 1.2378 1.2331 1.2472 
100 1.2300 1.2250 1.2389 

 

Further, it can also be observed from Table 2.7 that with the increase in skew angle, the 

NLFR decreases for all porosity distributions, porosity volume index, and volume 

fraction grading index. It may be due to the increase in linear frequency with an increase 

in stiffness of the plate as the skew angle increases. Hence, it reduces the NLFR. 

Besides, for a given skew angle, the effect of porosity distributions on the NLFR 
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follows the same trend as that followed in volume fraction grading index, such as the 

centrally distributed porosity (Pc) < evenly distributed porosity (Pe) ˂ Ptb type of 

porosity distribution. 

 
          (a) SSSS 

 
            (b) CCCC 

Figure 2.6: Effect of skew angle on NLFP of ZrO2 / Ti-6Al-4V PFGS plate for various 

porosity distributions and boundary conditions. (a/b = 1, a/h = 80, m = 2, ep = 0.3). 

0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

8

10

12

14

N
on

lin
ea

r 
fr

eq
ue

nc
y 

pa
ra

m
et

er
 (ω

 N
L
 )

Wmax/ h

                     Pc
  Φ = 0°   Φ = 15°
  Φ = 30°   Φ = 45°

        Pe
  Φ = 0°
  Φ = 15°
  Φ = 30°
  Φ = 45°

                   Pt b
 Φ = 0°    Φ = 15°
 Φ = 30°  Φ = 45°

SSSS

0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

8

10

12

14

16

18

20

N
on

lin
ea

r 
fr

eq
ue

nc
y 

pa
ra

m
et

er
 (ω

 N
L
 )

Wmax/ h

        Pe
  Φ = 0°
  Φ = 15°
  Φ = 30°
  Φ = 45°

                     Pc
  Φ = 0°     Φ = 15°
  Φ = 30°   Φ = 45°

                   Pt b
 Φ = 0°    Φ = 15°
 Φ = 30°  Φ = 45°

CCCC



55 
 

Additionally, the effect of the skew angle on NLFP of the PFGS plate for different 

porosity distributions (Pe, Pc, and Ptb) is shown in Figure 2.6. It can be seen that with an 

increase in skew angle, there is a reduction in plate area, due to which the stiffness of 

the porous plate increases. Hence, the rise in NLFP is observed. A significant increase 

in the NLFP can be noticed for the skew angle Φ = 45° as compared to lower skew 

angles (Φ= 0°, 15°, and 30°). Besides, NLFP is high for the clamped case compared to 

the corresponding values of the simply supported boundary conditions. However, there 

is a reduction in the plate's stiffness due to the presence of porosity compared to the 

perfect FG skew plate. Figure 2.6 show that the Pc type of porosity distribution gives 

the highest NLFP while the Ptb exhibits the lowest NLFP. This indicates that the 

presence of porosity in the gradation region increases the NLFP. 

2.7.3. Effect of thickness and aspect ratio 

The influence of side-to-thickness ratio (a/h) for different skew angles and 

porosity distributions on NLFR of simply supported Si3N4 / SUS304 PFGS plate (m = 

2, ep = 0.10, and Wmax/h = 1.0) is depicted in Table 2.8. It can be witnessed that the 

NLFR decreases as the thickness ratio increases. The physical significance of this 

behavior is the decrease of the plate's stiffness as the thickness of the plate decreases 

due to the presence of porosities. Besides, porosity distribution Pc has the lowest NLFR 

while Ptb exhibits the highest for all the cases of thickness ratios and skew angles (Pc < 

Pe < Ptb). It shows that porosities away from the gradation region have a more significant 

impact on the NLFR. For all the types of porosity distributions considered, a noticeable 

difference in the NLFR can be detected at the corresponding values of the thickness 

ratios.  

The influence of aspect ratio variation (b/a) for various skew angles and porosity 

distributions on the nonlinear behavior of simply supported PFGS plates has been 

studied, considering m = 2, ep = 0.10, and Wmax/h = 1.0. It can be noticed from Table 

2.9 that for an increase in aspect ratio, the NLFR decreases and then increases for lower 

skew angles. However, for higher skew angles (Φ = 30° and 40°), the NLFR increases 

gradually with an increase in aspect ratio. This is due to the decrease in linear 

frequencies as the aspect ratio increases with the presence of porosities; however, it is 

not presented here for the sake of brevity.  
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Table 2.9: Effect of aspect ratio for various skew angles on the fundamental NLFR 

(ωNL/ω) for different porosity distributions of Si3N4 / SUS304 PFGS plate. (a/h = 50, m 

= 2, ep = 0.10, Wmax/ h = 1.0, and SSSS). 

 
Skew angle 

(Φ) 
b/a 

Porosity distributions (Pd) 

Pe Pc Ptb 

0° 

0.6 1.4974 1.4905 1.5194 

0.8 1.4440 1.4387 1.4647 

1.0 1.4297 1.4248 1.4502 

1.2 1.4391 1.4338 1.4597 

1.4 1.4605 1.4546 1.4816 

10° 

0.6 1.4076 1.4034 1.4256 

0.8 1.3742 1.3708 1.3913 

1.0 1.3744 1.3710 1.3919 

1.2 1.3940 1.3900 1.4121 

1.4 1.4227 1.4180 1.4418 

20° 

0.6 1.2806 1.2774 1.2921 

0.8 1.2806 1.2776 1.2928 

1.0 1.3034 1.3001 1.3168 

1.2 1.3386 1.3347 1.3536 

1.4 1.3789 1.3742 1.3955 

30° 

0.6 1.1971 1.1935 1.2045 

0.8 1.2225 1.2186 1.2313 

1.0 1.2626 1.2585 1.2736 

1.2 1.3104 1.3057 1.3235 

1.4 1.3602 1.3548 1.3754 

40° 

0.6 1.1398 1.1363 1.1446 

0.8 1.1823 1.1782 1.1891 

1.0 1.2378 1.2331 1.2472 

1.2 1.2981 1.2928 1.3102 

1.4 1.3575 1.3514 1.3721 

 



57 
 

   
              (a) Pe, and SSSS       (b) Pc, and SSSS                   (c) Ptb, and SSSS 

    
        (d) Pe, and CCCC       (e) Pc, and CCCC        (f) Ptb, and CCCC 

Figure 2.7: Effect of porosity volume index for different skew angles on the NLFR of ZrO2 / Ti-6Al-4V PFGS plates with various 

porosity distributions and boundary conditions. 
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Furthermore, the lowest NLFR is observed for the porosity distribution Pc, while Ptb 

exhibits the highest for all the instances of aspect ratio (Pc < Pe < Ptb). It may be due to 

the increase in porosities as the aspect ratio increases and the degradation of material 

properties. 

2.7.4. Effect of porosity volume index (ep) 

The effect of various porosity volume indices for different skew angles on the 

NLFR of simply supported Si3N4/SUS304 PFGS plate for m = 1 at an amplitude ratio 

of Wmax/h = 1.0 is shown in Table 2.10. It can be observable that, irrespective of skew 

angles for the porosity distributions Pe and Pc, the NLFR decreases with an increase in 

porosity volume index while it increases for the Ptb type of porosity distribution. It can 

be due to the degradation of the properties of the PFGS plate in the presence of 

distributions of porosities and geometric nonlinearity in the gradation region. 

Comparatively, the Ptb type of porosity distribution has a higher value of NLFR for all 

the porosity volume indices, and Pc exhibits the lowest values of NLFR (Pc < Pe < Ptb). 

It implies that Pc
’s porosity distribution has less significance in varying NLFR for 

different porosity volume indices. Also, it can be noted that as the skewness of the plate 

increases, the NLFR decreases gradually for all types of porosity distributions. 

The influence of the porosity volume index for various boundary conditions on NLFR 

for Pe, Pc, and Ptb types of porosity distributions is revealed in Figure 2.7. The 

geometrical parameters used for the PFGS plate are a/b = 1, a/h = 40, and m = 1 for 

skew angles Φ= 0°, 25°, and 45°. It can be seen that the NLFR has higher values for 

SSSS boundary conditions compared to clamped boundary conditions for all porosity 

distributions. It signifies that the stiffness of the plate increases for clamped plate in the 

presence of porosities and leads to an increase in the linear frequency. Therefore, NLFR 

decreases for the clamped case and increases for the simply supported case. Further, the 

noticeable difference in NLFR is discerned in clamped boundary conditions for 

variation of porosity volume index and skew angles. Also, Pc has the lowest NLFR 

values than Pe and Ptb type of porosity distributions irrespective of skew angles. This 

infers that the presence of porosities in the middle portion of the plate has a lower 

impact on the NLFR. Besides, the NLFR decreases steadily as the porosity volume 

index and skew angle increase for both the boundary conditions. 
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2.7.5. Effect of boundary conditions 

The influence of porosity distributions on the NLFR for various boundary 

conditions is shown in Figure 2.8. The geometrical parameters used for the PFGS plate 

are a/b = 1, a/h = 10, m = 1, ep = 0.10, and Φ = 15°, and the porous material is ZrO2 / 

Ti-6Al-4V. It can be seen from Figure 2.8 that the NLFR values are minimum for the 

CCCF boundary condition and maximum for the simply supported condition. For the 

cases of both fully clamped and simply supported edges of the plate, the simply 

supported plates exhibit maximum values of NLFR compared to a fully clamped plate. 

The effect of boundary conditions on the NLFR follows the trend as SSSS > SSSF > 

SCSC > CCCC > CCCF. It may be attributed to porosity and increased linear 

frequencies for clamped boundary conditions.  

Table 2.10: Effect of porosity volume index for various skew angles on the NLFR 

(ωNL/ω) for different porosity distributions of simply supported Si3N4 / SUS304 PFGS 

plate. (a/h = 20, a/b = 1, m = 1, and Wmax / h = 1.0). 

Φ Pd Porosity volume index (ep) 

  0.0 0.05 0.15 0.25 0.35 0.45 0.55 

5° 

Pe 1.4568 1.4511 1.4384 1.4235 1.4056 1.3831 1.3531 

Pc 1.4568 1.4480 1.4302 1.4121 1.3935 1.3744 1.3548 

Ptb 1.4568 1.4601 1.4676 1.4766 1.4876 1.5012 1.5186 

15° 

Pe 1.4041 1.3988 1.3871 1.3738 1.3582 1.3389 1.3138 

Pc 1.4041 1.3964 1.3809 1.3651 1.3490 1.3325 1.3155 

Ptb 1.4041 1.4066 1.4125 1.4197 1.4286 1.4398 1.4543 

25° 

Pe 1.3416 1.3374 1.3283 1.3180 1.3059 1.2913 1.2728 

Pc 1.3416 1.3353 1.3227 1.3099 1.2967 1.2832 1.2693 

Ptb 1.3416 1.3438 1.3490 1.3553 1.3631 1.3730 1.3859 

35° 

Pe 1.2934 1.2905 1.2842 1.2768 1.2682 1.2578 1.2446 

Pc 1.2934 1.2883 1.2780 1.2675 1.2567 1.2456 1.2340 

Ptb 1.2934 1.2957 1.3010 1.3073 1.3151 1.3249 1.3374 

45° 

Pe 1.2605 1.2587 1.2545 1.2495 1.2435 1.2360 1.2267 

Pc 1.2605 1.2563 1.2477 1.2389 1.2298 1.2203 1.2104 

Ptb 1.2605 1.2630 1.2686 1.2752 1.2831 1.2927 1.3049 
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Also, the NLFR increases as the amplitude ratio increases for all the edge constraining 

cases of the PFGS plate. Besides, irrespective of boundary constraints, porosity 

distribution Ptb dominates the other two (Pe and Pc) by exhibiting the highest NLFR, 

and Pc displays the lowest NLFR (Pc < Pe < Ptb). This infers that the presence of 

porosities in the middle portion of the plate is less affected by boundary constraints than 

the porosity distribution Ptb on NLFR. 

2.8. Nonlinear transient deflection analysis 

 This section investigates the nonlinear transient deflection of the PFGS plate. 

The influence of skew angle, porosity distribution, porosity volume index, and volume 

fraction grading index on the nonlinear transient deflection is studied. The geometrical 

parameters of the plate a/h = 40, a/b = 1 under a uniform step load of q0=1 N/mm2 with 

a time step of 
51 10it

   being considered for the simply supported Si3N4/SUS304 

PFGS plate. The dimensionless central deflection parameter considered for the study is 
/c cw w h .  

 

Figure 2.8: Influence of porosity distributions on the NLFR for various boundary 

conditions for ZrO2 / Ti-6Al-4V PFGS plate. 
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2.8.1. Effect of porosity volume index 

The effects of porosity volume indices ep= 0.1, 0.2, and 0.3 on various skew 

angles Φ = 15°, 30°, and 45° for Pe, Pc, and Ptb types of porosity distributions are 

investigated. It can be observed from Figure 2.9 that the nonlinear transient deflection 

decreases with an increase in skew angle. This may be due to the increase in stiffness 

of the plate, which increases with an increase in the skew angle. Besides, the porosity 

volume index also influences deflection. As a result, the nonlinear deflection also 

increases for an increase in the porosity volume index. It can also be seen that for the 

Pe type distribution, the transient deflection is highest. In contrast, the Pc type 

distribution exhibits the lowest nonlinear transient deflection irrespective of skew 

angles. Analogously, for a given value of ep and skew angle, the effect of porosity 

distributions on the transient deflections follows the trend as Pc < Ptb ˂ Pe. Moreover, 

for the Pc type porosity distribution, a noticeable difference is discerned for all the 

porosity volume index values.  
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    (b) Pc 

 
              (c) Ptb 

Figure 2.9: Effect of porosity volume index on central deflection (wc / h) for various 

skew angles and porosity distributions on simply supported Si3N4 / SUS304 PFGS plate. 
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2.8.2. Effect of volume fraction grading index 

The effects of various volume fraction grading indexes m = 0, 0.5, 2, 10, and ∞ 

for Pe, Pc, and Ptb types of distributions on a transient deflection of the PFGS plate are 

shown in Figure 2.10. It can be seen that the nonlinear transient deflection increases 

with an increase in the volume fraction grading index (m). It is due to a decrease in the 

plate's ceramic composition as m increases, hence the reduction in the stiffness of the 

plate. Figure 2.10 reveals that the Pe type of distribution exhibits the highest, and the Pc 

type presents the lowest nonlinear transient deflections for each value of m and follows 

the trend as Pe > Ptb > Pc. Hence, the distribution of porosity influences the deflection 

of the PFGS plate. 
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   (c) Ptb 

Figure 2.10: Effect of volume fraction grading index on central deflection (wc / h) for 

different porosity distribution on the simply supported Si3N4 / SUS304 PFGS plate. 

2.9. CONCLUSIONS 
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PFGS plate increase with the increase in porosity volume index and volume fraction 

grading index. In contrast, it decreases with the rise in skew angle. Besides, the 

distributions of porosities exhibit a significant impact on reducing the stiffness of the 

PFGS plates.  
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CHAPTER 3 

EFFECT OF DIFFERENT GEOMETRICAL NON-

UNIFORMITIES ON NONLINEAR VIBRATION OF 

POROUS FUNCTIONALLY GRADED SKEW PLATES 

This chapter presents the investigation of nonlinear vibration analysis of 

tapered porous functionally graded skew (TPFGS) plate considering the effects of 

geometrical non-uniformities to optimize the thickness in the structural design. The 

TPFGS plate is studied with a thickness that varies linearly, bi-linearly, and 

exponentially. The nonlinear finite element formulation derived in chapter 2 is used for 

the analysis of TPFGS plates. The influence of the porosity distributions and porosity 

volume indices on the nonlinear frequency responses of the TPFGS plate for different 

skew angles and variable thicknesses is studied with various geometrical parameters. 

The influence of taper ratio, variable thickness, skewness, porosity distributions, 

gradation, and boundary conditions on the plate's nonlinear vibration is demonstrated. 

The nonlinear frequency analysis reveals that the geometrical non-uniformities and 

porosities significantly influence the porous functionally graded plates with varying 

thicknesses rather than the uniform thickness. Besides, exponentially and linearly 

variable thicknesses can be considered for the thickness optimizations of TPFGS plates 

in the structural design. 

3.1. INTRODUCTION 

Geometrically non-uniform FG porous plates are critical in various engineering 

applications, as geometric variations on the rectangular FG porous plate affect the 

variability of response characteristics. Hence, this chapter presents the influence of 

porosity distributions on the nonlinear free vibration analysis of the functionally graded 

porous plates with various geometrical non-uniformities. The effective material 

properties of the FG porous plate are computed using a modified power-law 
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distribution. A nonlinear FE model is developed in conjunction with von Karman's 

geometric nonlinearity, considering the porosities with the aid of Hamilton's principle 

under the framework of shear deformation theory. Further, the research focuses on the 

influence of the porosity distributions and the geometric non-uniformities such as 

skewness and various kinds of variable thickness, i.e., linearly, bi-linearly, and 

exponentially varying thickness. Besides, the influence of taper ratio, skewness, 

porosity distributions, gradation, and boundary conditions on the plate's structural 

behavior is investigated in detail. 

3.2. PROBLEM DESCRIPTION AND GOVERNING EQUATION 

3.2.1. TPFGS plate geometry 

The schematic diagram of the tapered porous functionally graded skew 

(TPFGS) plate is depicted in Figure 3.1. The dimensional parameters refer to a 

Cartesian coordinate with the x, y, and z coordinate axes spanning its length a, width b, 

and tapered thickness h (x, y).  

 
  (a)              (b)    

 

 (c) 
Figure 3.1: The geometry of the TPFGS plate. (a) Bi-linearly variable thickness, (b) 

Linearly variable thickness, and (c) Exponentially variable thickness. 
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The geometrical skewness of the TPFGS plate is measured by rotating the coordinate y 

at an angle Φ called the skew angle. The TPFGS plate consists of different types of 

variable thickness, viz. linearly (h (y)), bi-linearly (h (x, y)), and exponentially (h (y)) 

variable thickness, as shown in Figures 3.1 (a) – (c), where h is a function of both x and 

y coordinates for bi-linearly variable thickness, while h is a function of the only y 

coordinate for linearly and exponentially variable thicknesses. 

The effective material properties of the TPFGS plate represented are identical to 

Section 2.2.1 of Chapter 2. However, the evenly distributed and centrally distributed 

porosity distributions are considered for the present analysis. Besides, the tapered 

thickness h depends on the type of variable thickness, such as linearly (h (y)), bi-linearly 

(h (x, y)), and exponentially (h (y)) variable thickness, used in the analysis for the 

derivation of the formulation for TPFGS plate. In addition, the displacement equations, 

von Kármán's strain-displacement equations, the constitutive equations, the governing 

equations, the nonlinear FE formulation and solution methodologies are provided in the 

same manner as in Sections 2.2 and 2.3. 

3.2.2. Variable thickness 

(a) Bi-linearly variable thickness (h (x,y)): If non-uniformity of thickness changes 

in both the directions, i.e., x- and y- directions of the TPFGS plate as depicted in Figure 

3.1(a), i.e., taper ratio's β = ꭓ  ≠ 0. Then the function for bi-linearly variable thickness 

(h (x,y)) varies in both x and y directions can be stated as follows: 
0( , ) 1 1y xh x y h

b a
             

                             (3.1) 

whereas, 

0

0

abh h
h

 


 ; 

0

0

abh h
h

 


                (3.2) 

where β and ꭓ are taper ratios in the y and x directions, respectively;  h0 is the initial 

thickness of the bi-linearly tapered PFGS plate; hab is the plate's maximum thickness 

varies in both x and y directions, and x/a and y/b are the dimensionless parameters.  

(b) Linearly variable thickness (h(y)): If the non-uniformity of thickness is 

considered only in the y-direction as shown in Figure 3.1(b), i.e., taper ratio β ≠ 0, and 

ꭓ = 0. Then, the function for linearly variable thickness h (y) in the y-direction can be 

expressed as follows: 
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0( ) 1 yh y h
b

      
                (3.3) 

whereas, 

0

0

bh h
h

 


                     (3.4) 

where β is the taper ratio in y-direction; h0 is the initial thickness of the linearly tapered 

PFGS plate; hb is the maximum thickness of the TPFGS plate, which varies y-direction, 

and y/b is the dimensionless parameter. 

(c) Exponentially variable thickness (h(y)): If the non-uniformity of thickness 

varies exponentially in the y-direction as represented in Figure 3.1(c), i.e., taper ratio β 

≠ 0, and ꭓ = 0. Then, the function for exponentially variable thickness h (y) in the y-

direction can be expressed as follows: 
 log 1

0( )
y
bh y h e

     
  

                       (3.5) 

whereas, 

0

0

bh h
h

 


                     (3.6) 

where β is the taper ratio in y-direction; h0 is the initial thickness of the linearly tapered 

PFGS plate; hb is the maximum thickness of the TPFGS plate, which varies y-direction, 

and y/b is the dimensionless parameter. 

3.3. RESULTS AND DISCUSSIONS 

The TPFGS plate made of Si3N4 / SUS304 is considered to investigate the 

influence of porosity distributions coupled with geometrical non-uniformities on the 

nonlinear free vibration responses. The plate's top surface is tapered and consists of 

ceramic material, while its bottom metallic surface is flat. These materials, including 

porosities, are graded between the tapered top surface and the bottom surface. The 

TPFGS plate consists of Si3N4/SUS304 material with the properties of Young's 

modulus (E), Poisson's ratio (ϑ), and density (ρ) for the ceramic (Si3N4) and metal 

(SUS304) given in Table 2.1.  

Furthermore, numerous examples are demonstrated to study the significance of porosity 

distributions, porosity volume index, volume fraction grading index, aspect ratio, and 

span-thickness ratio for various skew angles and the taper ratios of different types of 

variable thicknesses on the large amplitude free vibrations of the TPFGS plate. 



71 
 

Table 3.1: Comparison of the square isotropic tapered plate with various boundary 

conditions. 

Boundary conditions a/h Methods Taper ratio (β) ω 

SSSS 100 

Mizusawa (1993) 

0.50 

24.543 

Manna (2012) 25.0594 

Kumar et al. (2021) 24.543 

Present 24.6638 

Mizusawa (1993) 

1 

29.184 

Manna (2012) 30.8965 

Kumar et al. (2021) 29.184 

Present 29.5910 

CCCC 

100 

Manna (2012) 

0.25 

40.309 

Kumar et al. (2021) 41.9982 

Present 40.5676 

5 

Manna (2012) 

0.25 

28.154 

Kumar et al. (2021) 30.976  

Present 29.1148 

CCSS 

100 

Manna (2012) 

0.25 

32.441 

Kumar et al. (2021) 32.3085  

Present 32.5515 

10 

Manna (2012) 

0.25 

29.339 

Kumar et al. (2021) 29.8564  

Present 29.8499 

 

3.3.1. Convergence and validation 

This section is devoted to verifying the proposed nonlinear FE formulation. The 

fundamental natural frequencies of a square isotropic tapered plate are compared with 

the earlier results (Kumar et al. 2021; Manna 2012; Mlzusawa 1993) for the span ratio 

(a / h0 ) 100, 10, and 5, and the taper ratio for linearly varying thickness (β) 0.25, 0.50, 

and 1.0. The mesh size of [8 × 8] is used based on progressive mesh refinement. The 

results in Table 3.1 shows an excellent agreement with the reference literature (Kumar 

et al. 2021; Manna 2012; Mlzusawa 1993). Further, all validation studies presented in 
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section 2.5 except Example 5 have also been implemented for the present analysis. The 

nonlinear FE formulation derived in the present study is used for the parametric studies 

on porosity distribution's influence on TPFGS plates with variable thickness and 

skewness. The mesh size [8 × 8] used for the validation is adopted to extract all 

parametric results. 

3.3.2. Numerical results 

This section presents a study on the nonlinear to linear frequency ratios (NLFR) 

(ꞷNL /ꞷ) of the TPFGS plate with geometrical skewness for different taper ratios of 

various non-uniform thicknesses (linear, bi-linear, and exponentially varying 

thicknesses). Besides, the plots illustrate the non-dimensional nonlinear frequency 

parameter (NLFP) of the TPFGS plate with different boundary conditions, taper ratios, 

skew angles, porosity volume index, variable thicknesses, and porosity distributions. 

Unless otherwise stated, the following dimensionless equation is considered for the 

parametric study of the square Si3N4/SUS304 TPFGS plate to extract NLFP:  

  
2

c 0
22 12 ( ) / E1NL NL c ca h                 (3.7) 

3.3.3. Effect of volume fraction grading index and taper ratio 

This section presents a study on the nonlinear frequency ratios (NLFR) (ꞷNL /ꞷ) 

of the TPFGS plate with geometrical skewness for different taper ratios of various non-

uniform thicknesses such as linear, bi-linear, and exponentially varying thicknesses. 

Tables 3.2 – 3.4 present the NLFR for different taper ratios for each type of variable 

thickness and the plate's porosity distributions. The influence of a porosity distribution 

is computed for a different value of the volume fraction grading index (m = 0, 0.5, 1, 2, 

5, 10). The taper ratios for both the linearly and exponentially varying thicknesses are β 

= 0, 0.25, 0.50, and 1.0 meanwhile, the taper ratio for bi-linearly varying thickness is β 

= ꭓ = 0, 0.25, 0.50, and 1.0.  

A comparative study of two types of porosity distribution Pe and Pc, is presented for the 

plate edge supported by SSSS boundary conditions. It is depicted from the results that 

with an increase in the volume fraction index (m) for both Pe and Pc, the NLFR decreases 

till m = 2, whereas the trend reverses from m = 5. The same trend is noticed for uniform 
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plate thickness and all variable plate thickness types, irrespective of taper ratios and 

porosity distributions. It may be due to the decrease in ceramic composition with an 

increase in the volume fraction grading index, leading to a decrease in the plate's 

stiffness, and the frequency is proportionally dependent on it.  

Table 3.2: Effect of volume fraction grading index on the NLFR (ꞷNL /ꞷ) of linearly 

variable thickness Si3N4 / SUS304 TPFGS plate for the different taper ratio (β).  (a/b = 

1, h0 = 1/10, ep = 0.1, Φ = 0°, ꭓ = 0, and SSSS). 

m Wmax/ h 
 0.2 0.4 0.6 0.8 1.0 
 Pe Pc Pe Pc Pe Pc Pe Pc Pe Pc 

β = 0 
0 1.0267    1.0262    1.1031    1.1014    1.2204    1.2170    1.3688    1.3633    1.5397    1.5320 

0.5 1.0102    1.0107    1.0733    1.0731    1.1816    1.1798    1.3248    1.3207    1.4934    1.4866 
1 1.0042    1.0051    1.0612    1.0618    1.1640    1.1632    1.3027    1.2998    1.4677    1.4622 
2 1.0022    1.0033    1.0557    1.0568    1.1542    1.1542    1.2882    1.2864    1.4485    1.4443 
5 1.0072    1.0080    1.0636    1.0642    1.1629    1.1623    1.2958    1.2933    1.4537    1.4490 
10 1.0133    1.0136    1.0753    1.0749    1.1790    1.1771    1.3152    1.3111    1.4753    1.4687 
β = 0.25 
0 1.0270    1.0266    1.1042    1.1026    1.2227    1.2194    1.3724    1.3671    1.5447    1.5372 

0.5 1.0106    1.0110    1.0745    1.0743    1.1840    1.1823    1.3286    1.3246    1.4985    1.4920 
1 1.0045    1.0054    1.0624    1.0630    1.1664    1.1657    1.3065    1.3038    1.4729    1.4676 
2 1.0025    1.0036    1.0569    1.0580    1.1567    1.1567    1.2921    1.2904    1.4538    1.4498 
5 1.0075    1.0083    1.0648    1.0654    1.1653    1.1648    1.2996    1.2974    1.4589    1.4544 
10 1.0136    1.0140    1.0765    1.0762    1.1814    1.1796    1.3190    1.3150    1.4805    1.4741 
β = 0.50 
0 1.0273    1.0269    1.1055    1.1039    1.2254    1.2221    1.3765    1.3714    1.5503 1.5429 

0.5 1.0109    1.0114    1.0758    1.0757    1.1867    1.1850    1.3328    1.3290    1.5042 1.4979 
1 1.0049    1.0058    1.0637    1.0644    1.1692    1.1686    1.3108    1.3082    1.4787 1.4769 
2 1.0029    1.0040    1.0582    1.0594    1.1594    1.1596    1.2964    1.2949    1.4597 1.4560 
5 1.0079    1.0087    1.0662    1.0668    1.1681    1.1676    1.3040    1.3018    1.4649 1.4606 
10 1.0140    1.0143    1.0778    1.0775    1.1841    1.1824    1.3233    1.3195    1.4864 1.4803 
β = 1.0 
0 1.0281    1.0277    1.1085    1.1070    1.2314    1.2284    1.3860    1.3812    1.5633 1.5565 

0.5 1.0117    1.0122    1.0789    1.0788    1.1930    1.1915    1.3426    1.3391    1.5173 1.5117 
1 1.0057    1.0066    1.0668    1.0675    1.1755    1.1751    1.3208    1.3185    1.4921 1.4877 
2 1.0037    1.0048    1.0613    1.0626    1.1658    1.1661    1.3065    1.3053    1.4734 1.4701 
5 1.0087    1.0095    1.0692    1.0700    1.1744    1.1742    1.3140    1.3122    1.4786 1.4749 
10 1.0148    1.0152    1.0809    1.0807    1.1904    1.1889    1.3332    1.3298    1.5000 1.4975 
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Table 3.3: Effect of volume fraction index on the NLFR (ꞷNL /ꞷ) of bi-linearly variable 

thickness Si3N4 / SUS304 TPFGS plate for the different taper ratio (β = ꭓ).  (a/b = 1, h0 

= 1/10, ep = 0.1, Φ = 0°, and SSSS). 

m Wmax/ h 
 0.2 0.4 0.6 0.8 1.0 
 Pe Pc Pe Pc Pe Pc Pe Pc Pe Pc 
β = ꭓ = 0          
0 1.0267    1.0262    1.1031    1.1014    1.2204    1.2170    1.3688    1.3634    1.5396 1.5320 

0.5 1.0102    1.0107    1.0733    1.0731    1.1816    1.1797    1.3248    1.3207    1.4933 1.4867 
1 1.0042    1.0051    1.0612    1.0618    1.1640    1.1632    1.3027    1.2998    1.4677 1.4622 
2 1.0022    1.0033    1.0557    1.0568    1.1542    1.1542    1.2883    1.2864    1.4485 1.4443 
5 1.0072    1.0080    1.0636    1.0642    1.1629    1.1623    1.2958    1.2933    1.4536 1.4490 
10 1.0133    1.0136    1.0753    1.0749    1.1790    1.1771    1.3152    1.3111    1.4753 1.4687 
β = ꭓ = 0.25         
0 1.0274    1.0270    1.1057    1.1041    1.2257    1.2225    1.3770    1.3719    1.5509 1.5437 

0.5 1.0110    1.0114    1.0760    1.0759    1.1871    1.1854    1.3333    1.3295    1.5050 1.4987 
1 1.0049    1.0059    1.0639    1.0645    1.1695    1.1689    1.3114    1.3088    1.4795 1.4745 
2 1.0029    1.0040    1.0584    1.0596    1.1598    1.1599    1.2970    1.2954    1.4605 1.4568 
5 1.0079    1.0087    1.0663    1.0670    1.1684    1.1680    1.3045    1.3024    1.4656 1.4615 
10 1.0140    1.0144    1.0780    1.0777    1.1845    1.1827    1.3238 1.3200    1.4872 1.4811 
β = ꭓ = 0.50         
0 1.0284    1.0280    1.1093    1.1079    1.2331    1.2301    1.3887    1.3840    1.5670 1.5603 

0.5 1.0119    1.0125    1.0798    1.0797    1.1947    1.1933    1.3453    1.3419    1.5213 1.5156 
1 1.0059    1.0069    1.0676    1.0684    1.1772    1.1769    1.3235    1.3213    1.4959 1.4916 
2 1.0039    1.0051    1.0622    1.0634    1.1675    1.1680    1.3093    1.3082    1.4771 1.4741 
5 1.0089    1.0098    1.0701    1.0709    1.1762    1.1760    1.3168    1.3151    1.4824 1.4789 
10 1.0150    1.0154    1.0817    1.0816    1.1922    1.1907    1.3360    1.3326    1.5037 1.4983 

β = ꭓ = 1.0         
0 1.0315    1.0312 1.1208    1.1197 1.2563    1.2541 1.4253         1.4218 1.6101 1.6001 

0.5 1.0150    1.0157 1.0914    1.0918 1.2185    1.2178 1.3827    1.3806 1.5725 1.4347 
1 1.0090    1.0101 1.0794    1.0805 1.2012    1.2017 1.3683    1.3604 1.4302 1.4292 
2 1.0070    1.0083 1.0740    1.0756 1.1917    1.1929 1.3474    1.3476 1.5315 1.5285 
5 1.0120    1.0130 1.0819    1.0830 1.2003    1.2009 1.3550    1.3547 1.5381 1.5336 
10 1.0181    1.0186 1.0935    1.0937 1.2161    1.2154 1.3738    1.3718 1.5487 1.4295 

 
As a result, a rapid decrease in the linear frequency is observed for higher values of the 

volume fraction grading index, leading to an increase in the difference between 

nonlinear frequency and linear frequency. Hence, the NLFR increases for higher values 

of volume fraction grading index. 
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Table 3.4: Effect of volume fraction index on the NLFR (ꞷNL /ꞷ) of exponentially 

variable thickness Si3N4 / SUS304 TPFGS plate for the different taper ratio (β).  (a/b = 

1, h0 = 1/10, ep = 0.1, Φ = 0°, ꭓ = 0, and SSSS). 

m Wmax/ h 
 0.2 0.4 0.6 0.8 1.0 
 Pe Pc Pe Pc Pe Pc Pe Pc Pe Pc 

β = 0 
0 1.0267    1.0262    1.1031    1.1014    1.2204    1.2170    1.3688    1.3633    1.5397    1.5320 

0.5 1.0102    1.0107    1.0733    1.0731    1.1816    1.1798    1.3248    1.3207    1.4934    1.4866 
1 1.0042    1.0051    1.0612    1.0618    1.1640    1.1632    1.3027    1.2998    1.4677    1.4622 
2 1.0022    1.0033    1.0557    1.0568    1.1542    1.1542    1.2882    1.2864    1.4485    1.4443 
5 1.0072    1.0080    1.0636    1.0642    1.1629    1.1623    1.2958    1.2933    1.4537    1.4490 
10 1.0133    1.0136    1.0753    1.0749    1.1790    1.1771    1.3152    1.3111    1.4753    1.4687 
β = 0.25 
0 1.0270    1.0265    1.1042    1.1025    1.2227    1.2193    1.3723    1.3670    1.5445    1.5370 

0.5 1.0105    1.0110    1.0745    1.0743    1.1840    1.1822    1.3284    1.3244    1.4983    1.4918 
1 1.0045    1.0054    1.0623    1.0629    1.1664    1.1657    1.3064    1.3036    1.4727    1.4674 
2 1.0025    1.0036    1.0568    1.0579    1.1566    1.1566    1.2920    1.2902    1.4536    1.4496 
5 1.0075    1.0083    1.0648    1.0654    1.1652    1.1647    1.2995    1.2972    1.4587    1.4543 
10 1.0136    1.0140    1.0764    1.0761    1.1813    1.1795    1.3188    1.3149    1.4803    1.4740 
β = 0.50 
0 1.0273    1.0269    1.1053    1.1037    1.2250    1.2217    1.3760    1.3707    1.5494 1.5421 

0.5 1.0109    1.0113    1.0757    1.0755    1.1864    1.1846    1.3322    1.3284    1.5034 1.4970 
1 1.0048    1.0058    1.0635    1.0642    1.1688    1.1682    1.3102    1.3076    1.4779 1.4728 
2 1.0028    1.0039    1.0580    1.0592    1.1590    1.1592    1.2959    1.2942    1.4589 1.4551 
5 1.0078    1.0086    1.0660    1.0666    1.1677    1.1672    1.3034    1.3012    1.4640 1.4598 
10 1.0139    1.0143    1.0776    1.0773    1.1838    1.1820    1.3227    1.3189    1.4856 1.4794 
β = 1.0 
0 1.0279    1.0275    1.1078    1.1063    1.2299    1.2269    1.3837    1.3788    1.5600 1.5531 

0.5 1.0115    1.0120    1.0782    1.0781    1.1914    1.1899    1.3402    1.3366    1.5143 1.5082 
1 1.0055    1.0064    1.0660    1.0668    1.1739    1.1735    1.3183    1.3160    1.4888 1.4874 
2 1.0035    1.0046    1.0605    1.0618    1.1642    1.1645    1.3040    1.3027    1.4700 1.4666 
5 1.0085    1.0093    1.0685    1.0692    1.1728    1.1726    1.3116    1.3097    1.4752 1.4714 
10 1.0146    1.0150    1.0801    1.0799    1.1889    1.1873    1.3308    1.3272    1.4966 1.4909 

 

Further, the NLFR increases with an increase in the taper ratio. It can be seen from 

Tables 3.2 – 3.4 that with an increase in the taper ratio, the degree of hardening 

nonlinearity increases. Consequently, the amplitude ratio significantly affects the 

NLFR for different values of the taper ratios. Analogously, for a given value of m, the 
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influence of different types of variable thickness on NLFR follows the trend as 

exponentially variable thickness < linearly variable thickness < bi-linearly variable 

thickness. An increase in the taper ratio increases the plate's stiffness, which results in 

a higher nonlinear frequency.  

Additionally, the effect of porosity distribution on the NLFR follows the trend as 

centrally distributed porosity (Pc) < evenly distributed porosity (Pe), irrespective of 

different types of porosity distributions and taper ratio. The presence of porosities in 

the gradation region has significantly reduced the stiffness and weight of the plate. 

Hence, it has considerably less impact on the NLFR. 

Table 3.5: Effect of porosity volume index on the NLFR (ꞷNL /ꞷ) of linearly variable 

thickness Si3N4 / SUS304 TPFGS plate for the different taper ratio (β) and skew angle 

(Φ).  (a/b = 1, h0 = 1/10, m = 2, Wmax/h = 1.0, ꭓ = 0, and SSSS). 

Φ ep β = 0 β = 0.1 β = 0.25 β = 0.50 
 Pe Pc Pe Pc Pe Pc Pe Pc 

0° 

0 1.4636 1.4636 1.4658 1.4658 1.4692 1.4692 1.4754 1.4754 
0.1 1.4485 1.4443 1.4506 1.4464 1.4538 1.4498 1.4597 1.4560 
0.2 1.4309 1.4246 1.4328 1.4267 1.4359 1.4300 1.4415 1.4361 
0.4 1.3826 1.3838 1.3843 1.3859 1.3871 1.3891 1.3922 1.3951 

15° 

0 1.4258 1.4258 1.4291 1.4291 1.4340 1.4340 1.4425 1.4425 
0.1 1.4118 1.4084 1.4150 1.4116 1.4198 1.4164 1.4279 1.4247 
0.2 1.3956 1.3907 1.3986 1.3938 1.4032 1.3985 1.4110 1.4066 
0.4 1.3516 1.3539 1.3543 1.3569 1.3584 1.3614 1.3654 1.3691 

30° 

0 1.3518 1.3518 1.3561 1.3561 1.3627 1.3627 1.3736 1.3736 
0.1 1.3411 1.3383 1.3453 1.3425 1.3516 1.3489 1.3621 1.3596 
0.2 1.3286 1.3245 1.3326 1.3286 1.3386 1.3348 1.3487 1.3453 
0.4 1.2950 1.2957 1.2985 1.2996 1.3038 1.3055 1.3127 1.3153 

45° 

0 1.2919 1.2919 1.2960 1.2960 1.3022 1.3022 1.3129 1.3129 
0.1 1.2850 1.2818 1.2890 1.2860 1.2951 1.2921 1.3049 1.3027 
0.2 1.2767 1.2715 1.2805 1.2756 1.2865 1.2817 1.2956 1.2917 
0.4 1.2539 1.2497 1.2573 1.2536 1.2625 1.2595 1.2714 1.2696 

 

3.3.4. Effect of porosity volume index 

The effect of geometrical skewness and porosity volume index on the NLFR for 

different types of variable thickness of the TPFGS plate is studied. Tables 3.5 – 3.7 

depict the results of the NLFR for different skew angles, porosity volume index, taper 

ratio, and various types of variable thickness of the plate. A comparative study between 

Pe and Pc porosity distributions with geometrical skewness for several inconstant 
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thickness types is presented. As expected, with an increase in the porosity volume index 

for both Pe and Pc, the NLFR decreases irrespective of the taper ratio, skew angle, and 

the type of variable thickness. It can be due to the reduction in the TPFGS plate's 

stiffness on which the frequency depends proportionally. This kind of impulsive 

behavior arises because of non-dimensionalized parameters. 

Further evaluation reveals that irrespective of the porosity distributions, taper ratio, and 

type of variable thickness, the NLFR decreases with an increase in the skew angle. The 

decrease in NLFR attributes to the rise in the plate's stiffness. The stiffness increases 

with the plate's skewness, on which the linear frequency rises. Meanwhile, the effect of 

porosity distributions on the NLFR follows the trend as centrally distributed porosity 

(Pc) < evenly distributed porosity (Pe), irrespective of the skew angle, taper ratio, and 

various types of variable thickness. 

Table 3.6: Effect of porosity parameter index on the NLFR (ꞷNL /ꞷ) of bi-linearly 

variable thickness Si3N4 / SUS304 TPFGS plate for the different taper ratio (β = ꭓ) and 

skew angle (Φ).  (a/b = 1, h0 = 1/10, m = 2, Wmax/h = 1.0, and SSSS). 

Φ ep β = ꭓ = 0 β = ꭓ = 0.1 β = ꭓ = 0.25 β = ꭓ = 0.50 
 Pe Pc Pe Pc Pe Pc Pe Pc 

0° 

0 1.4636 1.4636 1.4681 1.4681 1.4762 1.4762 1.4939 1.4939 
0.1 1.4485 1.4443 1.4528 1.4487 1.4605 1.4568 1.4771 1.4741 
0.2 1.4309 1.4246 1.4350 1.4290 1.4423 1.4369 1.4580 1.4540 
0.4 1.3826 1.3838 1.3863 1.3881 1.3928 1.3959 1.4071 1.4128 

15° 

0 1.4258 1.4258 1.4326 1.4326 1.4435 1.4435 1.4648 1.4648 
0.1 1.4118 1.4084 1.4183 1.4150 1.4289 1.4258 1.4493 1.4467 
0.2 1.3956 1.3907 1.4018 1.3971 1.4120 1.4077 1.4316 1.4283 
0.4 1.3516 1.3539 1.3572 1.3600 1.3662 1.3701 1.3841 1.3902 

30° 

0 1.3518 1.3518 1.3607 1.3607 1.3749 1.3749 1.4006 1.4006 
0.1 1.3411 1.3383 1.3497 1.3470 1.3634 1.3609 1.3883 1.3863 
0.2 1.3286 1.3245 1.3368 1.3330 1.3500 1.3466 1.3740 1.3711 
0.4 1.2950 1.2957 1.3022 1.3037 1.3138 1.3166 1.3356 1.3407 

45° 

0 1.2919 1.2919 1.3006 1.3006 1.3139 1.3139 1.3359 1.3359 
0.1 1.2850 1.2818 1.2934 1.2902 1.3068 1.3040 1.3292 1.3267 
0.2 1.2767 1.2715 1.2846 1.2798 1.2970 1.2931 1.3186 1.3153 
0.4 1.2539 1.2497 1.2609 1.2577 1.2722 1.2708 1.2925 1.2936 

3.3.5. Effect of thickness and aspect ratio 

The influence of the thickness-to-length ratio of different types of variable 

thickness on the NLFR for various taper ratios and the plate's skewness are tabulated in 
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Tables 3.8 - 3.10. The NLFR decreases with an increase in the thickness-to-length ratio. 

This decrease is irrespective of the different types of variable thickness, taper ratio, 

skew angles, and porosity distributions. Such a kind of behavior happens when the 

parameters are non-dimensionalized. It may be because of the rise in the plate's stiffness 

with an increase in thickness, and thus, the corresponding linear fundamental frequency 

increases. As expected, as the taper ratio increases, the NLFR increases irrespective of 

thickness-to-length ratio, porosity distribution, and the skew angle. 

Table 3.7: Effect of porosity parameter index on the NLFR (ꞷNL /ꞷ) of exponentially 

variable thickness Si3N4 / SUS304 TPFGS plate for the different taper ratio (β) and 

skew angle (Φ).  (a/b = 1, h0 = 1/10, m = 2, Wmax/h = 1.0, ꭓ = 0, and SSSS). 

Φ ep β = 0 β = 0.1 β = 0.25 β = 0.50 
 Pe Pc Pe Pc Pe Pc Pe Pc 

0° 

0 1.4636 1.4636 1.4657 1.4657 1.4690 1.4690 1.4745 1.4745 
0.1 1.4485 1.4443 1.4505 1.4464 1.4536 1.4496 1.4589 1.4551 
0.2 1.4309 1.4246 1.4328 1.4267 1.4357 1.4298 1.4408 1.4353 
0.4 1.3826 1.3838 1.3843 1.3859 1.3869 1.3889 1.3914 1.3934 

15° 

0 1.4258 1.4258 1.4290 1.4290 1.4337 1.4337 1.4413 1.4413 
0.1 1.4118 1.4084 1.4149 1.4116 1.4194 1.4161 1.4268 1.4236 
0.2 1.3956 1.3907 1.3986 1.3938 1.4029 1.3982 1.4099 1.4055 
0.4 1.3516 1.3539 1.3543 1.3568 1.3581 1.3611 1.3644 1.3681 

30° 

0 1.3518 1.3518 1.3561 1.3561 1.3623 1.3623 1.3722 1.3722 
0.1 1.3411 1.3383 1.3452 1.3425 1.3512 1.3485 1.3607 1.3582 
0.2 1.3286 1.3245 1.3325 1.3285 1.3382 1.3344 1.3474 1.3438 
0.4 1.2950 1.2957 1.2984 1.2995 1.3035 1.3051 1.3115 1.3140 

45° 

0 1.2919 1.2919 1.2961 1.2961 1.3016 1.3016 1.3116 1.3116 
0.1 1.2850 1.2818 1.2890 1.2860 1.2942 1.2916 1.3036 1.3009 
0.2 1.2767 1.2715 1.2804 1.2755 1.2860 1.2813 1.2949 1.2903 
0.4 1.2539 1.2497 1.2573 1.2535 1.2620 1.2592 1.2700 1.2681 

 

Analogously, for a given value of the thickness-to-length ratio, the influence of 

different types of variable thickness on NLFR follows the trend observed in the 

previous examples, i.e., exponentially variable thickness < linearly variable thickness 

< bi-linearly variable thickness.  

Furthermore, the effects of aspect ratio on the NLFR for different types of variable 

thickness, taper ratio, and geometrical skewness are presented in Tables 3.11 - 3.13. 

These tables disclose that with an increase in the aspect ratio, the NLFR decreases and 

then increases for lower skew angles (Φ = 0° and 15°) and increases progressively for  
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Table 3.8: Effect of thickness-to-length ratio (a/h0) on the NLFR (ꞷNL /ꞷ) of linearly 

variable thickness Si3N4 / SUS304 TPFGS plate for the different taper ratio (β) and 

skew angle (Φ).  (a/b = 1, m = 2, ep = 0.1, Wmax/h = 1.0, ꭓ = 0, and SSSS). 

Φ a/h0 β = 0 β = 0.1 β = 0.25 β = 0.50 
  Pe Pc Pe Pc Pe Pc Pe Pc 

0° 

10 1.4485 1.4443 1.4506 1.4464 1.4538 1.4498 1.4597 1.4560 
20 1.4338 1.4290 1.4343 1.4296 1.4351 1.4304 1.4366 1.4319 
50 1.4297 1.4248 1.4298 1.4249 1.4299 1.4250 1.4302 1.4252 
100 1.4291 1.4242 1.4292 1.4242 1.4292 1.4242 1.4293 1.4243 

15° 

10 1.4118 1.4084 1.4150 1.4116 1.4198 1.4164 1.4279 1.4247 
20 1.3770 1.3736 1.3792 1.3757 1.3823 1.3788 1.3871 1.3836 
50 1.3349 1.3318 1.3373 1.3342 1.3406 1.3375 1.3456 1.3424 
100 1.2997 1.2963 1.3021 1.2989 1.3057 1.3025 1.3112 1.3080 

30° 

10 1.3411 1.3383 1.3453 1.3425 1.3516 1.3489 1.3621 1.3596 
20 1.2962 1.2929 1.2987 1.2954 1.3023 1.2991 1.3082 1.3051 
50 1.2626 1.2585 1.2639 1.2598 1.2658 1.2617 1.2688 1.2648 
100 1.2493 1.2445 1.2500 1.2453 1.2511 1.2463 1.2528 1.2482 

45° 

10 1.2850 1.2818 1.2890 1.2860 1.2951 1.2921 1.3049 1.3027 
20 1.2472 1.2431 1.2489 1.2449 1.2515 1.2476 1.2560 1.2522 
50 1.2284 1.2236 1.2290 1.2242 1.2299 1.2251 1.2314 1.2267 
100 1.2217 1.2166 1.2221 1.2171 1.2227 1.2177 1.2237 1.2186 

 

Table 3.9: Effect of thickness-to-length ratio (a/h0) on the NLFR (ꞷNL/ꞷ) of bi-linearly 

variable thickness Si3N4 / SUS304 TPFGS plate for the different taper ratio (β = ꭓ) and 

skew angle (Φ).  (a/b = 1, m = 2, ep = 0.1, Wmax/h = 1.0, and SSSS). 

Φ a/h0 β = ꭓ = 0 β = ꭓ = 0.1 β = ꭓ = 0.25 β = ꭓ = 0.50 
  Pe Pc Pe Pc Pe Pc Pe Pc 

0° 

10 1.4485 1.4443 1.4528 1.4487 1.4605 1.4568 1.4771 1.4741 
20 1.4338 1.4290 1.4349 1.4301 1.4367 1.4321 1.4409 1.4363 
50 1.4297 1.4248 1.4299 1.4250 1.4302 1.4253 1.4309 1.4259 
100 1.4291 1.4242 1.4292 1.4242 1.4293 1.4243 1.4294 1.4245 

15° 

10 1.4118 1.4084 1.4183 1.4150 1.4289 1.4258 1.4493 1.4467 
20 1.3770 1.3736 1.3814 1.3779 1.3877 1.3842 1.3979 1.3944 
50 1.3349 1.3318 1.3397 1.3365 1.3462 1.3430 1.3560 1.3527 
100 1.2997 1.2963 1.3047 1.3014 1.3118 1.3086 1.3227 1.3195 

30° 

10 1.3411 1.3383 1.3497 1.3470 1.3634 1.3609 1.3883 1.3863 
20 1.2962 1.2929 1.3012 1.2980 1.3090 1.3058 1.3223 1.3193 
50 1.2626 1.2585 1.2652 1.2611 1.2692 1.2652 1.2762 1.2724 
100 1.2493 1.2445 1.2507 1.2460 1.2530 1.2484 1.2570 1.2526 

45° 

10 1.2850 1.2818 1.2934 1.2902 1.3068 1.3040 1.3292 1.3267 
20 1.2472 1.2431 1.2508 1.2468 1.2566 1.2528 1.2677 1.2642 
50 1.2284 1.2236 1.2297 1.2248 1.2316 1.2268 1.2351 1.2305 
100 1.2217 1.2166 1.2226 1.2175 1.2238 1.2188 1.2258 1.2208 
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Table 3.10: Effect of thickness-to-length ratio (a/h0) on the NLFR (ꞷNL /ꞷ) of 

exponentially variable thickness Si3N4 / SUS304 TPFGS plate for the different taper 

ratio (β) and skew angle (Φ).  (a/b = 1, m = 2, ep = 0.1, Wmax/h = 1.0, ꭓ = 0, and SSSS). 

Φ a/h0 β = 0 β = 0.1 β = 0.25 β = 0.50 
  Pe Pc Pe Pc Pe Pc Pe Pc 

0° 

10 1.4485 1.4443 1.4505 1.4464 1.4536 1.4496 1.4589 1.4551 
20 1.4338 1.4290 1.4343 1.4296 1.4351 1.4303 1.4364 1.4316 
50 1.4297 1.4248 1.4298 1.4249 1.4299 1.4250 1.4301 1.4252 
100 1.4291 1.4242 1.4292 1.4242 1.4292 1.4242 1.4293 1.4243 

15° 

10 1.4118 1.4084 1.4149 1.4116 1.4194 1.4161 1.4268 1.4236 
20 1.3770 1.3736 1.3792 1.3757 1.3821 1.3786 1.3865 1.3830 
50 1.3349 1.3318 1.3373 1.3341 1.3404 1.3373 1.3450 1.3418 
100 1.2997 1.2963 1.3021 1.2988 1.3055 1.3022 1.3105 1.3073 

30° 

10 1.3411 1.3383 1.3452 1.3425 1.3512 1.3485 1.3607 1.3582 
20 1.2962 1.2929 1.2986 1.2953 1.3021 1.2988 1.3074 1.3043 
50 1.2626 1.2585 1.2639 1.2597 1.2656 1.2616 1.2684 1.2644 
100 1.2493 1.2445 1.2500 1.2452 1.2510 1.2463 1.2526 1.2479 

45° 

10 1.2850 1.2818 1.2890 1.2860 1.2942 1.2916 1.3036 1.3009 
20 1.2472 1.2431 1.2489 1.2449 1.2514 1.2474 1.2554 1.2516 
50 1.2284 1.2236 1.2290 1.2242 1.2299 1.2251 1.2312 1.2264 
100 1.2217 1.2166 1.2221 1.2171 1.2227 1.2176 1.2236 1.2185 

 

the higher skew angles, say Φ = 30° and 45°. This erratic change of the NLFR for a 

higher aspect ratio is due to reduced actual inertia due to porosities and reduced 

stiffness. This kind of unexpected behavior appears due to the non-dimensionalizing of 

the parameters. An additional interesting observation is that for a given aspect ratio 

value, the influence of different types of variable thickness on NLFR follows the trend 

as linearly < bi-linearly < exponentially changing thickness. It may be due to the 

degradation of material properties and increased porosity as the aspect ratio increases. 

Furthermore, the NLFR is lower in the centrally distributed porosities than in evenly 

distributed porosities (Pc < Pe). 

3.3.6. Effect of porosity volume index on the NLFP with different boundary 

conditions 

The plots (Figures 3.2 - 3.4) illustrate the non-dimensional nonlinear frequency 

parameter (NLFP) of the TPFGS plate with different boundary conditions, taper ratios, 

skew angles, porosity volume index, variable thickness, and porosity distributions. 

Unless otherwise stated, the following geometrical parameters are considered for the  
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Table 3.11: Effect of aspect ratio (a/b) on the NLFR (ꞷNL /ꞷ) of linearly variable 
thickness Si3N4 / SUS304 TPFGS plate for the different taper ratio (β) and skew angle 
(Φ).  (h0 = 1/10, m = 2, ep = 0.1, Wmax/h = 1.0, ꭓ = 0, and SSSS). 

Φ a/b β = 0 β = 0.1 β = 0.25 β = 0.50 
  Pe Pc Pe Pc Pe Pc Pe Pc 

0° 

0.6 1.5102 1.5037 1.5117 1.5054 1.5140 1.5078 1.5184 1.5123 
0.8 1.4593 1.4546 1.4610 1.4563 1.4638 1.4591 1.4687 1.4643 
1.0 1.4485 1.4443 1.4506 1.4464 1.4538 1.4498 1.4597 1.4560 
1.2 1.4627 1.4584 1.4652 1.4610 1.4693 1.4652 1.4765 1.4728 
1.4 1.4903 1.4856 1.4935 1.4889 1.4985 1.4941 1.5075 1.5037 

15° 

0.6 1.4154 1.4110 1.4187 1.4133 1.4236 1.4195 1.4303 1.4279 
0.8 1.4004 1.3969 1.4035 1.4000 1.4082 1.4047 1.4160 1.4126 
1.0 1.4118 1.4084 1.4150 1.4116 1.4198 1.4164 1.4279 1.4247 
1.2 1.4403 1.4365 1.4437 1.4400 1.4490 1.4454 1.4581 1.4547 
1.4 1.4774 1.4730 1.4812 1.4771 1.4874 1.4832 1.4980 1.4946 

30° 

0.6 1.2547 1.2524 1.2584 1.2562 1.2637 1.2612 1.2729 1.2702 
0.8 1.2910 1.2884 1.2948 1.2923 1.3005 1.2981 1.3097 1.3074 
1.0 1.3411 1.3383 1.3453 1.3425 1.3516 1.3489 1.3621 1.3596 
1.2 1.3980 1.3947 1.4028 1.3995 1.4097 1.4069 1.4221 1.4192 
1.4 1.4563 1.4523 1.4616 1.4578 1.4702 1.4685 1.4836 1.4796 

45° 

0.6 1.1319 1.1302 1.1331 1.1314 1.1349 1.1328 1.1376 1.1357 
0.8 1.1986 1.1960 1.2012 1.1985 1.2049 1.2024 1.2109 1.2085 
1.0 1.2850 1.2818 1.2890 1.2860 1.2951 1.2921 1.3049 1.3027 
1.2 1.3752 1.3713 1.3793 1.3561 1.3896 1.3864 1.4030 1.3993 
1.4 1.4578 1.4518 1.4648 1.3353 1.3326 1.4743 1.4868 1.3245 

 

parametric study of the square Si3N4/SUS304 TPFGS plate: a/b = 1, h0=1/10, m = 2, Φ 

= 0°,15°,30°, and 45°. Figure 3.3 depict the results for non-dimensional NLFP of 

linearly TPFGS plate. The taper ratio taken for non-uniform thickness (hb / h0) is 1 and 

1.5, considering different boundary conditions for evenly distributed (Pe) and centrally 

distributed (Pc) porosities. Results show that for a given taper ratio and skew angle, the 

NLFP obtained is maximum at the ideal tapered FGS plate (ep = 0); meanwhile, the 

NLFP trend decreases with an increase in porosity parameter index (ep) for the TPFGS 

plate. Thus, this signifies that the ideal FGS plates are stiffer than the TPFGS plates. 

Besides, results reveal a rapid decrease in the NLFP for the evenly distributed porosities 

(Pe) with an increase in the porosity volume index (ep). In contrast, the decrease rate is 

slow and steady for the centrally distributed porosities (Pc). The NLFP can be assumed 

constant for the centrally distributed porosities (Pc) with an increase in the porosity 

volume index (ep). Thus, the NLFP of Pc is more harmful than that of Pe.  
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Table 3.12: Effect of aspect ratio (a/b) on the NLFR (ꞷNL /ꞷ) of bi-linearly variable 

thickness Si3N4 / SUS304 TPFGS plate for the different taper ratio (β = ꭓ) and skew 

angle (Φ).  (h0 = 1/10, m = 2, ep = 0.1, Wmax/h = 1.0, and SSSS). 

Φ a/b β = ꭓ = 0 β = ꭓ = 0.1 β = ꭓ = 0.25 β = ꭓ = 0.50 
  Pe Pc Pe Pc Pe Pc Pe Pc 

0° 

0.6 1.5102 1.5037 1.5133 1.5071 1.5190 1.5129 1.5312 1.5257 
0.8 1.4593 1.4546 1.4630 1.0054 1.4694 1.4650 1.4833 1.4795 
1.0 1.4485 1.4443 1.4528 1.4487 1.4605 1.4568 1.4771 1.4741 
1.2 1.4627 1.4584 1.4680 1.4639 1.4775 1.4738 1.4977 1.4946 
1.4 1.4903 1.4856 1.4969 1.4925 1.5090 1.5050 1.5344 1.5321 

15° 

0.6 1.4154 1.4110 1.4219 1.4179 1.4327 1.4286 1.4508 1.4481 
0.8 1.4004 1.3969 1.4068 1.4033 1.4169 1.4136 1.4356 1.4325 
1.0 1.4118 1.4084 1.4183 1.4150 1.4289 1.4258 1.4493 1.4467 
1.2 1.4403 1.4365 1.4474 1.4437 1.4592 1.4558 1.4979 1.4576 
1.4 1.4774 1.4730 1.4856 1.4815 1.5002 1.4958 1.5253 1.5264 

30° 

0.6 1.2547 1.2524 1.2622 1.2595 1.2740 1.2712 1.2925 1.2898 
0.8 1.2910 1.2884 1.2988 1.2963 1.3109 1.3085 1.3320 1.3300 
1.0 1.3411 1.3383 1.3497 1.3470 1.3634 1.3609 1.3883 1.3863 
1.2 1.3980 1.3947 1.4078 1.4046 1.4225 1.4207 1.4513 1.4494 
1.4 1.4563 1.4523 1.4269 1.4370 1.4853 1.4832 1.3561 1.3543 

45° 

0.6 1.1319 1.1302 1.1343 1.1322 1.1381 1.1360 1.1428 1.1409 
0.8 1.1986 1.1960 1.2037 1.2013 1.2116 1.2093 1.2238 1.2219 
1.0 1.2850 1.2818 1.2934 1.2902 1.3068 1.3040 1.3292 1.3267 
1.2 1.3752 1.3713 1.3871 1.3819 1.4016 1.4000 1.4410 1.3278 
1.4 1.4578 1.4518 1.4709 1.4713 1.3253 1.4993 1.3160 1.3132 

 

A further exciting comparison is that the NLFP increases with an increase in the taper 

ratio (hb/h0) for a given skew angle. However, increasing NLFP is seen with an increase 

in the TPFGS plate's geometrical skewness for a given taper ratio. It is due to the 

stiffness of the TPFGS plate increasing with an increase in the skew angle and taper 

ratio. Furthermore, Figures 3.2 (a) – (f) illustrate that the dimensionless NLFP increases 

with the number of boundary edge constraints. However, the non-dimensional NLFP 

for the ideal tapered FGS plate (ep = 0) exhibits a higher side than the TPFGS plate for 

all boundary conditions. Thus, the order of increasing the dimensionless NLFP with 

boundary constraints is SSSS < SCSC < CCCC. The increase in the NLFP from SSSS 

to CCCC is an average of almost 30%. This is attributed to the fact that the flexural 

rigidity increases with an increase in boundary constraints. 
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Table 3.13: Effect of aspect ratio (a/b) on the NFR (ꞷNL /ꞷ) of exponentially variable 

thickness Si3N4 / SUS304 TPFGS plate for the different taper ratio (β) and skew angle 

(Φ).  (h0 = 1/10, m = 2, ep = 0.1, Wmax/h = 1.0, ꭓ = 0, and SSSS). 

Φ a/b β = 0 β = 0.1 β = 0.25 β = 0.50 
  Pe Pc Pe Pc Pe Pc Pe Pc 

0° 

0.6 1.5102 1.5037 1.5404 1.5350 1.5463 1.5414 1.5560 1.5523 
0.8 1.4593 1.4546 1.4713 1.4671 1.4754 1.4712 1.4822 1.4784 
1.0 1.4485 1.4443 1.4505 1.4464 1.4536 1.4496 1.4589 1.4551 
1.2 1.4627 1.4584 1.4569 1.4524 1.4596 1.4551 1.4641 1.4598 
1.4 1.4903 1.4856 1.4768 1.4717 1.4793 1.4742 1.4835 1.4785 

15° 

0.6 1.4154 1.4110 1.4639 1.4577 1.4702 1.4400 1.4819 1.4773 
0.8 1.4004 1.3969 1.4198 1.4165 1.4253 1.4221 1.4341 1.4311 
1.0 1.4118 1.4084 1.4149 1.4116 1.4194 1.4161 1.4268 1.4236 
1.2 1.4403 1.4365 1.4318 1.4279 1.4357 1.4319 1.4422 1.4384 
1.4 1.4774 1.4730 1.4590 1.4542 1.4626 1.4579 1.4683 1.4638 

30° 

0.6 1.2547 1.2524 1.3032 1.3010 1.3094 1.3073 1.3190 1.3158 
0.8 1.2910 1.2884 1.3142 1.3119 1.3206 1.3184 1.3305 1.3286 
1.0 1.3411 1.3383 1.3452 1.3425 1.3512 1.3485 1.3607 1.3582 
1.2 1.3980 1.3947 1.3862 1.3827 1.3923 1.3883 1.4006 1.3974 
1.4 1.4563 1.4523 1.4300 1.4248 1.4352 1.4309 1.4436 1.4393 

45° 

0.6 1.1319 1.1302 1.1417 1.1396 1.1393 1.1429 1.1490 1.1460 
0.8 1.1986 1.1960 1.2137 1.2115 1.2177 1.2155 1.2233 1.2213 
1.0 1.2850 1.2818 1.2890 1.2860 1.2942 1.2916 1.3036 1.3009 
1.2 1.3752 1.3713 1.3615 1.3576 1.3678 1.3642 1.3779 1.3745 
1.4 1.4578 1.4518 1.4269 1.4222 1.4336 1.4275 1.4434 1.4399 

 

Figures 3.3 – 3.4 depict the results for non-dimensional NLFP of both bi-linearly and 

exponentially variable thickness of the TPFGS plate with different boundary conditions 

for evenly distributed (Pe) and centrally distributed (Pc) porosities. The taper ratio for 

uniform and non-uniform thickness for bi-linearly (hab / h0) and exponentially (hb / h0) 

variable thickness is 1 and 1.5, respectively.  

The figures show that a similar trend is observed for both bi-linearly and exponentially 

variable thickness, as presented in linearly variable thickness. In addition, for a given 

value of skew angle and taper ratio, the effects of different types of varying thickness 

on the NLFP follow a trend as exponentially < linearly < bi-linearly variable thickness 

and exhibits the highest NLFP in the centrally distributed porosities compared to evenly 

distributed porosities (Pe < Pc) for all the boundary conditions considered. It can also be 
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noticed that the NLFP of the TPFGS plate is always more significant than the uniform 

PFGS plate. 

 
           (a) Pd=Pe and SSSS             (b) Pd=Pc and SSSS. 

  
                   (c) Pd=Pe and CCCC.                                     (d) Pd=Pc and CCCC. 

     
                      (e) Pd=Pe and SCSC.              (f) Pd=Pc and SCSC. 

Figure 3.2: Effect of taper ratio and porosity volume index on the NLFP for the 

Linearly variable thickness of the TPFGS plate. (a) Pd=Pe and SSSS, (b) Pd=Pc and 

SSSS, (c) Pd=Pe and SCSC, (d) Pd=Pc and SCSC, (e) Pd=Pe and SCSC, and (f) Pd=Pc 

and SCSC. 
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                  (a) Pd=Pe and SSSS                                      (b) Pd=Pc and SSSS 

 
                      (c) Pd=Pe and CCCC                                       (d) Pd=Pc and CCCC 

 
                       (e) Pd=Pe and SCSC                                         (f) Pd=Pc and SCSC. 

Figure 3.3: Effect of taper ratio and porosity parameter index on the NLFP for the Bi-

linearly Variable thickness of the TPFGS plate. (a) Pd=Pe and SSSS, (b) Pd=Pc and 

SSSS, (c) Pd=Pe and SCSC, (d) Pd=Pc and SCSC, (e) Pd=Pe and SCSC, and (f) Pd=Pc 

and SCSC. 
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                      (a) Pd=Pe and SSSS              (b) Pd=Pc and SSSS 

  
          (c) Pd=Pe and CCCC              (d) Pd=Pc and CCCC 

  
(e) Pd=Pe and SCSC    (f) Pd=Pc and SCSC 

Figure 3.4: Effect of taper ratio and porosity parameter index on the NLFP for the 

exponentially Variable thickness of the TPFGS plate. (a) Pd=Pe and SSSS, (b) Pd=Pc 

and SSSS, (c) Pd=Pe and SCSC, (d) Pd=Pc and SCSC, (e) Pd=Pe and SCSC, and (f) Pd=Pc 

and SCSC. 
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3.4. CONCLUSIONS 

The present study uses the nonlinear FE formulation in the framework of FSDT 

in colligation with von Karman's assumptions to investigate the influence of porosity 

distributions on the nonlinear free vibrations of a tapered porous functionally graded 

plate with the consideration of geometrical skewness and various types of variable 

thickness. The equations of motion are derived using Hamilton's principle. The useful 

material properties of the TPFGS plate are predicted using the modified power-law 

distribution and Voigt's model. The nonlinear frequency results are computed through 

the direct iterative method. Validations and comparison studies have been carried out to 

check the proposed model's reliability.  

The following are the concluded outcomes from the present study. In the presence of 

porosities, the NLFR (ωNL/ω) decreases initially and then increases with an increase in 

the volume fraction grading index (m) for all the types of variable thickness, taper ratio, 

skew angles, and porosity distributions. NLFR increases with an increase in the taper 

ratio and amplitude ratio. In contrast, NLFR decreases with the rise in the plate's 

skewness and porosity volume index, irrespective of various types of variable thickness 

and porosity distributions. Further, the effect of bi-linearly variable thickness is high 

compared to linearly variable and exponentially variable thickness on both NLFR and 

NLFP. It follows the trend as exponentially variable thickness < linearly variable 

thickness < bi-linearly variable thickness. Hence, exponentially and linearly varying 

thicknesses can be considered for the thickness optimizations of TPFGS plates. The 

geometrical non-uniformities on the PFG plate are always more significant than the PFG 

plate with uniform thickness for both NLFR and NLFP cases. Besides, the NLFP of the 

centrally distributed porosity (Pc) decreases steadily for all boundary conditions and 

various types of variable thickness with an increase in porosity volume index. In 

contrast, the NLFP of the evenly distributed porosities decreases rapidly. Hence, the 

NLFR and NLFP are more susceptible to centrally distributed porosity than evenly 

distributed porosity. The influence of porosity distributions on the NLFR follows the 

trend as Pc < Pe, and for the NLFP, the tendency is Pc > Pe. The NLFP follows the 

sequence of increasing order with boundary conditions as SSSS > SCSC > CCCC. The 

average of almost 30% is the increase in the NLFP from SSSS to CCCC. 
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CHAPTER 4 

GEOMETRICALLY NONLINEAR VIBRATION AND 

TRANSIENT RESPONSES OF POROUS FG SKEW 

PLATE SUBJECTED TO THERMAL LOADS 

This chapter investigates the influence of distributions of porosities on the 

nonlinear analysis of PFGS plates in a thermal environment. The modified power-law 

series has been used to determine the temperature-dependent effective material 

properties in the thickness direction. A nonlinear finite element formulation is derived 

using an improved first-order shear deformation theory (IFSDT) and von Kármán's 

type nonlinearity. Numerical results like the nonlinear frequency and nonlinear 

transient deflections have been extracted. The detailed numerical investigations are 

performed for various material and geometrical parameters. At the same time, 

emphasis is placed on investigating the effect of the distribution of porosities and 

geometrical skewness under thermal loads. 

4.1. INTRODUCTION 

Geometrical skewness in FG plate allows designers to have different alignment 

options for hurdles in structural applications such as aerospace, biomedical, civil, 

defence, mechanical, etc. The FG skew plates gain limited space in the literature even 

though it makes it easier for an engineer to have versatility in aligning the edges of 

plates in the occurrence of complications. The plate's area varies depending on the 

plate's skewness. Consequently, the change in the plate's stiffness is proportional to the 

skewness. However, the stiffness also depends on the variation of the temperature and 

porosity distribution. In Chapter 2, the influence of porosity distributions on the 

nonlinear behaviour of the PFGS plate without thermal loads has been investigated. 

This chapter extends a similar investigation into PFGS plates under thermal loads.  
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The main objective of this chapter is to investigate the influence of porosity 

distributions and temperature on the nonlinear behaviour of the PFGS plate under 

thermal loads. A nonlinear FE model for the PFGS plates based on the improved first-

order shear deformation theory (IFSDT) concatenated with von Kármán assumptions 

in the thermal environment has been proposed. The modified power-law series 

determines the temperature-dependent effective material properties of the PFGS plate. 

The governing equations are derived using Hamilton's principle, and solutions are 

obtained using the direct iterative method and Newmark's integration method. The 

predominant effects of the porosity distributions in conjunction with the geometrical 

skewness on the nonlinear free vibration and transient responses of the PFGS plate for 

various thermal loadings are investigated.  

4.2. PROBLEM DESCRIPTION AND GOVERNING EQUATION 

The geometrical parameters of the PFGS plate considered in the present analysis 

are identical to those of the plate studied in Figure 2.1. Further, skew boundary 

transformation and solution methodologies are presented identically to sections 2.2.4 

and 2.3. However, temperature-dependent effective material properties, the 

displacement equations, the constitutive equations, and the nonlinear FE formulation 

considering the IFSDT are explained in the subsequent section. 

4.2.1. Temperature-dependent effective material properties 

The temperature-dependent effective material properties of the PFGS plate 

constantly vary in the thickness direction, and the distribution of porosities formed 

during PFGS plate fabrication is theoretically predicted using mathematical models. As 

depicted in Figure 2.2, the PFGS plate is studied using two different models: evenly 

(Pe) and centrally (Pc) distributed porosities.  

The modified power-law series for different porosity distributions is employed to derive 

the generalized temperature-dependent effective material properties of the PFGS plate 

(Pfg (z, T)) for modulus of elasticity (Efg (z, T)), Poisson's ratio (ϑfg (z, T)), and mass 

density (ρfg (z, T)) at each location in the PFGS plate. Eqs. (4.1) and (4.2) determine 

the generalized temperature-dependent effective material properties of the PFGS plate 

for Pe and Pc.  
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Evenly distributed porosity (EDP) (Pe): 
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Centrally distributed porosity (CDP) (Pc):  
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               (4.2) 

Pfg (z, T) represents the temperature-dependent effective material characteristics in the 

transverse direction, while Pt(T) and Pb(T) denote ceramic and metal material 

properties, respectively.  

The temperature-dependent material properties of each constituent material are stated 

with the function of nonlinear temperature distribution (Reddy and Chin 1998)  as 

follows: 

  
2 31

0 1 2 3(T) 1 T T T
T

P          
              (4.3) 

where 0 , 1 , 1 , 2 , and 3  are the coefficients of temperature T (K) and are specific 

to each material constituent, Pb(T) and Pt(T), respectively. T is the nonlinear 

temperature distribution. Besides, the mass density (ρ), thermal conductivity (k), and 

Poisson's ratio (ϑ) are weakly influenced by temperature fluctuations and are presumed 

to be constant (Huang and Shen 2004). 

Further, the nonlinear temperature distribution is presumed to occur in the path of 

gradation. A steady-state one-dimensional Fourier heat conduction equation can be 

used to solve temperature distribution problems. A thermal field is assumed to be 

constant in any x-y plane of the PFGS plate. The temperature distribution through the 

thickness can thus be solved using the steady-state heat transfer equation as follows 

(Javaheri and Eslami 2002a; b) : 
d dT( ) 0
dx d

k z
z

                  (4.4) 

Eq. (4.4) can be simplified by applying the boundary conditions as T=Tb at 2z h   
and T=Tt at 2z h . 
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Now, by utilizing polynomial series to solve Eq. (4.5) and after simplification, Eq. (4.5) 

can be expressed as follows (Javaheri and Eslami 2002a; b): 
T(Z) T (T T ) (Z)b t b                  (4.6) 
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and       tb t bk k k              (4.7c) 

Further, Figure 4.1 illustrates the effect of temperature rise on the modulus of elasticity 

of Si3N4/SUS304 PFGS plates as an initial step in investigating the temperature-

dependent nonlinear vibration and dynamic behaviour of the PFGS plates. 
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                    (b) Pc 

 

          (c) Perfect FG plate 

Figure 4.1: Young modulus as a function of temperature for Si3N4 / SUS304 FG 

porous plate with different VFGI. (a) Pe, (b) Pc, and (c) Perfect FG plate. 

4.2.2. Constitutive equations 

For any position in the entire PFGS plate, the state of stress and associated state 

of strain are defined as follows (Sundararajan et al. 2005): 
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where 0T T( ) Tz    

The normal stresses xx and yy are present in the x- and y- directions, respectively. In-

plane and transverse shear stresses are given by xy , xz , and yz , respectively. 

 , TbQ z  
 
and  , TsQ z  

 
are the temperature-dependent elastic coefficient matrices 

and are the function of the z- coordinate.  ,Txx z and  ,Tyy z  are the coefficients 

of thermal expansion in the x- and y- directions, respectively. T(z) represents the 

temperature at any point on the PFGS plate, T0 is the reference temperature, and ∆T 

represents the temperature increase over the reference temperature.  
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From Eq. (4.9), the expressions for elastic coefficients can be stated as follows:  
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where  ,TfgE z
 and  fg z

 are the position and temperature-dependent effective 

Young's modulus and position-dependent effective Poisson's ratio of the PFGS plate, 

respectively. 

4.2.3. Strain-displacement relations 

As described in Eq. (4.11), the displacement fields of the PFGS plate are built 

on the mid-plane using the IFSDT model (Vinyas et al. 2019).  
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where the displacements along the x, y, and z coordinates at each location in a given 

PFGS plate are 0u , 0v , and 0w . The midplane displacements are denoted by 1u , 1v , 

and 1w . The generalized transverse normal rotations of the x- and y-axes are y  and 

x , respectively. 

4.2.4. Nonlinear strain displacement equations 

The nonlinear strains ( b : bending and  s : shear) associated with the 

displacement fields of Eq. (4.11) for the PFGS plate are constructed based on von 

Karman's assumptions to deliberate geometric distortion as follows (Kattimani and Ray 

2015; Tanov and Tabiei 2000): 
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2

1 1 4 zC
h
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                (4.12c) 

It can be assumed from Eq. (4.12a) that the first two terms in the expressions b

signify that the in-plane strains are distributed through the thickness with sufficient 

accuracy (Tanov and Tabiei 2000). Hence, Eq. (4.12) represents the simplified form of 

strain relations identical to FSDT by neglecting the contribution of the higher-order 

terms except for the transverse strain expressions (Tanov and Tabiei 2000). Further, the 
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transverse shear strains in Eq. (4.12) are employed with the second-order polynomial 

to define the variation of the transverse shear strains along with the thickness of the 

plate.  

Henceforth, in the present IFSDT, the traditional FSDT is considered for further 

analysis to simplify and accelerate computations, and the transverse stress resultants 

are multiplied directly by the Eq. (4.12c). The second-order polynomial in Eq. (4.12c) 

distributes shear strains and stress along with the thickness and vanishes at the bottom 

and top of the plate. As a result, the shear locking phenomena are avoided in this unique 

approach of IFSDT, which produces reasonably accurate results compared to HSDT. 

4.2.5. Nonlinear finite element formulation 

The nonlinear FE formulation implemented in this chapter is identical to section 

2.2.3 of Chapter 2. However, the effect of the geometric stiffness matrix that occurs 

due to nonlinear temperature distribution across the thickness of the PFGS plate is 

considered for the present analysis. This induces thermal stresses and directly impacts 

the PFGS plate's vibration characteristics. As a result of the deformed geometry of the 

PFGS plate generated by thermal forces, it necessitates the measurement of the 

geometric stiffness matrix. The PFGS plate's elementary equations of motion subjected 

to thermal loads can be obtained by using Eq. (2.22) and applying Hamilton's principle, 

i.e. 0e
pT  , followed by unifying and simplifying the terms based on the stiffness 

matrices and degrees of freedom: 
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in which, 
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where 
eM   is the elemental mass matrix; 

e
ttK   , 

e
trK   , 

e
rtK   and 

e
rrK   are the 

elemental stiffness matrices; 
e
Temp ttK    is the elemental stiffness matrices under thermal 

loading;  Fe
t is the elemental mechanical load vector. The various nodal strain 

displacement matrices  ß , elemental stiffness, rigidity matrices, and vectors used in 

Eq. (4.14) are derived in Appendix - I. 

Finally, Eq. (4.13) is condensed to provide a more simplified form of global equations 

of equilibrium for the PFGS plate: 
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L
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      Ft eq t eqM X K X   
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       (4.15b) 

in which,  

  1

eq tt t r r r rp tTem ttK K K K KK 


                            (4.16) 

where 
L NL
eq eqK K    is a set of linear and nonlinear stiffness matrices known as 

generalized equivalent stiffness matrices, and the force vector is represented by  Feq . 

Further, the eigenvalues and corresponding eigenvectors of the PFGS plate can be 

obtained by rearranging Eq. (4.15) as follows: 

      2 M X 0Temp tteqK K 
              (4.17) 

where   and X are the PFGS plate's natural frequency and corresponding eigenvector, 

respectively. 

4.3. RESULTS AND DISCUSSIONS 

 The PFGS plate is considered to investigate the effects of porosity and 

geometrical skewness on the geometrically nonlinear free vibration and transient 

deflections subjected to thermal loads. Several validation studies have been carried out 

to check the accuracy of the proposed nonlinear FE model. 

The reference temperature (T0) and the temperature on the metal surface (Tm) are 

assumed to be 300 K. The properties such as thermal conductivity (k), density, and 
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Poisson's ratio of the ceramic and metal constituents are presumed to be independent of 

temperature, as they are weakly dependent on temperature changes. The mass density 

(ρc) and thermal conductivity (kc) for ceramic material (silicon nitride - Si3N4) are 2370 

kg/m3 and 9.19 W/m K, respectively; meanwhile; 8166 kg/m3 and 12.04 W/m K are the 

mass density (ρm) and thermal conductivity (km) of metal (stainless steel - SUS304), 

respectively. The thermal expansion coefficient and Young's modulus are dependent on 

the temperature. Table 4.1 provides the temperature-dependent coefficients of the 

materials Si3N4 and SUS304 used in the present investigation. For Si3N4 / SUS304, the 

Poisson's ratio is presumed to be constant at 0.28. Various parameters are considered 

in parametric studies to investigate the nonlinear frequency and transient responses of 

the PFGS plate under thermal load.  

The non-dimensional equation  2 2(1 )N L m mN mL a h E    is used to assess 

the nonlinear frequency parameter (NLFP) of the Si3N4 / SUS304 PFGS plate under a 

thermal loading for various geometrical parameters. Where mE  , m , and m  are 

Young's modulus, density, and Poisson's ratio of the metal (SUS304) at a reference 

temperature (T0 = 300 K), respectively. 

Table 4.1: Coefficients of the temperature-dependent constituent materials Si3N4 and 

SUS304: Young's modulus E (Pa) and the coefficient of thermal expansion α (1/K) 

(Reddy and Chin 1998). 

Materials Properties 0  1  1  2  3  P(T=300 K) 

Si3N4 
E (Pa) 348.43e9 0.0 -3.070e-4 2.160e-7 -8.946e-11 322.2715e9 

α (1/K) 5.8723e-6 0.0 9.095e-4 0.0 0.0 7.4746e-6 

SUS304 
E (Pa) 201.04e9 0.0 3.079e-4 -6.534e-7 0.0 207.7877e9 

α (1/K) 12.330e-6 0.0 8.086e-4 0.0 0.0 15.321e-6 

 

4.4. Convergence and validation 

The robustness of the proposed nonlinear finite element model enables the 

parametric analyses to be carried out by validating and comparing the obtained results 

with solutions available in the open literature.  
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Example 1: The natural frequency of the FG plate from the present analysis is 

compared with the various open literature (Hosseini-Hashemi et al. 2010, 2011; 

Matsunaga 2008; Zhao et al. 2009) for different thickness ratios. It can be observed 

from Table 4.2 that the percentile error is less than 1 % compared to the reference 

literature (Hosseini-Hashemi et al. 2010, 2011; Matsunaga 2008; Zhao et al. 2009). 

Hence, the obtained results from the proposed IFSDT formulation display excellent 

agreement with the reference literature (Hosseini-Hashemi et al. 2010, 2011; 

Matsunaga 2008; Zhao et al. 2009). 

Example 2: The dimensionless fundamental frequency for a simply supported Si3N4 / 

SUS304 FG square plate under thermal loading is compared with Huang and Shen's 

(2004) results for different volume fraction grading indexes (m). The plate's ceramic 

surface is exposed to two thermal loadings (Tc), 400 K and 600 K, respectively. The 

metal surface has a temperature (Tm) of 300 K. Table 4.3 shows that the current model's 

results are very similar to those reported in the reference literature (Huang and Shen 

2004). Besides, [8 × 8] mesh size is considered sufficient to model the PFGS plate based 

on progressive mesh refinement.  

Example 3: The fundamental natural frequency is computed to check the reliability of 

the present model on the skewness of the isotropic plate with skew angles of 0°, 15°, 

30°, and 45°. Table 4.4 shows that the findings presented in the table agree very well 

with reference literature (Liew et al. 1993). 

Example 4: Table 4.5 compares the linear frequency responses of the SSSS FG porous 

plate with geometry for EDP (Pe) and CDP (Pc) under the drained condition to those in 

the literature (Rezaei et al. 2017). The validation parameters are identical to those in 

the reference literature (Rezaei et al. 2017), and the porous FG material used is 

Al2O3/Al. Table 4.5 illustrates that the findings agree with the available literature 

(Rezaei et al. 2017). 

Example 5: Figure 4.2 shows the comparison of the SSSS FG (Si3N4/ SUS304) plate 

for the geometrical parameters m = 1, a/h =10, and a/b = 1 on the nonlinear frequency 

ratio (NLFR) (ωNL/ω). The validation and comparison of the current model are based 

on the same material properties and boundary conditions as those utilized in the 
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literature (Sundararajan et al. 2005). The obtained results are identical to those found 

in the reference literature (Sundararajan et al. 2005), as shown in Figure 4.2.  

Table 4.2: Comparison of the fundamental natural frequency of simply supported 

Al/Al2O3 FG square plates. 

h/a Method 
Volume fraction grading index (m) 

0 0.5 1 4 10 ∞ 

0.05 

Present [2×2] 0.0153 0.0130 0.0118 0.0101 0.0096 - 
Present [4×4] 0.0148 0.0125 0.0113 0.0098 0.0094 - 
Present [6×6] 0.0148 0.0125 0.0113 0.0098 0.0094 - 
Present [8×8] 0.0148 0.0125 0.0113 0.0098 0.0094 - 
TSDT (Hosseini-
Hashemi et al. 2011) 0.0148 0.0125 0.0113 0.0098 0.0094 - 

FSDT (Hosseini-
Hashemi et al. 2010) 0.0148 0.0128 0.0115 0.0101 0.0096 - 

FSDT (Zhao et al. 
2009) 0.0146 0.0124 0.0112 0.0097 0.0093 - 

0.1 

Present [8×8] 0.0577 0.0491 0.0442 0.0380 0.0363 0.0295 
TSDT (Hosseini-
Hashemi et al. 2011) 0.0577 0.0490 0.0442 0.0381 0.0364 0.0293 

HSDT (Matsunaga 
2008) 0.0577 0.0492 0.0443 0.0381 0.0364 0.0293 

FSDT (Hosseini-
Hashemi et al. 2010) 0.0577 0.0492 0.0445 0.0383 0.0363 0.0294 

FSDT (Zhao et al. 
2009) 0.0568 0.0482 0.0435 0.0376 0.3592 - 

0.2 

Present [8×8] 0.2106 0.1807 0.1631 0.1370 0.1283 0.1077 
TSDT (Hosseini-
Hashemi et al. 2011) 

0.2113 0.1807 0.1631 0.1378 0.1301 0.1076 

HSDT (Matsunaga 
2008) 0.2121 0.1819 0.1640 0.1383 0.1306 0.1077 

FSDT (Hosseini-
Hashemi et al. 2010) 

0.2112 0.1806 0.1650 0.1371 0.1304 0.1075 

FSDT (Zhao et al. 
2009) 0.2055 0.1757 0.1587 0.1356 0.1284 - 

 
Furthermore, Figure 4.2 shows that the current NLFR results are slightly higher than 

the reference values. The IFSDT and FSDT with von Karman's assumptions utilized by 

the current model and reference material (Sundararajan et al. 2005) lead to this 
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disparity. As a result, the nonlinear frequency is influenced by the mass, linear stiffness, 

and nonlinear stiffness matrices. 

Table 4.3: Comparison of fundamental natural frequency for simply supported Si3N4 / 

SUS304 square FG plate under thermal loading. (a = b = 0.2, a/h = 8). 

Temperature 

(K) 

Ref. (Huang and 

Shen 2004) 

Volume fraction grading index (m) 

Ceramic 0.5 1 2 Metal 

Tc = 400 

Tm=300 

Present [2×2] 12.2104 8.4184 7.3791 6.6124 5.2374 

Present [4×4] 12.3919 8.5404 7.4884 6.7138 5.3104 

Present [6×6] 12.4182 8.5579 7.5037 6.7278 5.3214 

Present [8×8] 12.4264 8.5634 7.5085 6.7322 5.3248 

Ref. 12.397 8.615 7.474 6.693 5.311 

% Diff 0.236 0.598 0.459 0.582 0.259 

Tc = 600 

Tm=300 

Present [2×2] 11.8264 8.1076 7.0847 6.3268 4.9202 

Present [4×4] 11.9785 8.2042 7.1693 6.4039 4.9671 

Present [6×6] 12.0025 8.2199 7.1829 6.4161 4.9761 

Present [8×8] 12.0101 8.2249 7.1871 6.4200 4.9790 

Ref. 11.984 8.269 7.171 6.398 4.971 

% Diff 0.217 0.533 0.224 0.342 0.160 

 

Table 4.4: The dimensionless natural frequency comparison for an isotropic skew plate 

(a/b = 1, SSSS). 

a/h 
Ref. 

(Liew et al. 1993) 

Skew angle (Φ) 

0° 15° 30° 45° 

10 
Present  1.9491 2.0945 2.5447 3.4285 

Ref. 1.9311 2.0379 2.4195 3.3548 

5 
Present  1.8170 1.9084 2.2035 2.7864 

Ref. 1.7661 1.8560 2.1719 2.9129 

 

Example 6: The proposed model is validated with Chen et al. (2000) to verify the 

reliability and accuracy of the methodology used to study nonlinear transient 
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deflections for an orthotropic plate. It can be observed from Figure 4.3 that the 

nonlinear transient deflection exhibits a very similar response compared to the reference 

literature (Chen et al. 2000). 

 
Figure 4.2: Nonlinear frequency ratio (NLFR) comparison of a SSSS Si3N4 / SUS304 

FG plate in under thermal loading (a = b = 1, a/h = 10, and m = 2). 

 
Figure 4.3: Comparison of dimensionless nonlinear transient deflection of the simply 

supported orthotropic plate. 
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Table 4.5: Natural frequency comparison for SSSS Al2O3/Al porous FG plate with 

various porosity volume indexes. 

b/a ep 
Sources (Rezaei et 

al. 2017) 

         m = 0       m = 0.5         m = 1 

   Pe     Pc    Pe    Pc    Pe     Pc 

h/a = 0.05 

1 

0 
Ref.  0.0291  0.0291 0.0247  0.0247  0.0222  0.0222  

Present 0.0291 0.0291 0.0247 0.0247 0.0222 0.0222 

0.2 
Ref.  0.0300  0.0300  0.0246  0.0252 0.0210 0.0225  

Present 0.0295 0.0298 0.0241 0.0251 0.0207 0.0223 

0.4 
Ref.  0.0314 0.0310 0.0242 0.0259 0.0182 0.0227 

Present 0.0305 0.0307 0.0235 0.0257 0.0176 0.0225 

h/a = 0.1 

0.5 

0 
Ref.  0.0719  0.0719  0.0610  0.0610  0.0550 0.0550  

Present 0.0718 0.0718 0.0610 0.0610 0.0549 0.0549 

0.2 
Ref.  0.0742  0.0740  0.0607  0.0624  0.0521  0.0555  

Present 0.0729 0.0736 0.0597 0.0620 0.0512 0.0552 

0.4 
Ref.  0.0775  0.0765  0.0599  0.0640  0.0450  0.0561  

Present 0.0753 0.0758 0.0583 0.0634 0.0438 0.0555 

 

4.5. Nonlinear frequency analysis of the PFGS plate 

4.5.1. Effect of temperature rise on the NLFR 

The effects of temperature rise on the NLFR of the PFGS plate at a skew angle 

(Φ = 0°) and the porosity volume index for different porosity distributions are shown 

in Figure 4.4. The ceramic surface has a different temperature, i.e., Tc = 300 K, 400 K, 

500 K, 600 K, 700 K, and 800 K. It can be seen that as the temperature gradient (∆T = 

Tc - Tm) increases, the NLFR increases for a given porosity distribution. This is due to 

the rapid decrease in linear frequency relative to NLFP with an increase in the 

temperature gradient. Furthermore, as the temperature increases, the PFGS plate's 

Young's modulus decreases, lowering the corresponding linear frequency. The NLFR 

thus increases with an increase in temperature gradient and amplitude ratio.  
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Figure 4.4: Effects of temperature rise on NLFR for the porosity distributions Pe and 

Pc ( a/b = 1, a/h = 10, ep = 0.1, Φ = 0°, m = 2, and SSSS). 
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shows nonlinear behaviour for the value of amplitude ratio (Wmax /h) greater than 0.2, 

which indicates the increase in hardening behaviour. Hence, the NLFR of the PFGS 

plate increases as the amplitude ratio (Wmax /h) rises. 
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the skew angle increases, the plate's flexural stiffness also rises, leading to an increase 

in the linear frequency. Thus, the disparity between nonlinear and linear frequency 

decreases. As a result, a change in skewness in the PFGS plate can vary the NLFR. 

Furthermore, centrally distributed porosities have lower NLFR values relative to the 

evenly distributed porosities (Pe > Pc), in addition to the rise in temperature gradient 

and skew angle, respectively. This is because the porosities in the Pe are arranged with 

a uniform material distribution over the thickness. On the other hand, Pc accumulates 

more materials away from the middle plane, resulting in a plate with high rigidity. 

Table 4.6: Influence of various skew angles on the NLFR for the porosity distributions 

Pe and Pc ( a/b = 1, a/h = 10, ep = 0.1, m = 2, Wmax/h = 1.0, and SSSS). 

Pd      Φ 
∆T 

0 100 200 300 400 500 

Pe 

0° 1.4485 1.4700 1.4943 1.5221 1.5540 1.5919 

15° 1.4118 1.4297 1.4496 1.4722 1.4979 1.5275 

30° 1.3411 1.3525 1.3649 1.3785 1.3935 1.4103 

45° 1.2850 1.2914 1.2983 1.3055 1.3134 1.3215 

Pc 

0° 1.4443 1.4663 1.4914 1.5203 1.5540 1.5939 

15° 1.4084 1.4267 1.4474 1.4709 1.4979 1.5294 

30° 1.3383 1.3500 1.3629 1.3771 1.3930 1.4109 

45° 1.2819 1.2885 1.2957 1.3033 1.3115 1.3205 

 

4.5.3. Effect of porosity volume index 

The influence of different porosity volume indices with porosity distributions 

on the NLFR of the PFGS plate for different thermal loadings and skew angles at an 

amplitude ratio (Wmax/h) 1.0 is presented in Table 4.7. It can be found that the NLFR 

steadily decreases with an increase in the porosity volume index for a given value of 

temperature gradient and skew angle. Besides, both the porosity distributions (Pe and 

Pc) show a similar pattern. It is due to the plate's properties deteriorating in the presence 

of porosities in a thermal environment. The Pe type of porosity distribution has higher 

NLFR values for all porosity volume indices, while Pc has the lowest NLFR value (Pe 
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> Pc). Hence, the effects of porosities are lower in the centrally distributed porosity (Pc) 

than in the evenly distributed porosity (Pe) for NLFR. 

Table 4.7: Influence of porosity volume index on NLFR for different thermal loadings 

(a/b = 1, a/h = 10, m = 2, Wmax/h = 1.0, and SSSS). 

Φ ∆T (K) Pd ep 

   0.0 0.1 0.2 0.3 0.4 0.5 

0° 

0 K 
Pe 1.4636 1.4485 1.4309 1.4096 1.3826 1.3460 

Pc 1.4636 1.4443 1.4246 1.4045 1.3838 1.3625 

200 K 
Pe 1.5164 1.4943 1.4702 1.4428 1.4103 1.3686 

Pc 1.5164 1.4914 1.4665 1.4418 1.4171 1.3923 

500 K 
Pe 1.6355 1.5919 1.5487 1.5043 1.4567 1.4008 

Pc 1.6355 1.5939 1.5550 1.5183 1.4834 1.4499 

15° 

0 K 
Pe 1.4258 1.4118 1.3956 1.3761 1.3516 1.3188 

Pc 1.4258 1.4084 1.3907 1.3725 1.3539 1.3347 

200 K 
Pe 1.4694 1.4496 1.4281 1.4036 1.3746 1.3377 

Pc 1.4694 1.4474 1.4255 1.4037 1.3818 1.3597 

500 K 
Pe 1.5640 1.5275 1.4909 1.4531 1.4119 1.3636 

Pc 1.5640 1.5294 1.4967 1.4657 1.4359 1.4070 

30° 

0 K 
Pe 1.3518 1.3411 1.3286 1.3136 1.2950 1.2705 

Pc 1.3518 1.3383 1.3245 1.3103 1.2957 1.2805 

200 K 
Pe 1.3791 1.3649 1.3492 1.3313 1.3099 1.2828 

Pc 1.3791 1.3629 1.3466 1.3303 1.3138 1.2970 

500 K 
Pe 1.4338 1.4103 1.3863 1.3607 1.3322 1.2983 

Pc 1.4338 1.4109 1.3890 1.3677 1.3468 1.3263 

45° 

0 K 
Pe 1.2919 1.2850 1.2767 1.2666 1.2539 1.2372 

Pc 1.2919 1.2819 1.2715 1.2608 1.2497 1.2382 

200 K 
Pe 1.3070 1.2983 1.2883 1.2767 1.2626 1.2446 

Pc 1.3070 1.2957 1.2841 1.2723 1.2603 1.2479 

500 K 
Pe 1.3348 1.3215 1.3077 1.2923 1.2745 1.2527 

Pc 1.3348 1.3205 1.3063 1.2922 1.2781 1.2639 
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Furthermore, Figure 4.5 display the influence of porosity volume indexes on the NLFP 

(ωNL) for different temperature gradients and skew angles. For the SSSS and CCCC 

boundary conditions of the PFGS plate, the influence of temperature change (∆T = 0 

K, 200 K, and 400 K) for different skew angles of 0°, 15°, 30°, and 45° on NLFP is 

considered for the investigation. Figure 4.5 show that, for any given temperature 

gradient and skew angle, the NLFP decreases gradually with an increase in the porosity 

volume index for an evenly distributed porosity distribution. On the other hand, the 

NLFP decreases steadily and is considered stable as the porosity volume index 

increases for centrally distributed porosity distributions. It may be due to the more 

material accretion away from the middle surface stabilizing the PFGS plate's flexural 

stiffness for porosity distributions of type Pc. Meanwhile, the distribution of porosities 

in the Pe leads to uniform material distribution over the thickness, resulting in a sudden 

decrease in the stiffness. This means that the gradation area's porosities significantly 

affect the NLFP more than evenly distributed porosities. 

 
In addition, for any given temperature gradient and skew angle, NLFP is less 

susceptible to changes in porosity volume density for centrally distributed porosities 

than for evenly dispersed porosities. Hence, the NLFP of Pc is greater than the NLFP 

of Pe. The same trend is observed for both the SSSS and CCCC boundary conditions. 

Interestingly, for any given porosity volume index and skew angle, the NLFP decreases 

as the temperature gradient increases. This is because Young's modulus of the PFGS 

plate decreases as temperature increases. Moreover, the temperature effects of the 

clamped PFGS plate's nonlinear vibrational frequencies are greater than those of the 

simply supported PFGS plates. Compared to the simply supported PFGS plates for the 

nonlinear rise in temperature, the thermal stresses are fully developed for the supported 

edges of fully constrained (clamped boundary condition). Thus, the NLFP has greater 

values for CCCC boundary conditions than the SSSS case. Furthermore, for any given 

temperature gradient and porosity volume index, the NLFP increases as the skew angle 

increases. Besides, as compared to the Pe type of porosity distribution, NLFP has the 

highest values for the Pc type (Pc > Pe). This infers that the NLFP is more sensitive to 

the Pc than the Pe. 
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 (a) Pe and SSSS 

 
  (b) Pc and SSSS 

 
     (c) Pe and CCCC 
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 (d) Pc and CCCC 

Figure 4.5: Influence of various porosity volume indices for different temperatures on 

NLFP (a/b = 1, a/h = 10, m = 2, and Wmax/h = 1.0). 

4.5.4. Effect of thickness and aspect ratio 

The porosity distribution's influence at a various thickness to length ratios (h/a) 

on the NLFR of the PFGS plate with different skew angles is shown in Table 4.8. The 

temperature gradients ∆T = 0 K, 200 K, and 400 K are considered for the analysis. 

Table 4.8 shows that the NLFR decreases until h/a = 0.10, but it enhances with an 

increase in the thickness-to-length ratio from h/a = 0.12. This trend is observed for less 

skewed (Φ = 0° and 15°) PFGS plates. Meanwhile, the NLFR increases steadily by 

increasing the thickness ratio for highly skewed (Φ = 30° and 45°) plates. This increase 
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and temperature gradients. It may be because greater stiffness is achieved by having 

lower thickness ratios. Also, the plate's hardening behavior is enhanced in the presence 

of porosities in a thermal environment. Also, for any given thickness-to-length ratio, 

the Pc has the lowest NLFR while the Pe shows the highest (Pe > Pc). However, a 

noticeable meager difference between the two porosity distributions (Pc and Pe) can also 

be observed.  
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Table 4.8: Effect of thickness ratio on NLFR under different thermal loadings (a/b=1, 

m = 2, ep = 0.1, Wmax/h  = 1.0, and SSSS). 

Φ ∆T (K) Pd h/a  

   0.06 0.08 0.10 0.12 0.14 0.16 

0° 

0 K 
Pe 1.4360 1.4414 1.4485 1.4573 1.4676 1.4801 

Pc 1.4312 1.4369 1.4443 1.4538 1.4641 1.4766 

200 K 
Pe 1.5616 1.5098 1.4943 1.4917 1.4953 1.5032 

Pc 1.5610 1.5073 1.4914 1.4887 1.4926 1.5007 

400 K 
Pe 1.8263 1.6122 1.5540 1.5334 1.5274 1.5294 

Pc 1.8452 1.6148 1.5540 1.5323 1.5262 1.5283 

15° 

0 K 
Pe 1.3852 1.3991 1.4118 1.4246 1.4379 1.4522 

Pc 1.3817 1.3956 1.4084 1.4214 1.4349 1.4496 

200 K 
Pe 1.4777 1.4533 1.4496 1.4538 1.4620 1.4729 

Pc 1.4776 1.4515 1.4474 1.4514 1.4597 1.4707 

400 K 
Pe 1.6493 1.5306 1.4979 1.4887 1.4894 1.4958 

Pc 1.6615 1.5329 1.4979 1.4880 1.4885 1.5063 

30° 

0 K 
Pe 1.3059 1.3239 1.3411 1.3579 1.3747 1.3916 

Pc 1.3027 1.3210 1.3383 1.3553 1.3723 1.3895 

200 K 
Pe 1.3556 1.3558 1.3649 1.3773 1.3914 1.4052 

Pc 1.3542 1.3539 1.3629 1.3753 1.3895 1.4041 

400 K 
Pe 1.4318 1.3975 1.3935 1.3995 1.4098 1.4209 

Pc 1.4350 1.3978 1.3930 1.3986 1.4087 1.4216 

45° 

0 K 
Pe 1.2542 1.2692 1.2850 1.3010 1.3164 1.3312 

Pc 1.2503 1.2657 1.2819 1.2985 1.3141 1.3295 

200 K 
Pe 1.2797 1.2863 1.2983 1.3127 1.3266 1.3415 

Pc 1.2766 1.2834 1.2957 1.3098 1.3247 1.3390 

400 K 
Pe 1.3134 1.3067 1.3134 1.3239 1.3379 1.3493 

Pc 1.3120 1.3049 1.3115 1.3230 1.3355 1.3483 

 

Furthermore, Table 4.9 presents the influence of porosity distributions on the width-to-

length (b/a) aspect ratio under the various thermal loadings and skew angles. It can be 
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observed from Table 4.9 that the NLFR decreases till b/a = 1; however, it enhances 

with an increase in width-to-length ratio from 1.2.  

Table 4.9: Effect of aspect ratio on NLFR under thermal loading (a/h =10, m = 2, ep = 

0.1, Wmax/h  = 1.0, and SSSS). 

Φ ∆T (K) Pd b/a 

   0.6 0.8 1.0 1.2 1.4 1.6 

0° 

0 K 
Pe 1.5362 1.4687 1.4485 1.4552 1.4753 1.5010 

Pc 1.5308 1.4643 1.4443 1.4506 1.4700 1.4949 

200 K 
Pe 1.5684 1.5073 1.4973 1.5090 1.5376 1.5716 

Pc 1.5285 1.5039 1.4914 1.5058 1.5339 1.5674 

400 K 
Pe 1.6059 1.5552 1.5540 1.5825 1.6254 1.6740 

Pc 1.6029 1.5539 1.5540 1.5828 1.6259 1.6744 

15° 

0 K 
Pe 1.4587 1.4160 1.4118 1.4291 1.4566 1.4873 

Pc 1.4545 1.4126 1.4084 1.4252 1.4518 1.4820 

200 K 
Pe 1.4835 1.4468 1.4496 1.4750 1.5110 1.5505 

Pc 1.4782 1.4443 1.4474 1.4724 1.5078 1.5465 

400 K 
Pe 1.3397 1.4840 1.4979 1.5360 1.5856 1.6386 

Pc 1.5097 1.4834 1.4979 1.5363 1.5858 1.6391 

30° 

0 K 
Pe 1.2984 1.3097 1.3411 1.3823 1.4264 1.4695 

Pc 1.2960 1.3074 1.3383 1.3788 1.4220 1.4634 

200 K 
Pe 1.3111 1.3271 1.3649 1.4139 1.4664 1.5164 

Pc 1.3089 1.3253 1.3629 1.4113 1.4630 1.5135 

400 K 
Pe 1.3247 1.3472 1.3935 1.4533 1.5175 1.5804 

Pc 1.3237 1.3463 1.3930 1.4527 1.5167 1.5792 

45° 

0 K 
Pe 1.1439 1.2109 1.2850 1.3568 1.4226 1.4788 

Pc 1.1414 1.2084 1.2819 1.3530 1.4177 1.4745 

200 K 
Pe 1.1473 1.2186 1.2983 1.3775 1.4504 1.3447 

Pc 1.1431 1.2165 1.2957 1.3741 1.4462 1.5083 

400 K 
Pe 1.1511 1.2270 1.3134 1.4010 1.4836 1.5840 

Pc 1.1493 1.2252 1.3115 1.3987 1.4809 1.3656 
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This trend is observed for PFGS plates that are less skewed (Φ = 0° and 15°). 

Meanwhile, the NLFR increases steadily with an increase in the width-to-length ratio 

for highly skewed (Φ = 30° and 45°) plates. The increase or decrease in NLFR can be 

observed regardless of porosity distributions and temperature gradients. This could be 

because the geometrical instability increases as the structural elements become thinner 

in the presence of porosities in a thermal environment, which affects the plate's dynamic 

behaviour. Also, the porosity distribution Pc has the lowest, and Pe has the highest 

values of NLFR for a given aspect ratio (Pc < Pe).  

4.5.5. Effect of boundary conditions 

The effect of porosity distributions on the NLFR of the PFGS plate for different 

boundary conditions is depicted in Figure 4.6. For simplicity, the results are extracted 

only for the skew angle Φ = 30° and the temperature gradient ∆T = 300 K. Figure 4.6 

shows that regardless of boundary conditions, porosities, and temperature, an increase 

in NLFR is correlated with an increase in amplitude ratio. Furthermore, NLFR is high 

for the simply supported case and lowest for the CCCF case. This is because the flexural 

stiffness increases with an increase in boundary constraints, leading to an increase in 

the linear frequency. Thus, the NLFR decreases.  

 
Figure 4.6: Influence of various boundary conditions for the porosity distributions Pe 

and Pc on NLFR.  (a/b = 1, a/h = 10, m = 2, ep = 0.1, Φ = 30°, and ∆T = 300). 
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However, free edges have no constraints, which contributes to a lower plate stiffness 

value. Hence, the structure becomes stiffer for clamped boundary constraints. 

Therefore, for the CCCF case, the NLFR has the lowest value. The NLFR decreases 

with the following boundary condition pattern: SSSS > SSSF > SCSC > CCCC > 

CCCF. Furthermore, a noticeable difference is shallow between the Pe and Pc types of 

porosity distributions for any given boundary conditions. In contrast, the NLFR exhibits 

the lowest values for Pc type compared to the Pe type of porosity distributions. Besides, 

for given support conditions and porosity distribution, the PFGS plate displays 

nonlinear behavior for a value of amplitude ratio (Wmax /h) greater than 0.2. Thus, the 

NLFR of the plate increases as the amplitude ratio (Wmax /h) rises, exhibiting the 

hardening behavior. 

4.6. Geometrically nonlinear transient response analysis 

 The significance of porosity distributions on the nonlinear transient deflections 

of the PFGS plate in a thermal environment is investigated in this section. The effects 

of skew angle, temperature gradient, porosity distributions, porosity volume index, and 

volume fraction grading index are analyzed on the geometrically nonlinear transient 

deflection. A uniform step load of q0 = 1 N/mm2, a time step of 
51 10it

   , and a 

dimensionless transient deflection function /cw w h  are used for the present analysis. 

4.6.1. Effect of porosity volume index and skew angle 

The effect of porosity volume indices (ep = 0.1, 0.2, and 0.3) and different skew 

angles (Φ = 0° and 40°) on the nonlinear transient deflections of the PFGS plates is 

shown in Figure 4.7. It can be observed from Figure 4.7 that the amplitude and time 

period of motion decrease as the skew angle increases. This may be due to an increase 

in the stiffness of the plate as the skew angle increases. In addition, the porosity volume 

index affects the deflection due to the variance in the bending stiffness and the thermal 

strains in the presence of porosities. Consequently, at lower temperatures (Tc = 400 K), 

a rectangular PFGS plate deflection increases as the porosity volume index increases. 

In contrast, the deflection decreases for higher temperatures as the porosity volume 

index increases (Tc = 600 K). Furthermore, deflection increases as the porosity volume 

index increases for any given temperature of the angled plate and evenly dispersed 
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porosities. In comparison, the trend is reversed for centrally distributed porosities. This 

is due to the porous effect that causes the plate stiffness to decrease. For porosity 

distributions of type Pc, it could be because more material accretion away from the 

middle surface leads to the PFGS plate's high flexural stiffness. Meanwhile, the porosity 

dispersion in the Pe results in a consistent material distribution over the thickness, 

decreasing stiffness.  

 
       (a) Pe and Φ =0° 

 
           (b) Pe and Φ =40° 
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        (c) Pc and Φ =0° 

 
       (d) Pc and Φ =40° 

Figure 4.7: Influence of porosity volume index on transient deflections of the PFGS 

plate with different skew angles and temperature rise (a/b = 1, a/h = 30, m = 2, and 

SSSS). 
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The impact of thermal loading on the nonlinear transient response of the PFGS plate 

reveals that as temperature rises, the amplitude and time period of motion increase. 

Moreover, Figure 4.7 show that under thermal loadings, for the square porous FG 

plates, the Pc has the highest transient deflections (Pc > Pe), and the pattern is reversed 

for skewed PFGS plates (Pe > Pc). It may be due to the porosity distribution leading to 

the stiffness variation. In addition, the PFGS plate with Pc has higher stiffness for a 

given skew angle than the Pe due to the distribution of porosities.  

4.6.2. Effect of volume fraction grading index 

The influence of the volume fraction grading index for Pe and Pc type porosity 

distributions on the nonlinear transient responses of the PFGS plate under thermal 

loading is shown in Figure 4.8. It can be seen from Figure 4.8 that with an increase in 

the volume fraction grading index (m) and temperature, the amplitude and time-period 

of motion increase. Therefore, as bending rigidity increases, the magnitude of the 

deflection decreases. Besides, the metallic plate has the highest vibration amplitude, 

whereas the ceramic plate has the lowest. This is due to a decline in the ceramic 

composition of the plate as m rises. As a result, the PFGS plate's stiffness decreases as 

the m increases but increases as the skew angle rises. Thus, increasing the skew angle 

reduces the plate's transient deflection. Consequently, the influence of volume fraction 

grading indices seems to be predominant for property determination of PFGS plate, 

which is subsequently proportional to the stiffness.  
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      (b) Pe and Φ =30° 

 
    (c) Pc and Φ =0° 

 
       (d) Pc and Φ =30° 

Figure 4.8: Influence of volume fraction grading index (m) on transient deflections of 

the PFGS plate with different skew angles and temperature rise (a/b = 1, a/h = 30, ep = 

0.15, and SSSS). 
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Figure 4.8 shows that for each value of m and Tc, the Pe type of porosity distribution 

has the lowest nonlinear transient deflections. In contrast, the Pc type has the highest 

(Pc > Pe). As a result, the porosity distribution affects the PFGS plate's deflection. It 

may be because the distribution of materials in the plate depends on the arrangement of 

porosities and temperature, which leads to the variation of stiffness. 

4.7. CONCLUSIONS 

This chapter investigates the influence of porosity distributions on nonlinear free 

vibration and transient deflections of geometrically skewed functionally graded plates 

with porosity in a thermal environment. Nonlinear FE formulations are developed by 

using the IFSDT with von Kármán assumptions. The temperature-dependent effective 

material properties are estimated using a modified power-law series, which accounts 

for the different porosity distributions. The nonlinear temperature distribution is 

considered one-dimensional steady-state heat conduction through the PFGS plate 

thickness. Using the direct iterative and Newmark's integration approaches, the 

governing equations of the PFGS plates are extracted using Hamilton's principle. The 

proposed model's reliability is assessed through various convergence and validation 

studies.  

The following observations are made from the detailed parametric evaluation. With an 

increase in the amplitude ratio (Wmax/h) in the presence of porosities and temperature, 

both NLFR (ωNL/ω) and NLFP (ωNL) increase. Conversely, the NLFR decreases as the 

skew angle rises, while the NLFP rises. Further, for a given plate skewness, increasing 

the temperature gradient increases the NLFR while decreasing the NLFP. In contrast, 

the NLFR decreases with increasing the porosity volume index for both the porosity 

distributions (Pe and Pc) and the skew angle for a given temperature gradient. The NLFR 

and NLFP are more vulnerable to centrally dispersed (Pc) than evenly dispersed (Pe) 

porosity distributions in the thermal environment for all skew angles. The impact of 

porosity distributions follows the pattern Pc < Pe for NLFR, while on the NLFP, the 

trend is Pc > Pe. For lower skew angles, the NLFR decreases to a particular value for a 

given porosity distribution and temperature gradient, then increase for both thickness 

and aspect ratios, respectively. On the other hand, the NLFR steadily increases for 

higher skew angles. The NLFR has the highest values for the simply supported case 
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and the lowest values for CCCF boundary conditions for all types of porosity 

distributions under different thermal loadings used in the analysis. The NLFR decreases 

in the following pattern: SSSS > SSSF > SCSC > CCCC > CCCF. In the case of NLFP, 

the temperature effects of the clamped PFGS plate are greater than simply supported 

boundary conditions. Besides, with increasing volume fraction index and temperature, 

the nonlinear transient deflection of the PFGS plate in a thermal environment increases 

and decreases as the skew angle increases. The Pe type has a slight impact, while the Pc 

type significantly affects geometrically nonlinear deflections. 
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CHAPTER 5 

NONLINEAR ANALYSIS OF TWO-DIRECTIONAL 

FUNCTIONALLY GRADED DOUBLY CURVED 

PANELS WITH POROSITIES 

This chapter investigates the nonlinear behavior of two-directional functionally 

graded materials (TDFGM) doubly curved panels with porosities. The composition of 

TDFGM constitutes four different materials, and the modified power-law function is 

employed to vary the material properties continuously in both thickness and 

longitudinal directions. A nonlinear finite element formulation derived in chapter 4 is 

extended for the analysis of TDFGM shells. Then, the direct iterative method is 

incorporated to accomplish the numerical results using the frequency-amplitude, 

nonlinear central deflection relations. Finally, the influence of volume fraction grading 

indices, porosity distributions, porosity volume, curvature ratio, thickness ratio, and 

aspect ratio provides a thorough insight into the linear and nonlinear responses of the 

porous curved panels. Meanwhile, this study emphasizes the influence of the volume 

fraction gradation profiles in conjunction with the various material and geometrical 

parameters on the linear frequency, nonlinear frequency, and deflection of the TDFGM 

porous shells. 

5.1. INTRODUCTION 

Traditional FGM has been limited to only changing the material properties in a 

single direction  (Jha et al. 2013), usually in the thickness direction. However, this 

approach may be ineffective in designing propulsion systems and space application 

components, often exposed to significant stresses or temperature differences in multiple 

directions (Nemat-Alla 2003, 2009; Nemat-Alla et al. 2009). As a result, bi-directional 

FGM (BDFGM) was developed by adding another material into the traditional FGM to 

withstand the induced extreme thermal stresses in advanced engineering applications 
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such as spacecraft and space shuttles. BDFGM has inherited the advantages of the 

higher capability to reduce the thermal, mechanical, and residual stresses. Besides, 

BDFGM contributes to a more flexible design than one-dimensional FGM (1-D FGM) 

by varying volume fractions of the constituent materials in two or more directions 

(Asemi et al. 2011; Van Do et al. 2017a; Nemat-Alla 2009; Nie and Zhong 2007; 

Shariyat and Alipour 2011; Sobhani Aragh and Hedayati 2012). Hence, developing bi-

directional or multi-directional FGM is necessary and valuable in advanced structural 

elements. 

In this chapter, a modified power-law series is employed to obtain the effective material 

properties of the TDFGM porous shells that vary smoothly as an arbitrary function of 

the volume fractions in longitudinal and transverse directions. The composition of 

TDFGM comprises four different materials. A nonlinear FE model is developed based 

on the improved first-order shear deformation theory (IFSDT) in conjunction with von 

Karman's nonlinearity. The equations of motion are obtained through Hamilton's 

principle. The equations of motion solutions are incurred using the direct iterative 

method. The linear and nonlinear vibration characteristics and deflection analysis of the 

TDFGM porous shells through the different shell geometries such as cylindrical, 

spherical, hyperboloid, and ellipsoid shells with four different material phases are 

analyzed for various geometrical and material parameters. 

5.2. PROBLEM DESCRIPTION AND GOVERNING EQUATION 

The displacement equations, the governing equations, and the nonlinear FE 

formulation are presented identical to sections 4.2.3 – 4.2.5 of Chapter 4 by ignoring 

the thermal effects. The solution methodologies are adapted from section 2.3. However, 

TDFGM shell geometry, homogenization technique for determining the effective 

material properties, nonlinear strain-displacement equations, and constitutive equations 

are explained in the following sections. 

5.2.1. TDFGM shell geometry 

The TDFGM porous shell made of four different material compositions is 

shown in Figure 5.1. The geometry of the TDFGM shell is referred to as a cartesian 

coordinate with sides a and b, uniform thickness h, and radii of curvatures R1 and R2 
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along with x and y directions, respectively. The TDFGM shell with four forms of shell 

geometry based on the curvature such as cylindrical shell (R1 = R, R2 = ∞), spherical 

shell (R1 = R2 = R), hyperboloid shell (R1 = R, R2 = – R), and elliptical shell (R1 = 2R, 

R2 = R) as shown in Figure 5.2 are taken for numerical evaluation in this chapter. 

 
(a)  

 

       (b)           (c) 

Figure 5.1: TDFGM doubly curved porous shell geometry. 

                                 

                                (a)              (b) 

                           

                                (c)                    (d) 

Figure 5.2: The TDFGM doubly curved porous shells schematic diagram (a) 

Cylindrical, (b) Spherical, (c) Hyperboloid, and (d) Ellipsoid. 
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5.2.2. Effective material properties 
 

The TDFGM porous shell is heterogeneous and consists of four different material 

compositions. Two are ceramics (material – 1 and 2), and the other is metallic (material 

– 3 and 4) phases, as shown in Figure 5.1. Here, the top and bottom surfaces of the 

TDFGM shell are made of two distinct pure ceramic and metallic phases, respectively. 

The material and physical properties of the shell are assumed to vary in longitudinal (x-

axis) and transverse (z-axis) directions, respectively.  

The distribution of porosities during the manufacturing of the TDFGM shell is 

mathematically modeled to obtain effective material properties. In the present study, 

the TDFGM shells are considered with three types of models, viz. ideal TDFGM shells 

(with zero pores), evenly (Pe), and centrally (Pc) distributed TDFGM porous shells, as 

shown in Figure 5.3. 

                        

                           (a)                  (b) 

Figure 5.3: The geometry of the porosity distributions in the TDFGM porous shell (a) 

Evenly distributed porosity (Pe) and (b) Centrally distributed porosity (Pc). 

The generalized effective material properties of TDFGM porous shell panel (Pfg(x, z)) 

for modulus of elasticity (Efg(x, z)), mass density (ρfg(x, z)), and Poisson's ratio (ϑfg(x, 

z)) at each point in the shell panel can be obtained by using a modified power-law series 

for different porosity distributions are as follows (Van Do et al. 2017b; Ebrahimi and 

Dabbagh 2019): 

Ideal TDFGM shell: 

           1 1 2 2 3 3 4 4,fgP x z PV PV PV PV                         (5.1) 

TDFGM shell with evenly distributed porosity (Pe): 

                 
   1 1 2 2 3 3 4 4 1 2 3 4,

2
p

fg

e
P x z PV PV PV PV P P P P

  
         

                      (5.2) 
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TDFGM shell with centrally distributed porosity (Pc): 

   
   1 1 2 2 3 3 4 4 1 2 3 4

2
, 1

2
p

fg

e z
P x z PV PV PV PV P P P P

h
   

                            (5.3) 

where Pi (i = 1, 2, 3, and 4) are the generic material properties of the material – 1 to 4, 

such as Young's modulus and density of the material. V1 to V4 are the volume fractions 

of the four constituent materials (material – 1 to 4). The material characteristics at a 

point by varying volume fractions of each material are expressed as follows (Asemi et 

al. 2011; Rad and Shariyat 2013): 

                                                
1

1 1
2 2

m mx zx zV
a h

        
    ;   

                                      
2

1 11
2 2

m zm xx zV
a h

                 ; 

                                     
3

1 11
2 2

m x m zx zV
a h

                 ; 

                                
4

1 11 1
2 2

m mx zx zV
a h

                                      (5.4) 

where mz and mx are non-negative real numbers for the volume fraction grading indexes 

along the -z and -x directions.  

From Eqs. (5.1) – (5.4), (Pfg(x, z)) reduces to conventional perfect 1D-FGM shell for 

mx = ep = 0, and the material properties changes constantly through the thickness 

direction (along z-axis) for P1 = Pceramic and P3 = Pmetal. Hence, the upper and lower 

surfaces are made of pure ceramic and metallic materials. 

5.2.3. Nonlinear strain displacement equations 

The nonlinear strains ( b : bending and  s : shear) are associated with the 

displacement fields of Eq. (4.11) for the TDFGM shell is established based on von 

Karman's type nonlinearity to consider the geometric distortion as follows (Ebrahimi 

and Dabbagh 2020; Tanov and Tabiei 2000): 
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5.2.4. Constitutive equations 
 

The stress-strain relations for any TDFGM curved panel can be stated as follows: 
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where  b and  s are the stress vector at any point in the TDFGM shell. 

5.3. RESULTS AND DISCUSSIONS 

In this section, the nonlinear FE solutions are obtained to illustrate the nonlinear 

frequency responses and nonlinear central deflection of the TDFGM shells with the 

proposed approach of IFSDT. The material properties of the TDFGM for four different 

material compositions tabulated in Table 5.1 are considered for the analysis. The 

investigation presents the parametric studies on the influence of different shell 

geometries, porosity distributions, porosity volume index, volume fraction grading 

indexes, curvature ratio, aspect ratio, and thickness-length ratio on the linear and 
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nonlinear frequency, and nonlinear central deflection of the TDFGM shells. Special 

attention is given to evaluating the effects of porosity and porosity distributions with 

combined volume fraction gradations along x and z directions with the geometrical 

parameters of the TDFGM shell panels. The present study employs the uniformly 

distributed load (q0) of – 105 N/m2 for central deflection. The results are extracted based 

on the non-dimensionalized linear frequency and deflection parameters. The non-

dimensionalized quantities used are as follows: 

Non-dimensionalized linear frequency 1

2
0/Ma h D  

  

where  1 1

3 2
0 12 1M MD E h  

 

Non-dimensionalized central deflection 
w w hc

 

Non-dimensionalized load parameter 3

4
0

4( )M

q aP
E h

 
   

               (5.7) 

where 1ME , 1M , and 1M are Young's modulus, density, and Poisson's ratio of the 

material – 1 made of Si3N4; q0 is the applied uniformly distributed mechanical load and 
3ME is the material – 3 made of SUS304. 

5.3.1. Convergence and comparison study 

The accuracy of the developed nonlinear FE model assures the carrying out of 

parametric studies by validating and comparing the computed results with existing 

solutions available in the open literature. A mesh size converged at [10 × 10] is adopted 

in this article.  

Example 1: The fundamental frequency of the in-plane FG plate for different 

longitudinal volume fraction indices (mx) and boundary conditions is validated with the 

literature (Chu et al. 2014) tabulated in Table 5.2. It can be observed that the obtained 

results are very close to the reference literature (Chu et al. 2014).  

Example 2: Table 5.3 compares linear frequency responses of the SSSS FG porous 

curved panel having spherical geometry for evenly distributed porosity (Pe) with the 

literature (Amir and Talha 2019; Zare Jouneghani et al. 2017). The parameters 

considered for the validation are a/h =100, a/b = 1, R/a = 1, and mx = 0, and the porous 
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FG material is taken as Al2O3/SUS304. It can be seen from Table 5.3 that the results 

from the present model show a definitive agreement with the open literature (Amir and 

Talha 2019; Zare Jouneghani et al. 2017).  

Table 5.1: Material properties of the doubly curved TDFGM shells (Ebrahimi and 

Dabbagh 2021; Zhao et al. 2009). 

Properties 
Material – 1  

(Si3N4) 

Material – 2 

(Aluminium oxide) 

Material – 3 

(SUS304) 

Material – 4 

(Al) 

E (Gpa) 322.2715 320.20 207.7877 70 

ρ (kg/m3) 2370 3750 8166 2707 

ϑ 0.30 0.30 0.30 0.30 

 

Table 5.2: Comparison of fundamental frequency of in-plane FG plate for different mx 

(a/h =100, a/b = 1, R/a = ∞). 

Boundary 

condition 
Sources 

In-plane VFGI (mx) 

0 2 

SSSS 

Analytical (Chu et al. 2014) 19.7392 19.8948 

HRBCM (Chu et al. 2014) 19.6632 19.9094 

Present 19.7321 20.1746 

SCSC 

Analytical (Chu et al. 2014) 28.9509 29.5147 

HRBCM (Chu et al. 2014) 28.9445 29.5180 

Present 28.9221 29.5707 

 

Example 3: The convergence and comparison of the nonlinear frequency ratio (NLFR) 

(ωNL/ω) of the SSSS FG curved panel made of ZrO2/Al for the geometrical parameter’s 

a/h =100, mz = 2, mx = 0, a/b = 1, R/a = 50 are shown in Table 5.4. In order to show the 

stability and efficiency of the present model, various shell geometries are considered 

for comparison. The same material properties and boundary conditions considered in 

the literature (Kar and Panda 2016) are used for the present model's validation and 

comparison. It can be observed from Table 5.4 that the obtained results resemble the 

reference literature very well (Kar and Panda 2016). Besides, it can be observed from 

Table 4 that the present NLFR results are relatively higher than the reference values. 
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This difference arises due to the IFSDT with von Karman's assumptions and HSDT 

with Green-Lagrange's assumptions used by the present model and reference literature 

(Kar and Panda 2016). Thus, the nonlinear frequency depends on the mass and linear 

stiffness matrices and nonlinear stiffness matrices. 

Table 5.3: Comparison of fundamental frequency of SSSS square porous FG spherical 

shell panels composed of Al2O3/SUS304 for different ep and mz (a/h =100, a/b = 1, R/a 

= 1, mx = 0, Pe, and SSSS). 

ep Sources 
Volume fraction grading index (mz) 

0.6 1 5 

0 
Ref. (Zare Jouneghani et al. 2017) 73.5029 67.7563 54.9591 
Ref. (Amir and Talha 2019) 73.5668 67.9406 55.1755 
Present 73.4906 67.7546 54.9521 

0.1 
Ref. (Zare Jouneghani et al. 2017) 74.2942 67.8636 53.7906 
Ref. (Amir and Talha 2019) 74.2638 67.9719 53.9476 
Present 74.2883 67.8696 53.7900 

0.2 
Ref. (Zare Jouneghani et al. 2017) 75.2655 67.9668 52.3336 
Ref. (Amir and Talha 2019) 75.1476 68.0110 52.4470 
Present 75.2676 67.9825 53.1440 

 

Table 5.4: Comparison of NLFR square FG shell panels composed of ZrO2/Al (a/h 

=100, mz = 2, mx = 0, R/a = 50, and SSSS). 

Shell 
geometry Ref. 

Amplitude ratio (Wmax/h) 
0.4 0.8 1.2 1.6 2.0 

Cylindrical 

Present [2 × 2] 1.0341 1.1005 1.1935 1.3070 1.4356 
Present [4 × 4] 1.0693 1.1900 1.3464 1.5261 1.6936 
Present [6 × 6] 1.0697 1.1903 1.3455 1.5221 1.6883 
Present [8 × 8] 1.0697 1.1901 1.3448 1.5192 1.6669 

Present [10 × 10] 1.0697 1.1901 1.3449 1.5195 1.6672 
Kar and Panda (2016) 1.0566 1.1488 1.2672 1.4035 1.5513 

Hyperboloid Present [10 × 10] 1.0326 1.1234 1.2563 1.4139 1.5874 
Kar and Panda (2016) 1.0227 1.0875 1.1857 1.3082 1.4468 

Ellipsoid Present [10 × 10] 1.0853 1.2167 1.3782 1.5573 1.7244 
Kar and Panda (2016) 1.0710 1.1738 1.2992 1.4394 1.5892 

 

Example 4: The nonlinear central deflection of the FG plate for different volume 

fraction indexes (mz = 0.5 and 2) of the proposed model is compared with the reference 

literature (Praveen and Reddy 1998) is shown in Figure 5.4. The material and 
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geometrical parameters considered are the same as in the reference solution (Praveen 

and Reddy 1998). It can be noticed that the present solutions match very well with the 

reference literature (Praveen and Reddy 1998). 

 

Figure 5.4: Comparison of nonlinear central deflection (wc/h) of FGM plate. 

5.3.2. Effect of TDFGM volume fractions 

The volume fraction grading index is considered one of the significant 

parameters for determining the properties of TDFGM shells, which subsequently 

affects the material's stiffness. The effects of the coupled variation of volume fraction 

grading indexes in both the directions mx and mz on the NLFR for different amplitude 

ratios of the simply supported TDFGM shell without porosities are tabulated in Tables 

5.5 – 5.8. The various shell geometries considered for the study are cylindrical, 

spherical, hyperboloid, and ellipsoid shells. These results show that the NLFR 

decreases with increasing the transverse volume fraction grading indices (mz) for all 

shell geometries. At the same time, the downward trend of the NLFR gradually reverses 

with a further increase in both the volume fraction grading indices mx and mz. It may be 

due to increased ceramic-rich particles as the longitudinal volume fraction index (mx) 

increases.  
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Table 5.5: NLFR (ωNL /ω) of square TDFGM porous cylindrical shell panels for 

different volume fraction grading index (a/h =20, R/a = 20, ep = 0, and SSSS). 

mx mz 
Amplitude ratio (Wmax/h) 

ω 
0.25 0.50 0.75 1.0 1.25 

0 

0.0 1.0257 1.0752 1.1448 1.2296 1.3262 19.6310 

0.5 1.0263 1.0770 1.1481 1.2355 1.3327 13.5190 

2.0 1.0255 1.0745 1.1432 1.2276 1.3227 10.6380 

10.0 1.0246 1.0719 1.1386 1.2204 1.3130 9.2121 

0.5 

0.5 1.0264 1.0771 1.1482 1.2350 1.3328 13.5190 

2.0 1.0255 1.0745 1.1434 1.2282 1.3228 10.6450 

10.0 1.0245 1.0719 1.1385 1.2202 1.3127 9.2188 

2 

0.5 1.0262 1.0768 1.1476 1.2340 1.3317 13.5190 

2.0 1.0254 1.0744 1.1433 1.2280 1.3226 10.5830 

10.0 1.0247 1.0723 1.1394 1.2216 1.3145 9.1636 

10 

0.5 1.0267 1.0782 1.1503 1.2390 1.3375 12.5470 

2.0 1.0293 1.0857 1.1643 1.2594 1.3657 8.8002 

10.0 1.0280 1.0820 1.1573 1.2486 1.3516 8.2710 

  

In contrast, the non-dimensionalized linear frequency decreases with an increase in both 

the volume fraction grading indices. Besides, the linear frequency variation is 

insignificant irrespective of various shell geometries for a given mz and mx. It is evident 

that the TDFGM panel progressively becomes metal and ceramic rich as mz and mx 

increase, respectively, and metal-rich material has comparatively lower stiffness than 

ceramic material. Thus, it is interesting to note that a proportionate mixture of ceramic 

and metal particles yields a minor variance in stiffness with an increase in volume 

fraction grading indices in both transverse (mz) and longitudinal (mx) directions.  

In addition, Figure 5.5 show the nonlinear central deflection (wc/h) variation 

considering the porosity distributions Pe and Pc for different shell geometries. It can be 

noted that the predominant effects of volume fraction indices on the nonlinear 

deflection appear to be in the gradation region (mx = mz = 1 and 2). Meanwhile, a 

pronounced lower deflection can be observed for higher volume fraction grading 
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indices (mz and mx) due to the increased stiffness. Therefore, the influence of VFGI 

seems to be predominant in the property determination of TDFGM shells, which is 

subsequently proportional to the stiffness. In addition, the Pc type of porosity 

distribution has more effect on nonlinear deformations than evenly distributed porosity 

(Pe). It may be due to the distribution of the porosities leading to the stiffness variation. 

Table 5.6: NLFR (ωNL /ω) of square TDFGM porous spherical shell panels for different 

volume fraction grading index (a/h =20, R/a = 20, ep = 0, and SSSS). 

mx mz 
Amplitude ratio (Wmax/h) 

ω 
0.25 0.50 0.75 1.0 1.25 

0 

0.0 1.0374 1.0971 1.1751 1.2666 1.3687 19.8370 

0.5 1.0383 1.0994 1.1790 1.2726 1.3759 13.6630 

2.0 1.0371 1.0961 1.1734 1.2644 1.3655 10.7470 

10.0 1.0358 1.0930 1.1679 1.2560 1.3542 9.3037 

0.5 

0.5 1.0384 1.0994 1.1791 1.2727 1.3760 13.6630 

2.0 1.0371 1.0962 1.1733 1.2644 1.3655 10.7540 

10.0 1.0358 1.0929 1.1677 1.2559 1.3544 9.3104 

2 

0.5 1.0382 1.0990 1.1784 1.2715 1.3747 13.6630 

2.0 1.0370 1.0961 1.1733 1.2640 1.3648 10.6920 

10.0 1.0360 1.0935 1.1688 1.2576 1.3564 9.2554 

10 

0.5 1.0389 1.1009 1.1818 1.2766 1.3811 12.6880 

2.0 1.0426 1.1102 1.1979 1.2998 1.4127 8.9082 

10.0 1.0408 1.1055 1.1896 1.2883 1.3965 8.3667 

 
            (a) Pe, Cylindrical, and Spherical           (b) Pe, Hyperboloid, and Ellipsoid 
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          (c) Pc, Cylindrical, and Spherical               (d) Pc, Hyperboloid, and Ellipsoid 

Figure 5.5: Nonlinear central deflection of square TDFGM porous panels for different 

volume fraction grading index and porosity distributions (a/h = 20, ep = 0.1, and R/a = 

20). 

Table 5.7: NLFR (ωNL /ω) of square TDFGM porous hyperboloid shell panels for 

different volume fraction grading index (a/h =20, R/a = 20, ep = 0, and SSSS). 

mx mz 
Amplitude ratio (Wmax/h) 

ω 
0.25 0.50 0.75 1.0 1.25 

0 

0.0 1.0131 1.0511 1.1106 1.1876 1.2762 19.5550 

0.5 1.0135 1.0524 1.1133 1.1915 1.2823 13.4670 

2.0 1.0130 1.0506 1.1095 1.1854 1.2737 10.5980 

10.0 1.0125 1.0489 1.1059 1.1795 1.2665 9.1786 

0.5 

0.5 1.0135 1.0524 1.1133 1.1916 1.2824 13.4670 

2.0 1.0130 1.0506 1.1096 1.1854 1.2737 10.6060 

10.0 1.0125 1.0488 1.1058 1.1798 1.2651 9.1852 

2 

0.5 1.0134 1.0522 1.1129 1.1908 1.2814 13.4670 

2.0 1.0130 1.0506 1.1095 1.1858 1.2735 10.5440 

10.0 1.0126 1.0491 1.1065 1.1804 1.2666 9.1300 

10 

0.5 1.0136 1.0531 1.1150 1.1943 1.2863 12.4930 

2.0 1.0149 1.0583 1.1257 1.2117 1.3106 8.7597 

10.0 1.0143 1.0558 1.1205 1.2035 1.2985 8.2356 
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Table 5.8: NLFR (ω NL /ω) of square TDFGM porous ellipsoid shell panels for different 

volume fraction grading index (a/h =20, R/a = 20, ep = 0, and SSSS). 

mx mz 
Amplitude ratio (Wmax/h) 

ω 
0.25 0.50 0.75 1.0 1.25 

0 

0.0 1.0317 1.0865 1.1603 1.2488 1.3479 19.7180 

0.5 1.0325 1.0885 1.1640 1.2552 1.3552 13.5800 

2.0 1.0314 1.0856 1.1589 1.2465 1.3448 10.6840 

10.0 1.0303 1.0827 1.1537 1.2395 1.3344 9.2507 

0.5 

0.5 1.0325 1.0886 1.1642 1.2544 1.3559 13.5800 

2.0 1.0314 1.0856 1.1588 1.2467 1.3448 10.6910 

10.0 1.0303 1.0827 1.1536 1.2388 1.3342 9.2574 

2 

0.5 1.0324 1.0882 1.1635 1.2535 1.3542 13.5800 

2.0 1.0314 1.0856 1.1587 1.2466 1.3446 10.6290 

10.0 1.0305 1.0832 1.1546 1.2402 1.3361 9.2023 

10 

0.5 1.0330 1.0899 1.1667 1.2584 1.3603 12.6060 

2.0 1.0362 1.0984 1.1818 1.2804 1.3900 8.8459 

10.0 1.0346 1.0941 1.1741 1.2692 1.3751 8.3114 

 

5.3.3. Effect of porosity volume index 

The influence of the porosity volume index (ep) and porosity distributions Pe and 

Pc for different shell geometries is investigated and tabulated in Table 5.9. For the sake 

of brevity, only the volume fraction grading index two is considered for both mx and 

mz. It can be observed that the NLFR increases with an increase in the porosity volume 

index for a Pe type of porosity distribution. However, the responses are not showing a 

monotonous behavior for spherical and ellipsoid shell geometries. Meanwhile, the trend 

is reversed for the Pc type of porosity distribution. Besides, the linear frequency 

decreases for an evenly distributed porosity while it increases for a centrally distributed 

porosity distribution with an increase in ep. It may be due to the more material accretion 

away from the middle surface leading to an enhancing the flexural stiffness of the 

TDFGM shell for the porosity distribution type Pc. For a given ep and porosity 

distribution, the variation of NLFR for various shell geometries follows the trend as 

NLFR hyperboloid < NLFR cylindrical < NLFR ellipsoid < NLFR spherical. 
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In comparison, the linear frequency follows the trend as spherical > ellipsoid > 

cylindrical > hyperboloid. It may be because the hyperboloid shells account for the 

lower stiffness due to the anticlastic behavior. Also, porosities' effects are higher in the 

centrally distributed porosity (Pc) than in the evenly distributed porosity (Pe) for linear 

responses contrary to the NLFR. 

Table 5.9: NLFR (ωNL /ω) of square TDFGM porous shell panels for different porosity 

volume index (a/h =20, R/a = 20, mx = mz = 2, Wmax/h = 1.5, and SSSS). 

TDFGP Shell 

geometry 
ep 

Pe Pc 

NLFR ω NLFR ω 

Cylindrical 

0 1.4254 10.5830 1.4254 10.5830 

0.1 1.4287 10.0960 1.4072 10.6390 

0.2 1.4313 9.5247 1.3877 10.7130 

0.3 1.4362 8.7359 1.3669 10.8050 

Spherical 

0 1.4721 10.6920 1.4721 10.6920 

0.1 1.4681 10.2030 1.4489 10.7460 

0.2 1.4640 9.6287 1.4251 10.8170 

0.3 1.4633 8.8341 1.4006 10.9060 

Hyperboloid 

0 1.3703 10.5440 1.3703 10.5440 

0.1 1.3813 10.0570 1.3579 10.6000 

0.2 1.3908 9.4875 1.3437 10.6740 

0.3 1.4017 8.7011 1.3273 10.7660 

Ellipsoid 

0 1.4498 10.6290 1.4498 10.6290 

0.1 1.4495 10.1410 1.4290 10.6840 

0.2 1.4488 9.5685 1.4073 10.7570 

0.3 1.4508 8.7772 1.3845 10.8480 

Furthermore, the nonlinear central deflection of the TDFGM shell influenced by 

porosity volume index (ep) and porosity distributions Pe and Pc for various shell 

geometries is depicted in Figure 5.6. It can be observed that the hyperboloid shell 

geometry has a maximum deflection compared to other shell geometries. It is due to 

the reduced stiffness in the hyperboloid shell geometry because of its anticlastic 

deportment. The deflections increase with an increase in the porosity volume index (ep) 
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for all porosity distributions. Meanwhile, Pc's porosity distribution shows the minimum 

deflection than the evenly distributed porosity Pe and a noticeable difference is observed 

in Pe between the porosity volume index. Also, the deflection rate is very high for the 

Pe type of porosity distribution compared to Pc for a given porosity volume index and 

shell geometry. This is because the arrangements of the porosities in the Pe facilitate 

the uniform distribution of materials across the thickness. In contrast, more materials 

are accumulated far away from the middle plane for Pc leading to high stiffness in the 

shell. For particular ep and porosity distributions, the nonlinear deflection variation of 

the different shell geometries follows the trend as hyperboloid > cylindrical > ellipsoid 

> spherical. Besides, the nonlinear deflections increase with an increase in load 

parameters.  

5.3.4. Effect of thickness and aspect ratios 

The NLFR and linear frequency (ω) of the TDFGM porous shells for different 

shell geometries and thickness ratios are tabulated in Table 5.10. For a given shell 

geometry and porosity distribution, the NLFR and linear frequency values increase with 

an increase in the thickness ratio. It may be because greater stiffness is achieved by 

having lower thickness ratios. However, due to their anticlastic nature, NLFR does not 

have the same trend for hyperboloid porous shells. Besides, there is a sudden drop in 

NLFR values, increasing the a/h ratio from 50 to 100. This is because of the change in 

stiffness values, thus leading to degradation in the material properties at a higher 

amplitude ratio Wmax/h = 1.5. The structure transforms into thin panels along with the 

geometric nonlinearity included in the panel due to the porosities. 

Besides, the aspect ratio can be considered a significant parameter in the shell's 

geometry, particularly for thin shell structures. The geometrical instability increases as 

the structural elements become thinner, which affects the shell's dynamic behavior. The 

influence of the aspect ratio on the NLFR and linear frequency of the TDFGM porous 

shells is shown in Table 5.11. The NLFR of porous shell panels decreases with an 

increase in the aspect ratio. In contrast, the linear frequency responses show a reversed 

trend for a given shell geometry and porosity distribution. For both thickness and aspect 

ratio cases, the Pc's NLFR exhibits lower values than the Pe. Meanwhile, the linear 

responses show a reversal trend for all shell geometries. In addition, the influence of 
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thickness and aspect ratio on the NLFR and linear frequency value increases in the order 

as follows hyperboloid < cylindrical < ellipsoid < spherical for a given ep and porosity 

distribution. 

Table 5.10: NLFR (ωNL /ω) of square TDFGM porous shell panels with different 

thickness ratios (R/a = 20, ep = 0.1, mx = mz = 2, Wmax/h = 1.5, and SSSS). 

TDFGP Shell 

geometry 

Thickness 

ratio (a/h) 

Pe Pc 

NLFR ω NLFR ω 

Cylindrical 

10 1.4093 9.8244 1.3878 10.3250 

20 1.4287 10.0960 1.4072 10.6390 

50 1.4812 10.3570 1.4592 10.9120 

100 1.5292 11.0140 1.3941 11.5630 

Spherical 

10 1.4342 9.8497 1.4139 10.3500 

20 1.4682 10.2030 1.4489 10.7460 

50 1.5291 11.0030 1.5148 11.5500 

100 1.3313 13.2900 1.3468 13.8210 

Hyperboloid 

10 1.3825 9.8140 1.3599 10.3140 

20 1.3812 10.0570 1.3579 10.6000 

50 1.3791 10.1290 1.3558 10.6840 

100 1.3722 10.1390 1.3496 10.6970 

Ellipsoid 

10 1.4221 9.8352 1.4011 10.3360 

20 1.4495 10.1410 1.4290 10.6840 

50 1.4987 10.6310 1.4980 11.1830 

100 1.3546 12.0150 1.5175 12.5550 

 

5.3.5. Effect of curvature ratio 

The TDFGM with curved geometry is stronger enough to carry a larger load than 

the flat plates. It is apparent that the curved panels make the structure more rigid. Thus, 

the effects of the shallowness ratio on the NLFR and linear responses of the TDFGM 

porous shell for various curved panel geometries are presented in Table 5.12. It can be 

observed that the NLFR and the linear frequency responses decrease with an increase 

in the shallowness ratio for all shell geometries and porosity distributions. Since the 

curved panel tends to flat plate as the shallowness ratio increases to infinity, it decreases 
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stiffness. However, the effect of the shallowness ratio on the NLFR is insignificant for 

hyperboloid porous shells. Further, the NLFR of the Pc exhibits lower values than the 

Pe, whereas the linear responses show an opposite movement for all types of shell 

geometries. In addition, the influence of the shallowness ratio on the NLFR increases 

in the order as follows: NLFR hyperboloid < NLFR cylindrical < NLFR ellipsoid < NFR spherical 

for a given ep and porosity distribution. 

Table 5.11: NLFR (ω NL /ω) of TDFGM porous shell panels with different aspect ratios 

(a/h = 20, R/a = 50, ep = 0.1, mx = mz = 2, Wmax/h = 1.5, and SSSS). 

TDFGP Shell 

geometry 
a/b 

Pe Pc 

NLFR ω NLFR ω 

Cylindrical 

1.0 1.4012 10.0680 1.3785 10.6110 

1.5 1.2941 16.4040 1.2773 17.2940 

2.0 1.1785 25.2580 1.1677 26.6310 

2.5 1.1056 36.6320 1.0981 38.6250 

Spherical 

1.0 1.4199 10.0850 1.3979 10.6280 

1.5 1.3349 16.4200 1.3172 17.3100 

2.0 1.2267 25.2700 1.2147 26.6430 

2.5 1.1556 36.6410 1.1489 38.6340 

Hyperboloid 

1.0 1.3814 10.0620 1.3581 10.6040 

1.5 1.2517 16.3940 1.2358 17.2830 

2.0 1.1234 25.2480 1.1168 26.6200 

2.5 1.0494 36.6240 1.0463 38.6160 

Ellipsoid 

1.0 1.4107 10.0750 1.3884 10.6180 

1.5 1.3334 16.4020 1.3147 17.2920 

2.0 1.2281 25.2470 1.2129 26.6190 

2.5 1.1540 36.6140 1.1452 38.6060 

5.3.6. Effect of boundary conditions 

The influence of the support conditions on the NLFR and linear frequency 

responses of the TDFGM porous shell is shown in Figure 5.7. For a given shell 

geometry and porosity distribution, the linear frequency responses decline with the 
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decrease in the number of boundary constraints (CCCC > SCSC > SSSS). Meanwhile, 

the nonlinearity effect for the NLFR responses is more predominant in the simply 

supported boundary condition than in the other boundary conditions. It can be noted 

that the impact of various shell geometries for a given boundary condition and porosity 

distribution on the variation of linear responses are insignificant. In addition, the NLFR 

of the Pc shows lower values than the Pe, whereas the opposite trend is followed for the 

linear responses for a given type of shell geometry. 

Table 5.12: NLFR (ωNL /ω) of square TDFGM porous shell panels with different 

curvature ratios (a/h =20, ep = 0.1, mx = mz = 2, Wmax/h = 1.5, and SSSS). 

TDFGP Shell 

geometry 

Curvature 

ratio (R/a) 

Pe Pc 

NLFR ω NLFR ω 

Cylindrical 

5 1.5218 10.5970 1.4822 11.1340 

10 1.4681 10.1980 1.4489 10.7410 

20 1.4287 10.0960 1.4072 10.6390 

50 1.4012 10.0680 1.3785 10.6110 

∞ 1.3815 10.0620 1.3581 10.6050 

Spherical 

5 1.5445 12.1350 1.5440 12.6550 

10 1.5216 10.6180 1.5086 11.1550 

20 1.4682 10.2030 1.4489 10.7460 

50 1.4199 10.0850 1.3979 10.6280 

∞ 1.3815 10.0620 1.3581 10.6050 

Hyperboloid 

5 1.3754 9.9805 1.3536 10.5190 

10 1.3807 10.0420 1.3574 10.5840 

20 1.3813 10.0570 1.3579 10.6000 

50 1.3814 10.0620 1.3581 10.6040 

∞ 1.3814 10.0620 1.3581 10.6050 

Ellipsoid 

5 1.5449 11.2700 1.5410 11.7990 

10 1.4991 10.3770 1.4827 10.9170 

20 1.4495 10.1410 1.4290 10.6840 

50 1.4107 10.0750 1.3884 10.6180 

∞ 1.3815 10.0620 1.3581 10.6050 
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            (a) Cylindrical                 (b) Spherical 

  

                  (c) Hyperboloid     (d) Ellipsoid 

Figure 5.6: Nonlinear central deflection of square TDFGM porous panels for different 

porosity distributions and porosity volume index (a/h = 20, mx = mz = 2, R/a = 20). 

 
                (a)  Pe      (b) Pe 
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         (c) Pc      (d) Pc 

Figure 5.7: NLFR (ωNL /ω) of square TDFGM porous panels for different porosity 

distributions and support conditions (a/h =40, R/a = 50, ep = 0.1, and mx = mz = 2). 

5.4. CONCLUSIONS 

The present study makes the first attempt to assess the linear frequency, nonlinear 

frequency, and nonlinear deformations of the TDFGM porous shells. To this end, the 

modified power-law series is used to integrate four different compositions of materials 

incorporating the porosities and determine the effective TDFGM porous shell 

properties in both longitudinal and thickness directions. A nonlinear FE formulation is 

developed based on the IFSDT and von Karman's geometric nonlinearity. The solutions 

are extracted using the direct iterative method.  

The following beneficial conclusions can be drawn from the several exciting outcomes 

observed in the numerical studies. The linear frequency, nonlinear frequency, and 

nonlinear deformations can be changed and controlled significantly by altering the 

volume fraction gradation profiles in the required direction for each material with the 

proper combination of materials. The highest linear frequency is noticed for the porosity 

distribution Pc, while the highest NLFR and nonlinear deflections are observed for Pe. 

The hyperboloid shell has the maximum nonlinear deformations due to its anticlastic 

nature, whereas the spherical shell has the maximum NLFR. The nonlinear deflection 

rate is very high and has a maximum for evenly distributed porosity than the centrally 

distributed porosity for a given porosity volume index and shell geometry. The NLFR 

increases with an increase in the thickness ratio, whereas it decreases with an increase 

in aspect ratio and curvature ratio. Meanwhile, the linear frequency increases for an 
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increase in thickness ratio and aspect ratio while decreases in curvature ratio. The linear 

frequency variation and nonlinear deformations for a given boundary condition, shell 

geometry, and porosity distribution are insignificant. The interpretation of nonlinear 

deflections and NLFR in connection with the various shell geometries is SSSS > SCSC 

> CCCC. 
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CHAPTER 6 

GEOMETRICALLY NONLINEAR BEHAVIOR OF TWO-

DIRECTIONAL FUNCTIONALLY GRADED POROUS 

PLATES WITH FOUR DIFFERENT MATERIALS 

This chapter investigates the influence of porosity distributions on the nonlinear 

behavior of two-directional functionally graded porous plates (TDFGPP) made from 

four distinct materials. The constitutive equations and nonlinear finite element 

formulation derived in the previous chapters have been extended for the present 

analysis. The influence of volume fraction grading indices, porosity distributions, 

porosity volume, thickness ratio, and aspect ratio for different support conditions 

provides a thorough insight into the linear and nonlinear responses of the porous plate. 

In addition, this study emphasizes the influence of the volume fraction gradation 

profiles with four different materials on the linear frequency, nonlinear frequency, and 

deflections of the TDFGPP. 

6.1. INTRODUCTION 

In Chapter 5, the influence of porosity distributions on the nonlinear vibration 

behavior of the two-directional functionally graded porous (TDFGP) curved panels has 

been investigated. In this chapter, a similar investigation is extracted for TDFGP plates. 

The main objective of this chapter is to investigate the linear vibration, nonlinear free 

vibration, and deflection analysis of two-directional FG porous plates with four distinct 

material compositions. The present work's certainty appears to be more apparent for 

structures with changing VFGI values for the various constituent materials in two 

different directions (longitudinal and transverse). A modified power-law series is used 

to quantify the material properties of the TDFGPP that vary smoothly as an arbitrary 

function of the VFGI in longitudinal and transverse directions. A nonlinear FE model 

is established based on the IFSDT and von Karman's nonlinearity. The solutions are 
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found using the direct iterative and Newmark's integration procedures, and the 

equations of motion are determined using Hamilton's principle. The linear and 

geometrically nonlinear vibration characteristics and deflection analysis of the 

TDFGPP have been evaluated for various geometrical and material parameters.  

6.2. PROBLEM DESCRIPTION AND GOVERNING EQUATION 

6.2.1. The geometry of the TDFGPP  

The TDFGPP made of four different material compositions is shown in Figure 6.1. 

In this article, the TDFGPP's geometry is characterized as a Cartesian coordinate with 

sides a and b and uniform thickness h, as shown in Figure 6.1. 

 
                         (a)  

        
                               (b)                                                        (c) 

Figure 6.1: TDFGPP geometry is composed of Si3N4/SUS304 and Al/Aluminium 

oxide. 

6.2.2. Nonlinear FE formulation and governing equations of motion 

The displacement equations, von Kármán's strain-displacement equations, the 

governing equations, and the nonlinear FE formulation derived in sections 4.2.3 – 4.2.5 



144 
 

are adopted without thermal effects for the present analysis of TDFGPP also. The 

homogenization technique for determining the effective material properties (Eqs. (5.1) 

– (5.4)) and the constitutive equations (Eq. (5.6)) derived in Chapter 5 are adopted for 

the analysis of TDFGPP also. Further, the solution methodologies are adapted from 

section 2.3 of Chapter 2. 

6.3. RESULTS AND DISCUSSIONS 

Validation studies presented in section 4.4 (Examples 1, 4, 5, and 6) and section 

5.3.1 (Examples 1 and 4) of chapters 4 and 5, respectively, have also been implemented 

for the present analysis. However, the validation has been carried out without the effects 

of temperature, i.e., T = 300 K of Example 5 in section 4.4 (Chapter 4) for the present 

analysis of TDFGPP. Since the validation is executed for nonlinear free vibration 

studies, the results corresponding to the nonlinear free vibration behavior of TDFGPP 

appear before the dynamic analysis in the subsequent section. The material properties 

of the TDFGPP with four different material compositions tabulated in Table 5.1 are 

considered for the analysis. Further, the present study employs the uniformly 

distributed load (q0) – 102 N/m2 and – 106 N/m2 for central and transient deflections. 

The time increment Δt = 10 μs is used for all the examples of transient deflection. The 

results are extracted based on the non-dimensionalized parameters for frequency and 

deflections. The non-dimensionalized quantities used are identical to those in Eq. (5.7). 

6.3.1. Effect of TDFGPP volume fractions 

The volume fraction grading index is considered one of the significant 

parameters to determine the properties of the TDFGPP, which subsequently affects the 

material's stiffness. The effects of variation of VFGI in both the directions mx and mz 

on the NLFR for different amplitude ratios are tabulated in Table 6.1. The analysis is 

performed on the SSSS TDFGPP plate with no porosity. These results show that the 

NLFR decreases with increased transverse VFGI (mz). At the same time, the downward 

trend of the NLFR gradually reverses with a further increase in the VFGI in both mx 

and mz directions. It may be due to increased ceramic-rich particles as the longitudinal 

VFGI (mx) increases. In contrast, the non-dimensionalized linear frequency decreases 

with an increase in the VFGI. It is evident that the TDFGPP becomes progressively 
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more metal and ceramic rich as mz and mx increase. Also, the metal-rich material has a 

comparatively lower stiffness than the ceramic material. Thus, it is interesting to note 

that a proportionate mixture of both ceramic and metal particles as mz and mx increase 

leads to a minor variation in the stiffness.  

Table 6.1: NLFR (ωNL /ω) of the TDFGPP for different VFGI (a/h =100, a/b = 1, ep = 

0, and SSSS). 

mx mz 
Amplitude ratio (Wmax/h) 

ω 
0.25 0.50 0.75 1.0 1.25 1.50 

0 

0.0 1.0130    1.0507    1.1100    1.1868    1.2759    1.3746 19.7321 

0.5 1.0133    1.0519    1.1125    1.1906    1.2818    1.3821 13.5854 

2.0 1.0128    1.0500    1.1086    1.1847    1.2729    1.3706 10.6972 

10.0 1.0124    1.0483    1.1050    1.1787    1.2645    1.3601 9.2679 

0.5 

0.5 1.0133    1.0519    1.1125    1.1911    1.2819    1.3823 13.5852 

2.0 1.0128    1.0501    1.1086    1.1846    1.2729    1.3706 10.7046 

10.0 1.0123    1.0483    1.1049    1.1786    1.2643    1.3603 9.2748 

2 

0.5 1.0132    1.0517    1.1121    1.1904    1.2809    1.3810 13.5861 

2.0 1.0128    1.0500    1.1086    1.1846    1.2732    1.3714 10.6418 

10.0 1.0124    1.0486    1.1056    1.1795    1.2659    1.3619 9.2180 

10 

0.5 1.0136    1.0530    1.1148    1.1948    1.2871    1.3900 12.6063 

2.0 1.0150    1.0582    1.1257    1.2125    1.3118    1.4208 8.8283 

10.0 1.0142 1.0555    1.1200    1.2028    1.2994    1.4043 8.3017 

 
In addition, Figure 6.2 shows the nonlinear central deflection (wc /h) variation 

considering Pe and Pc's porosity distributions for the TDFGPP. It can be noted that the 

predominant effects of VFGI on the nonlinear deflection appear to be in the gradation 

region (mx = mz = 1 and 2). Meanwhile, a pronounced lower deflection can be observed 

for higher VFGI (mz and mx) due to increased stiffness. Therefore, the influence of 

VFGI seems to be predominant for property determination of TDFGPP material, which 

is subsequently proportional to the stiffness. In addition, the Pe type of porosity 

distribution has more effect on the nonlinear deformations than the CDP (Pc), i.e., (Pe 

˃ Pc). It is due to the distribution of porosities in TDFGPP material, leading to a stiffness 
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variation. Besides, Figure 6.3 show the nonlinear transient deflection's (wc /h) variation 

considering Pe and Pc's porosity distributions for the TDFGPP. It can be noticed from 

Figure 6.3 that a similar kind of trend is observed as seen in the nonlinear central 

deflections of the TDFGPP. 

 

Figure 6.2: Nonlinear central deflections of square TDFGM porous plate for different 

VFGI (mx and mz) (a/h = 100, and ep = 0.1). 

 

         (a) EDP (Pe)  
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       (b) CDP (Pc) 

Figure 6.3: Nonlinear transient deflections of square TDFGPP for different VFGI (a/h 

= 100, ep = 0.1). (a) EDP (Pe), and (b) CDP (Pc). 

Table 6.2: NLFR (ω NL /ω) of the square TDFGPP for different PVI (ep) (a/h =100, mx 

= mz = 2, and SSSS). 

Pd ep 
Amplitude ratio (Wmax/h) 

ω 
0.25 0.50 0.75 1.00 1.25 1.50 

Pe 

0.0 1.0128    1.0500    1.1086    1.1846    1.2732    1.3714 10.6418 

0.1 1.0133    1.0518    1.1123    1.1906    1.2817    1.3816 10.1443 

0.2 1.0137    1.0533    1.1155    1.1960    1.2891    1.3911 9.5643 

0.3 1.0141    1.0551    1.1192    1.2020    1.2972    1.4020 8.7673 

0.4 1.0155    1.0602    1.1299    1.2193    1.3213    1.4329 7.3333 

Pc 

0.0 1.0128    1.0500    1.1086    1.1846    1.2732    1.3714 10.6418 

0.1 1.0126    1.0487    1.1055    1.1790    1.2650    1.3604 10.7020 

0.2 1.0123    1.0471    1.1017    1.1727    1.2555    1.3483 10.7822 

0.3 1.0118    1.0450    1.0970    1.1645    1.2443    1.3331 10.8839 

0.4 1.0112    1.0423    1.0912    1.1551    1.2309    1.3144 11.0093 
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Figure 6.4: Nonlinear central deflections of TDFGPP for different porosity 

distributions and PVI (ep) (a/h = 100, and mx = mz = 2). 

 

         (a) EDP (Pe)  
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       (b) CDP (Pc) 

Figure 6.5: Nonlinear transient deflections of the TDFGPP with CDP (Pc) for different 

PVI (ep) (a/h = 100, a/b = 1, and mx = mz = 2). (a) EDP (Pe), and (b) CDP (Pc). 

6.3.2. Effect of porosity volume index (PVI) 

The influence of the PVI (ep) and porosity distributions Pe and Pc on the 

TDFGPP are investigated and tabulated in Table 6.2. For the sake of brevity, only the 

VFGI two is considered for both mx and mz. It can be seen that the NLFR increases with 

an increase in the PVI (ep) for an EDP (Pe). Meanwhile, the trend is reversed for the 

CDP (Pc). Besides, the linear frequency decreases for an EDP while it increases for the 

CDP with an increase in ep. Also, porosities' effects are higher in the CDP (Pc) than in 

the EDP (Pe) for linear responses contrary to the NLFR. It can be due to the more 

material accretion away from the middle surface, which enhances the flexural stiffness 

of the TDFGPP for the porosity distributions type Pc.  

Furthermore, the nonlinear central deflection of the TDFGPP influenced by PVI (ep) 

and porosity distributions Pe and Pc is depicted in Figure 6.4. It can be observed that the 

deflections increase with an increase in the PVI (ep) for all porosity distributions. 

Meanwhile, Pc's porosity distribution shows the minimum deflection than the EDP (Pe), 

and a noticeable difference is observed in Pe between the PVI. Also, the deflection rate 
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is very high for Pe type of porosity distributions compared to Pc for a given PVI. It is 

because the arrangements of the porosities in the Pe facilitate the uniform distribution 

of materials across the thickness. In contrast, more materials are accumulated far away 

from the middle plane for Pc leading to high stiffness in the plate. Besides, the nonlinear 

deflections increase with an increase in the load parameters. Furthermore, Figure 6.5 

shows the nonlinear transient deflections of the TDFGPP influenced by PVI (ep) and 

porosity distributions Pe and Pc. It can be observed from Figure 6.5 that the nonlinear 

transient deflections of the TDFGPP follow a similar pattern of nonlinear central 

deflections, as illustrated in Figure 6.4. 

6.3.3. Effect of thickness and aspect ratios 

The NLFR and linear frequency of the TDFGPP for different thickness ratios 

are tabulated in Table 6.3. The NLFR and linear frequency values increase with the 

thickness ratio for a given porosity distribution. It is because greater stiffness is 

achieved by having lower thickness ratios.  

Table 6.3: NLFR (ωNL /ω) of the square TDFGPP for different thickness ratios (ep = 

0.1, mx = mz = 2, Wmax/h = 1.5, and SSSS). 

Thickness ratio (a/h) 
Pe Pc 

NLFR ω NLFR ω 

5 1.3753 8.9906 1.3582 9.3622 

10 1.3772 9.8168 1.3620 10.3164 

20 1.3801 10.0618 1.3591 10.6044 

50 1.3811 10.1338 1.3598 10.6895 

100 1.3815 10.1443 1.3604 10.7020 

 
Besides, the aspect ratio can be considered a significant parameter in the plate's 

geometry, particularly for thin structures. The geometrical instability increases as the 

structural elements become thinner, which affects the plate's dynamic behavior. The 

aspect ratio's influence on the NLFR and linear frequency of the TDFGPP are shown 

in Table 6.4. The NLFR of porous plates decreases with an increase in the aspect ratio. 

In contrast, the linear frequency responses show a reversed trend for a given porosity 

distribution. For both thickness and aspect ratio cases, the Pc's NLFR exhibits lower 
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values than the Pe. Meanwhile, the linear responses show a reverse trend. 

6.3.4. Effect of boundary conditions 

The support condition's influence on the nonlinear central and transient 

deflection of the TDFGPP is shown in Figures 6.6 and 6.7, respectively. It can be 

inferred that, for a given boundary condition, the nonlinear deformations of the Pc have 

lower values than the Pe. The arrangements of the porosities in the Pe may facilitate the 

uniform distribution of materials across the thickness, leading to maximum 

deformation. In contrast, more materials are accumulated far away from the middle 

plane for Pc leading to high stiffness in the plate. However, clamped edges have lesser 

deflections while SSSS shows the highest deflection and follows the SSSS > SCSC > 

CCCC trend. It is commonly known that as boundary restrictions are clamped, the 

structure becomes stiffer.  

Table 6.4: NLFR (ωNL /ω) of the TDFGPP for different aspect ratios (a/h = 100, ep = 

0.1, mx = mz = 2, Wmax/h = 1.5, and SSSS). 

aspect ratio (a/b) 
Pe Pc 

NLFR ω NLFR ω 

0.5 1.1764 6.3411 1.1656 6.6897 

1.0 1.3815 10.1443 1.3604 10.7020 

1.5 1.2908 16.4809 1.2741 17.3864 

2.0 1.1774 25.3471 1.1651 26.7389 

3.0 1.0611 50.6468 1.0574 53.4217 

 

 
Figure 6.6: Nonlinear central deflections of TDFGPP for different support conditions 

(a/h = 100, a/b = 1, mx = mz = 2, and ep = 0.1). 
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Figure 6.7: Nonlinear transient deflections of the TDFGPP for different support 

conditions and porosity distributions (a/h = 100, a/b = 1, mx = mz = 2, and ep = 0.1). 

6.4. CONCLUSIONS 

This chapter investigates the linear frequency, nonlinear frequency, and 

nonlinear deformations of the TDFGPP with four different material compositions. The 

modified power-law series integrates four different compositions of materials 

incorporating the porosities and determines the effective TDFGPP properties in 

longitudinal and thick directions. A nonlinear FE formulation is constructed based on 

the IFSDT and von Karman's geometric nonlinearity. The solutions are extracted using 

the direct iterative method and Newmark's integration techniques.  

Following beneficial conclusions can be made from the several exciting outcomes 

observed in the numerical studies. The linear frequency, nonlinear frequency, and 

nonlinear deformations can be significantly varied and regulated by changing the 

volume fraction gradation profiles in the desired direction (transverse and longitudinal) 

for each material with suitable materials. The distribution of porosities has a more 

significant impact on the frequency variation. The porosity distribution CDP exhibits 

the highest linear frequency, while EDP exhibits the highest NLFR and nonlinear 

deflections. The nonlinear deflection rate is reasonably considerable for a given 

porosity volume index and reaches a maximum value for evenly distributed porosity 

(EDP) rather than centrally distributed porosity (CDP). The NLFR increases with an 
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increasing thickness ratio but decreases with increasing aspect ratios. Meanwhile, the 

linear frequency increases as the thickness and aspect ratios increase. The nonlinear 

deflections with respect to the various boundary conditions follow the pattern SSSS > 

SCSC > CCCC.  
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CHAPTER 7 

GEOMETRICALLY NONLINEAR ANALYSIS OF 

FUNCTIONALLY GRADED SATURATED POROUS 

PLATES  

This chapter investigates the nonlinear analysis of a functionally graded 

saturated porous material (FGSPM) plate under undrained conditions. The nonlinear 

finite element formulation derived in chapter 4 has been extended to analyze FGSPM 

plates. The effective material characteristics of the saturated porous plate change 

constantly in the thickness direction. The pores of the saturated porous plate are 

examined in fluid-filled conditions. Thus, the constitutive equations are established 

using Biot's linear poroelasticity theory. The emphasis is placed on exploring the effects 

of numerous parameters such as Skempton coefficient, volume fraction grading index, 

porosity volume index, porosity distributions, and boundary conditions during the 

extensive numerical analyses on the linear frequency, large amplitude frequencies, and 

nonlinear central deflection of the FGSPM plates. It is evident from the investigation 

that saturated fluid in the pores substantially impacts the nonlinear deflection and 

vibration behavior of FGSPM plates. 

7.1. INTRODUCTION 

Functionally graded saturated porous materials (FGSPM) comprise the pores and 

cavities filled with fluid, and the skeletal part is made of solid material. Fabricating the 

perfect FGM without the entrapment of fluids in the pores is inevitable using modern-

day manufacturing techniques. Hence, it is crucial to investigate the effects of 

undrained pores on the structural behavior of FGSPM plates. FGSPM is widely used in 

the aircraft industry as a vibration damper meanwhile civil, mechanical, and maritime 

structures because of its low density. In this chapter, the investigation of nonlinear 

analysis of FG saturated porous plates has been carried out under drained conditions. 
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The poroelastic behavior of an FGSPM plate is modeled using the Biot theory, which 

considers the saturated pore fluid pressure. In addition, the FGSPM plate's effective 

material properties vary smoothly as an arbitrary function of the volume fractions in 

transverse directions, conferring a modified power-law series. The governing equations 

are developed and solved using the nonlinear finite element method, IFSDT, von 

Kármán's assumptions, the Hamilton principle, and the direct iterative technique. 

Finally, the linear and geometrically nonlinear vibration behavior of the FGSPM plate 

for the undrained conditions are extracted. Besides, the dynamic responses of the 

FGSPM plate are investigated for numerous parameters such as porosity and saturated 

porosity distributions, Skempton coefficients, and volume fraction grading index.  

7.2. PROBLEM DESCRIPTION AND GOVERNING EQUATION 

The nonlinear finite element formulation considering the IFSDT with von 

Kármán's nonlinearity has been derived in Chapter 4. The same formulation has been 

used to analyze porous FGSPM plates without considering the effects of temperature. 

Further, the homogenization technique to obtain the effective material properties and 

solution methodologies is employed identical to sections 2.2.1 and 2.3.1 of Chapter 2. 

However, the constitutive equations are developed using Biot's poroelasticity theory, 

which incorporates saturated fluids. The same has been presented in the subsequent 

section. 

7.2.1. The geometry of functionally graded saturated porous material plates 

Consider an FGSPM plate, as depicted in Figure 6.1, which is formed of porous 

material with fluid-saturated pores. For the numerical analysis in the present study, the 

sides a and b and the thickness h are referenced to the cartesian coordinate axis 

positioned on the plate's mid-plane, with the z-axis in the thickness direction. 

The effective material properties of the functionally graded saturated porous material 

plate vary continuously in the thickness direction. The distribution of saturated 

porosities formed during FGSPM plate fabrication is theoretically predicted. As 

illustrated in Figure 7.1, the FGSPM plate is studied using two different models: evenly 

(Pe) and centrally (Pc) distributed porosities. 
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      (a)                    (b) 
Figure 7.1: Cross-section of the FGSPM plate showing the porosity distributions in an 

undrained state. (a) Evenly distributed porosity (Pe) and (b) Centrally distributed 

porosity (Pc). 

7.2.2. Constitutive relations 

The poroelastic behaviour of a FGSPM plate is modelled using the Biot 

constitutive law (Biot's linear poroelasticity theory). As a result, the stress–strain 

relationship is as follows (Babaei et al. 2020b; DETOURNAY and CHENG 1993): 
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The pore fluid pressure is represented by p; G stands for shear modulus; M indicates 

Biot's modulus; The undrained Poisson's ratio is denoted by ϑu  0 0.5u    ; The 

Biot coefficient of effective stress is represented by αs (0 < αs < 1) (for the present study, 

α is assumed to be 0.35); kk  is volumetric strain;  is a change in the volume of fluid. 

The influence of fluid in the pores on structure's response in an undrained state is 
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denoted by the Skempton coefficient B. It is also called the Skempton pore pressure 

coefficient. 

By condensing Eq. (7.1) to the plane-stress condition in cartesian coordinates and under 

the undrained condition, the following equations emerge as ( 0  ) (Jabbari et al. 

2014b). 
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7.3. RESULTS AND DISCUSSIONS 

The nonlinear finite element solutions are obtained in this section to 

demonstrate the nonlinear frequency responses and nonlinear central deflections of the 

FGSPM plate using the proposed formulation. The material parameters of the Si3N4 / 

SUS304 FGSPM plate are listed in Table 2.1 for analysis. The parametric investigations 

on the Skempton coefficient (Pore fluid pressure), the influence of porosity volume 

index, saturated porosity distributions, VFGI, thickness-length ratio, and aspect ratio 

on linear and nonlinear frequency, nonlinear central deflections of the FGSPM plate are 

presented. Special emphasis is recorded on saturated porosity distributions and VFGI 

effects on the FGSPM plate. The uniformly distributed load (q0) – 106 N/m2 is used for 

nonlinear central deflections. The results are derived using non-dimensionalized linear 



159 
 

frequency and deflection parameters. The following are the non-dimensionalized 

quantities considered: 

Non-dimensionalized linear frequency ln c ch E    

Non-dimensionalized central deflection (w) = wc /h 

Non-dimensionalized load parameter 

4
0

4( )m

q aP
E h

 
  

             (7.12) 

where mE  and cE are the modulus of elasticity of the metal and ceramic materials 

respectively; c is the density of the ceramic material; the applied uniformly distributed 

mechanical load is q0. 

7.3.1. Convergence and comparison study 

The robustness of the proposed nonlinear finite element model enables the 

parametric analyses to be carried out by validating and comparing the obtained results 

with solutions available in the open literature.  

Validation studies presented in section 4.4 (Examples 4, 5, and 6) and section 5.3.1 

(Example 4) of chapters 4 and 5, respectively, have also been implemented for the 

present analysis. However, the validation has been carried out without the effects of 

temperature, i.e., T = 300 K of Example 5 in section 4.4 (Chapter 4) for the present 

analysis of FGSPM plates. 

Example 1: The non-dimensionalized linear frequency and deflection of the SSSS FG 

porous plate are shown in Tables 7.1 and 7.2. The acquired results are compared to 

those available in the open literature (Ebrahimi and Habibi 2016) for the same material 

and geometrical parameters used by the authors (Ebrahimi and Habibi 2016). Different 

Skempton coefficients (B), thickness ratios, and boundary conditions are considered for 

validation. The proposed model's responses converge at a mesh size of [8 × 8] and show 

remarkable agreement with the available literature (Ebrahimi and Habibi 2016).  

7.3.2. Effect of Skempton coefficient (B) and volume fraction grading index (m) 

The Skempton coefficient and VFGI are essential parameters in determining the 

characteristics of the FGSPM plate, which determines the material's stiffness. Tables 

7.3 and 7.4 show the significance of changing the Skempton coefficient (B) and VFGI 
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(m) on natural frequency and NLFR (ωNL/ω) for various amplitude ratios. The analysis 

is carried out for the simply supported FGSPM plate for EDP (Pe) and CDP (Pc). As 

noticed from the tables, the linear frequency and NLFR increase with the Skempton 

coefficient for a given VFGI (m). As also discernible, the FGSPM plate exhibits the 

lowest linear frequency and NLFR under a drained situation (no fluid; B = 0). It is due 

to the compressibility of the pores being high at this stage (no fluid in the pores). In 

contrast, in an undrained condition, the compressibility of the fluid reduces with the 

Skempton coefficient, and frequencies increase as well. Therefore, the behavior of the 

FGSPM plate replicates that of functionally graded porous plates without fluid when 

the compressibility of the fluid in pores is large (B = 0; drained state). Besides, the 

stiffness of the FGSPM plate is at its lowest in drained conditions. Hence, the 

frequencies are also at their lowest. Furthermore, when the compressibility of the fluid 

(B >> 0) in cavities is low, the highest frequencies can be attained. Hence, the behavior 

of the FGSPM plate is similar to that of rigid plates.  

Moreover, for a given Skempton coefficient, the linear frequency and NLFR exhibit the 

lowest values for CDP (Pc) in the ceramic region compared to EDP (Pe). In contrast, the 

lowest values of linear frequencies are observed for EDP in the metallic region, with an 

increase in the VFGI (m). Besides, for a given Skempton coefficient, the NLFR 

decreases gradually and reverses the trend with an increase in VFGI (m) because the 

high concentration of the ceramic material is gradually changed to the metallic material. 

This gradual change in material reduces the plate's stiffness, resulting in a quick fall in 

the plate's linear frequency. As a result, there is a significant difference between 

nonlinear and linear frequency, resulting in an increase in NLFR for higher VFGI (m).  

In addition, Figures 7.2 and 7.3 depict the influence of the VFGI (m) and Skempton 

coefficient on the geometrically nonlinear central deflection (wc/h) of the FGSPM plate 

(ep = 0.1, a/h =10, a/b = 1, and SSSS). As observed from the plots, for a given Skempton 

coefficient and porosity volume index, the central deflection increases with an increase 

in VFGI (m) for both the types of porosity distributions (Pe and Pc) shown in Figure 7.2. 

It's due to a decrease in stiffness as the FGSPM plate becomes more metal-rich as the 

VFGI (m) rises.  
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Table 7.1: Dimensionless fundamental frequency of FG porous square plates (ep = 0) 

(a/b =1). 

h/a Sources B.C 
Skempton coefficient (B) 

0.1 0.3 0.5 0.7 

0.05 

Ebrahimi et al. (2016) 
SSSS 

0.01473 0.01495 0.01526 0.01549 

Present (IFSDT) 0.0149 0.0151 0.0153 0.0155 

Ebrahimi et al. (2016) 
CCCC 

0.0266 0.02702 0.02754 0.02784 

Present (IFSDT) 0.0265 0.0269 0.0272 0.0276 

0.1 

Ebrahimi et al. (2016) 
SSSS 

0.05783 0.05876 0.05954 0.06055 

Present (IFSDT) 0.0581 0.0589 0.0596 0.0604 

Ebrahimi et al. (2016) 
CCCC 

0.09965 0.10106 0.10243 0.10378 

Present (IFSDT) 0.0975 0.0986 0.0997 0.1007 

0.2 

Ebrahimi et al. (2016) 
SSSS 

0.21275 0.21563 0.21857 0.22162 

Present (IFSDT) 0.2118 0.2141 0.2164 0.2186 

Ebrahimi et al. (2016) 
CCCC 

0.33041 0.33373 0.33696 0.34011 

Present (IFSDT) 0.3091 0.3113 0.3134 0.3155 

 
Table 7.2: Dimensionless deflection of FG porous square plates (ep = 0) (a/b =1). 

h/a Sources B.C 
Skempton coefficient (B) 

0.1 0.3 0.5 0.7 

0.05 

Ebrahimi et al. (2016) 
SSSS 

0.04543 0.04399 0.04263 0.04135 

Present (IFSDT) 0.0444 0.0432 0.0420 0.0409 

Ebrahimi et al. (2016) 
CCCC 

0.01456 0.01412 0.01369 0.01329 

Present (IFSDT) 0.0145 0.0141 0.0137 0.0134 

0.1 

Ebrahimi et al. (2016) 
SSSS 

0.04699 0.04555 0.04419 0.04291 

Present (IFSDT) 0.0466 0.0453 0.0442 0.0431 

Ebrahimi et al. (2016) 
CCCC 

0.01627 0.01582 0.01540 0.01500 

Present (IFSDT) 0.0169 0.0165 0.0161 0.0158 

0.2 

Ebrahimi et al. (2016) 
SSSS 

0.05323 0.05179 0.05043 0.04915 

Present (IFSDT) 0.0552 0.0540 0.0528 0.0517 

Ebrahimi et al. (2016) 
CCCC 

0.02269 0.02223 0.02181 0.02140 

Present (IFSDT) 0.0259 0.0255 0.0251 0.0248 
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Table 7.3: Effect of Skempton coefficient (B) and VFGI on the NLFR (ωNL/ω) of 

Si3N4/SUS304 FGSPM square plate. (a/h =10, ep = 0.1, Pd = Pe, & SSSS). 

m B 
Amplitude ratio (Wmax/h) 

ω 
0.25 0.50 0.75 1.00 

0 

0.0 1.0424 1.1610    1.3366    1.5509    0.0623 

0.1 1.0427 1.1619    1.3384    1.5538    0.0629 

0.3 1.0432 1.1637    1.3419    1.5591    0.0639 

0.5 1.0437 1.1654    1.3452    1.5640    0.0649 

0.7 1.0441 1.1669    1.3481    1.5685    0.0659 

0.5 

0.0 1.0220 1.1257    1.2931    1.5041    0.0403 

0.1 1.0222 1.1265    1.2947    1.5068    0.0406 

0.3 1.0224 1.1279    1.2978    1.5117    0.0413 

0.5 1.0227 1.1292    1.3007    1.5163    0.0419 

0.7 1.0229 1.1304    1.3033    1.5205    0.0426 

1.0 

0.0 1.0143 1.1106    1.2720    1.4785    0.0348 

0.1 1.0144 1.1113    1.2736    1.4810    0.0351 

0.3 1.0146 1.1126    1.2764    1.4858 0.0357 

0.5 1.0148 1.1137    1.2791    1.4902    0.0362 

0.7 1.0149 1.1148    1.2816    1.4942    0.0368 

2.0 

0.0 1.0116 1.1032    1.2590    1.4598    0.0309 

0.1 1.0117 1.1038    1.2605    1.4623    0.0311 

0.3 1.0118 1.1050    1.2633    1.4669    0.0316 

0.5 1.0119 1.1061    1.2658    1.4712    0.0321 

0.7 1.0121 1.1071    1.2682    1.4751    0.0326 

10.0 

0.0 1.0253 1.1262    1.2861    1.4872    0.0262 

0.1 1.0255 1.1270    1.2878    1.4898    0.0264 

0.3 1.0258 1.1284    1.2909    1.4948    0.0269 

0.5 1.0261 1.1298    1.2937    1.4993 0.0273 

0.7 1.0264 1.1310    1.2964    1.5035    0.0277 
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Table 7.4: Effect of Skempton coefficient (B) and VFGI on the NLFR (ωNL/ω) of 

Si3N4/SUS304 FGSPM square plate. (a/h =10, ep = 0.1, Pd = Pc, & SSSS). 

m 

Skempton 

coefficient 

(B) 

Amplitude ratio (Wmax/h) 

ω 
0.25 0.50 0.75 1.00 

0 

0.0 1.0416 1.1581 1.3309 1.5421 0.0602 

0.1 1.0419 1.1590 1.3327 1.5449 0.0607 

0.3 1.0424 1.1608 1.3362 1.5502 0.0617 

0.5 1.0428 1.1625 1.3394 1.5551 0.0627 

0.7 1.0433 1.1640 1.3424 1.5596 0.0636 

0.5 

0.0 1.0226 1.1249 1.2895 1.4970 0.0404 

0.1 1.0227 1.1257 1.2912 1.4997 0.0407 

0.3 1.0230 1.1271 1.2942 1.5046 0.0414 

0.5 1.0232 1.1284 1.2971 1.5091 0.0421 

0.7 1.0235 1.1296 1.2997 1.5133 0.0427 

1.0 

0.0 1.0155 1.1109 1.2698 1.4728 0.0352 

0.1 1.0156 1.1116 1.2713 1.4754 0.0355 

0.3 1.0158 1.1129 1.2742 1.4801 0.0361 

0.5 1.0160 1.1140 1.2769 1.4845 0.0367 

0.7 1.0162 1.1151 1.2794 1.4885 0.0372 

2.0 

0.0 1.0131 1.1041 1.2577 1.4554 0.0314 

0.1 1.0131 1.1047 1.2592 1.4578 0.0317 

0.3 1.0133 1.1059 1.2620 1.4625 0.0322 

0.5 1.0135 1.1071 1.2646 1.4668 0.0327 

0.7 1.0136 1.1081 1.2670 1.4707 0.0332 

10.0 

0.0 1.0257 1.1252 1.2824 1.4801 0.0269 

0.1 1.0259 1.1259 1.2841 1.4827 0.0272 

0.3 1.0262 1.1274 1.2872 1.4876 0.0276 

0.5 1.0265 1.1288 1.2900 1.4921 0.0280 

0.7 1.0268 1.1300 1.2926 1.4963 0.0285 
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Figure 7.2: Effect of VFGI on the central deflection (wc/h) of Si3N4/SUS304 FGSPM 

square plate for different porosity distributions. (a/h =10, B = 0.5, ep = 0.1, & SSSS). 

 

Figure 7.3: Effect of Skempton coefficient (B) on the central deflection (wc/h) of 

Si3N4/SUS304 FGSPM square plate for different porosity distributions. (a/h =10, ep = 

0.1, m = 2, & SSSS). 

Furthermore, the central deflection reduces as the Skempton coefficient (increase in 

pore fluid pressure) increases for a given VFGI and porosity volume index. The same 

trend is observed for both the types of porosity distributions (Pe and Pc), as illustrated 

in Figure 7.4. The physical significance of this trend is that, as the pore fluid pressure 
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increases, the compressibility of the plate decreases, leading to an increase in the 

stiffness of the FGSPM plate. Besides, EDP has the highest central deflection than the 

CDP. It is because the distribution of porosities is uniform in evenly distributed 

porosities, leading to a sudden decrease in the stiffness of the plate. 

7.3.3. Influence of porosity volume index (ep) for various Skempton coefficients 

The effect of the porosity volume index (ep) for various Skempton coefficients 

(B) on the linear frequency and NLFR of the FGSPM plate is illustrated in Figure 7.4 

for SSSS and CCCC boundary conditions. The different porosity distributions 

considered for the study are EDP (Pe) and CDP (Pc). The figures show that the linear 

frequency gradually decreases as the porosity volume index increases for both types of 

boundary conditions. However, a gradual decrease and an increase in NLFR are 

observed for the SSSS and CCCC support conditions, respectively. Also, a noticeable 

difference in the NLFR is witnessed for each value of the Skempton coefficient with 

the CCCC boundary conditions compared to the SSSS boundary conditions. This trend 

is noticed for a Skempton coefficient with EDP (Pe). However, the decrease in the linear 

frequency and increase in the NLFR are seen with increased porosity volume index for 

the CDP (Pc) for SSSS and CCCC boundary conditions. Also, a noticeable difference 

in linear frequency is observed for each value of Skempton coefficient for both types 

of boundary conditions. 
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             (b) Pe & CCCC 

 
                (c) Pc & SSSS 
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(d) Pc & CCCC 

Figure 7.4: Influence of Skempton coefficient (B) on the linear frequency and NLFR 

(ωNL/ω) of Si3N4/SUS304 FGSPM square plate for different porosity volume index. 

(a/h =10, m = 2, Wmax/h = 1,). (a) Pe, & SSSS, (b) Pe, & CCCC, (c) Pc, & SSSS, and (d) 

Pc, & CCCC. 

Further, clamped boundary conditions have higher values of linear frequency and the 

lowest values of NLFR compared to simply supported boundary conditions. 

Furthermore, the linear frequency and NLFR increase with the Skempton coefficient 

for a given porosity volume index. It is because the arrangements of the porosities in 

the Pe facilitate the uniform distribution of materials across the thickness. In contrast, 

more materials are accumulated far away from the middle plane for Pc leading to high 

stiffness in the plate. 

Furthermore, the geometrically nonlinear central deflection of the FGSPM plate 

influenced by different porosity volume index and porosity distributions is shown in 

Figure 7.5. For all porosity distributions, it can be seen that deflections rise as the 

porosity volume index (ep) increases. Meanwhile, the porosity distribution Pc exhibits 

the slightest deviation compared to the porosity distribution Pe with the variation of the 

Skempton coefficient. Besides, Pe has a clear difference between the porosity volume 
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index. Also, the deflection rate for Pe type porosity distributions is much higher than 

for Pc at a given porosity volume index. It could be because more material accretion 

away from the central region increases the FGSPM plate's flexural stiffness for porosity 

distributions of type Pc. 

 
Figure 7.5: Influence of porosity volume index on the central deflection (wc/h) of 

Si3N4/SUS304 FGSPM square plate for different porosity distributions. (a/h =10, B = 

0.5, m = 2, & SSSS). 

7.3.4. Effect of thickness and aspect ratios 

The FGSPM plate's NLFR and linear frequency for numerous thickness ratios 

and boundary conditions are tabulated in Table 7.5. It can be observed that when the 

thickness ratio is increased for a given porosity distribution, the NLFR and linear 

frequency values reduce. The reason for this is that smaller thickness ratios result in 

increased rigidity. Additionally, for a given porosity distribution and boundary 

condition, no substantial difference can be found for thinner plates with an increase in 

the Skempton coefficient. As a result, the influence of pore fluid pressure is 

insignificant for thinner plates. 

Further, in the case of thin plates, the aspect ratio could be considered a crucial 

parameter in the plate's geometry. The geometrical instability rises as the structural 

parts become thinner, affecting the plate's dynamic behavior. Table 7.6 considers the 

consequences of aspect ratios on the NLFR and linear frequency of the FGSPM plate. 
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The NLFR of FGSPM plates decreases and then increases as the aspect ratio increases. 

On the other hand, the linear frequency responses diminish for a given porosity 

distribution and boundary condition. It is because of material redistribution in the 

presence of porosities and a loss in plate stiffness as the area grows.  

Table 7.5: Influence of thickness ratio on the NLFR (ωNL/ω) of Si3N4/SUS304 FGSPM 

plate for different Skempton coefficient (B). (a/b = 1, m = 2, Wmax/h = 1.0, ep = 0.1). 

Pd a/h 

Skempton coefficient (B) 

0.0 0.25 0.50 1.00 

NLFR ω NLFR ω NLFR ω NLFR ω 

Pe 

SSSS         

8 1.4750 0.0473 1.4820 0.0483 1.4905 0.0492 1.4994 0.0510 

10 1.4597 0.0309 1.4657 0.0315 1.4712 0.0321 1.4805 0.0333 

20 1.4396 0.0079 1.4444 0.0081 1.4486 0.0083 1.4554 0.0086 

50 1.4341 0.0013 1.4385 0.0013 1.4422 0.0013 1.4485 0.0014 

CCCC 

8 1.2483 0.0763 1.2527 0.0775 1.2568 0.0787 1.2643 0.0809 

10 1.2340 0.0515 1.2373 0.0524 1.2403 0.0533 1.2455 0.0550 

20 1.2179 0.0140 1.2198 0.0143 1.2215 0.0146 1.2241 0.0151 

50 1.2141 0.0023 1.2158 0.0024 1.2171 0.0024 1.2191 0.0025 

Pc 

SSSS 

8 1.4710 0.0482 1.4779 0.0491 1.8907 0.0501 1.4955 0.0519 

10 1.4554 0.0314 1.4614 0.0321 1.4478 0.0327 1.4762 0.0340 

20 1.4348 0.0081 1.4395 0.0083 1.4436 0.0084 1.4505 0.0088 

50 1.4291 0.0013 1.4335 0.0013 1.4372 0.0014 1.4434 0.0014 

CCCC 

8 1.2439 0.0775 1.2484 0.0787 1.2525 0.0799 1.2601 0.0821 

10 1.2293 0.0524 1.2325 0.0533 1.2355 0.0542 1.2408 0.0559 

20 1.2126 0.0143 1.2145 0.0146 1.2161 0.0149 1.2187 0.0154 

50 1.2088 0.0024 1.2103 0.0024 1.2116 0.0025 1.2136 0.0026 
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Table 7.6: Influence of aspect ratio on the NLFR (ωNL/ω) of Si3N4/SUS304 FGSPM 

plate for different Skempton coefficient (B). (a/h = 10, m = 2, Wmax/h = 1.0, ep = 0.1). 

Pd b/a 

Skempton coefficient (B) 

0.0 0.25 0.50 1.00 

NLFR ω NLFR ω NLFR ω NLFR ω 

Pe 

SSSS 

0.75 1.4938 0.0423 1.4997 0.0432 1.5051 0.0440 1.5145 0.0456 

1.00 1.4597 0.0309 1.4657 0.0315 1.4712 0.0321 1.4805 0.0333 

1.25 1.4689 0.0255 1.4742 0.0260 1.4790 0.0265 1.4869 0.0275 

1.50 1.4960 0.0225 1.5002 0.0230 1.5038 0.0235 1.5099 0.0244 

CCCC 

0.75 1.2485 0.0699 1.2523 0.0711 1.2559 0.0722 1.2624 0.0742 

1.00 1.2340 0.0515 1.2373 0.0524 1.2403 0.0533 1.2455 0.0550 

1.25 1.2322 0.0435 1.2349 0.0443 1.2374 0.0450 1.2417 0.0465 

1.50 1.2346 0.0395 1.2369 0.0403 1.2390 0.0410 1.2425 0.0423 

Pc 

SSSS 

0.75 1.4894 0.0431 1.4953 0.0440 1.5007 0.0448 1.5102 0.0464 

1.00 1.4554 0.0314 1.4614 0.0321 1.4478 0.0327 1.4762 0.0340 

1.25 1.4643 0.0259 1.4695 0.0265 1.4742 0.0270 1.4823 0.0281 

1.50 1.4910 0.0229 1.4951 0.0234 1.4988 0.0239 1.5049 0.0248 

CCCC 

0.75 1.2439 0.0710 1.2478 0.0722 1.2514 0.0732 1.2580 0.0753 

1.00 1.2293 0.0524 1.2325 0.0533 1.2355 0.0542 1.2408 0.0559 

1.25 1.2272 0.0442 1.2300 0.0450 1.2325 0.0458 1.2368 0.0473 

1.50 1.2295 0.0402 1.2318 0.0410 1.2338 0.0417 1.2374 0.0431 

 

Besides, for both thickness and aspect ratios, the linear frequency and NLFR increase 

with the Skempton coefficient. This trend is observed irrespective of aspect ratio, 

boundary conditions, and porosity distributions. However, centrally distributed 

porosities and clamped boundary conditions have higher linear frequency values, 
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whereas evenly distributed porosities and simply supported boundary conditions have 

greater values for NLFR. 

7.3.5. Effect of different support conditions 

Figure 7.6 exhibits the support condition's influence on the nonlinear central 

deflection of the FGSPM plate for a given Skempton coefficient, VFGI, and porosity 

volume index. It can be deduced that the nonlinear deformations of the Pc have smaller 

values than the Pe for a given boundary condition. The configuration of the porosities 

in the Pe may enable uniform material distribution across the thickness simpler, 

resulting in maximum deformation. On the other hand, Pc accumulates more materials 

much away from the central plane, resulting in a plate with high rigidity. Clamped edges 

have lower deflections, while SSSS has the maximum deflection and follows the SSSS 

> SCSC > CCCC trend. It is commonly known that as boundary restrictions are 

clamped, the structure becomes stiffer. 

 

Figure 7.6: Influence of Skempton coefficient (B) on the central deflection (wc/h) of 

Si3N4/SUS304 FGSPM square plate for various boundary conditions. (a/h =10, B = 0.5, 

ep = 0.1, & m = 2). 
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7.4. CONCLUSIONS 

The present work uses Biot's theory to investigate the FGSPM plate's linear 

frequency, nonlinear frequency, and nonlinear deformations by considering the fluid 

pore pressure. The modified power-law series is utilized to vary the material 

compositions for different porosity distributions to extract the effective material 

properties of the fluid-saturated porous plate along the thickness direction. A nonlinear 

FE formulation is developed based on the IFSDT and von Karman's geometric 

nonlinearities. The direct iterative method is used to extract the solutions.  

 
The numerous exciting findings observed in the numerical studies can draw the 

following conclusions. The effect of solid-fluid interactions significantly influences the 

linear and nonlinear frequencies and nonlinear deformation compared to the fluid-free 

FG porous plate by varying fluid compressibility within the pores. For all the case 

studies carried out for the FGSPM plate for various boundary conditions, it has been 

discovered that the FGSPM plates under undrained conditions have greater linear 

frequency, NLFR, and lower deflections. The evenly distributed porosities are 

significantly more affected by pore fluid pressure than the centrally distributed 

porosities. For increased porosity volume index under simply supported and clamped 

boundary conditions, the Skempton coefficient significantly impacts the NLFR of 

FGSPM plates. Parametric studies on thickness ratio indicate that saturated fluid's effect 

on thinner plates has less significance, while the aspect ratio has been significantly 

affected by the saturated fluid. For various boundary conditions, the nonlinear 

deflections in relation to the Skempton coefficient follow the pattern SSSS > SCSC > 

CCCC. 

 

 

 

 

 

 

 

 



173 
 

CHAPTER 8 

 SUPERSONIC FLUTTER CHARACTERISTICS OF 

FUNCTIONALLY GRADED SATURATED POROUS 

PLATES UNDER THERMAL LOADING 

This chapter investigates the aero-thermo-poroelastic supersonic flutter 

characteristics of the geometrically nonlinear functionally graded saturated porous 

material (FGSPM) plates subjected to yawed flow angles. The nonlinear finite element 

formulation and constitutive equations established in chapters 4 and 7 are extended for 

the present analysis. In addition, the supersonic piston theory considering the yawed 

flow angle effects is used to model the FGSPM plate. The emphasis is placed on 

understanding the effects of numerous parameters such as aerodynamic pressure, 

yawed airflow angle, Skempton coefficient, temperature gradients, porosity volume 

index, saturated porosity distributions, volume fraction grading index, and boundary 

conditions during the extensive numerical analyses on the nonlinear flutter bounds of 

the FGSPM plate. It is evident from the investigation that saturated fluid in the pores 

of the FGSPM plate substantially impacts the flutter bounds than the plates in drained 

conditions. 

8.1. INTRODUCTION 

Flutter is a type of dynamic instability that occurs while aircraft are in flight. It 

is the self-excited oscillation of the outer skin of an aircraft when subjected to 

supersonic airflow along its surface. In addition, aerodynamic heating can lead to 

dynamic instability such as flutter in high-speed flight vehicles because of the 

significant temperature rise on the external skin. Panel flutter occurs when two 

eigenmodes of a structure merge at a critical aerodynamic pressure due to aerodynamic 

pressure acting on the panel, causing dynamic instability. Thus, above a critical 

pressure, the panel's motion becomes unstable and increases exponentially over time. 
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A common solution to the flutter issue is to stiffen the panels in danger of fluttering, a 

process that typically adds weight to the design (Ibrahim et al. 2007a; Marzocca et al. 

2011). Therefore, thin plates made of functionally graded materials (FGM) are a 

common structural component due to their enhanced strength, particularly in aerospace 

vehicles such as high-speed airplanes, rockets, and spacecraft subject to thermal loads 

owing to aerodynamic or solar radiation heating. This results in a temperature 

distribution over the surface and a thermal gradient through the thickness of the plate. 

The presence of these thermal fields results in a flutter motion at a lower dynamic 

pressure or a larger limit-cycle amplitude at the same dynamic pressure.  

Additionally, it is inevitable to produce flawless FGM devoid of the entrapment of 

saturated fluid pores using contemporary production procedures (Alhaifi et al. 2021). 

However, saturated fluids in the FGM pores increase the structure's stiffness 

(Detournay and Cheng 1993). Consequently, it is essential to investigate the flutter 

behavior of functionally graded saturated porous materials (FGSPM) structures 

consisting of fluid-filled pores and solid material as a skeletal part.  

The main objective of this chapter is to investigate the geometrically nonlinear flutter 

characteristics of the supersonic FGSPM plates subjected to thermal loading. The 

investigation considers the aero-thermo-poroelastic analysis of the FGSPM plate in 

which pores are filled with saturated fluid, saturated porosity distributions, and yawed 

flow angle at supersonic speed. The poroelastic behavior of the FGSPM plate is 

modeled using the Biot theory, which considers the fluid pore pressure. In addition, the 

FGSPM plate's temperature-dependent effective material properties vary smoothly as 

an arbitrary function of the volume fractions in transverse directions, conferring a 

modified power-law series. The governing equations are developed and solved using 

the IFSDT, nonlinear finite element method, supersonic piston theory, von Karman's 

assumptions, Hamilton principle, and the direct iterative technique. Geometrically 

nonlinear frequencies and aerodynamic pressure of the FGSPM plate in undrained 

conditions for different porosity distributions and various geometrical parameters are 

evaluated in detail.  
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8.2. PROBLEM DESCRIPTION AND GOVERNING EQUATION 

The geometrical parameters of the FGSPM plate considered in the present 

analysis are identical to the plate studied in the previous chapter, as shown in Figure 

7.1. Section 4.2 of Chapter 4 contains the displacement equations, the nonlinear strain-

displacement relations, and a nonlinear FE formulation. The same formulation has been 

used for the present chapter. Further, the temperature-dependent material properties by 

considering different porosity distributions presented in section 4.2.1 of chapter 4 have 

also been implemented for the present analysis. However, the constitutive equations 

have been derived by incorporating the temperature and saturated pore fluid pressure 

in the following sections. Besides, the aerodynamic loading acting on the surface of the 

supersonic FGSPM plate has been derived using the first-order piston theory, as 

explained in the subsequent section. 

8.2.1. Constitutive relations 

The thermo-poroelastic behavior of the FGSPM plate is modeled using poroelastic 

constitutive equations, i.e., linear poroelasticity theory. As a result, the stress-strain 

relationship is as follows (Babaei et al. 2020b; Detournay and Cheng 1993): 
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where G(z, T) stands for position and temperature-dependent shear modulus;  

By condensing Eq. (8.1) to the plane-stress condition in cartesian coordinates and under 

the undrained condition, the following equations emerge as ( 0  ) (Jabbari et al. 

2014b). 
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where ∆T is the rise in temperature over the reference temperature, i.e., 0T T( ) Tz   . 

In which T(z) is the temperature for any point in the FGSPM plate across the thickness, 

T0 is the reference temperature. 

     

   
1 2

2 1

0
, , 0

0 0 1
ij

Q Q
Q z T G z T Q Q

 
   
   , 

   ( )

1 0
, ,

0 1s ijQ z T G z T  
  

                  (8.4) 

           

   
 

2
1 2

1

12 1 1
1 1 2

u u
u

u

CQ
C

  


 
     

                         (8.5) 

   
    

 
2

2 2
1

12 1 1
1 1 2

u u
u u

u

CQ
C

  
 

 
     

                         (8.6) 

                
 

     1 2 1 ,
1 2 1 2 1 2

uu

u u

C G z T
 

  
 

       ;  2 1 2 ,C C G z T        (8.7) 

8.2.2. Aerodynamic loading using first-order piston theory 

The aerodynamic pressure load with yawed flow angle is developed based on the 

first-order piston theory (Dowell 1966, 1970) for supersonic FG porous plate can be 

expressed as (Prakash and Ganapathi 2006; Zhou et al. 2018) 
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where U∞, M∞, and ρ∞ signifies the free stream airflow velocity, Mach number, and 

density, respectively. 

For the supersonic FGSPM plates with M∞ ˃˃ 1, the following approximate equation 

can be written as follows (Zhou et al. 2018): 
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8.2.3. The total potential energy principle 

Using the total energy of the FGSPM plate, the following governing equations 

of motion are derived (Kattimani and Ray 2014): 
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where Δp denotes the aerodynamic pressure loading. 

The FGSPM plate's elementary equations of motion can be expressed by applying 

Hamilton's principle, i.e. 0e
pT  , followed by unifying and simplifying the terms 

based on the stiffness matrices and degrees of freedom: 
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where 
eM   is the elemental mass matrix; 

e
ttK   , 

e
trK   , 

e
rtK   and 

e
rrK   are the 

elemental stiffness matrices; 
e
Temp ttK    is the elemental stiffness matrices under thermal 

loading;  Fe
t is the elemental mechanical load vector. The various elemental stiffness, 

rigidity matrices, and vectors used in Eq. (8.12) and (8.13) are derived in Appendix - 

II. 

Finally, Eq. (8.12) is condensed to provide a more simplified form of global equations 

of equilibrium for the FGSPM plate: 
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in which,  
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where 
L NL
eq eqK K    is a set of linear and nonlinear stiffness matrices known as 

generalized equivalent stiffness matrices and  Feq is the force vector. 

Furthermore, the governing differential Eq. (8.14) is solved using the direct iterative 

technique (Bergan and Clough 1972) to produce flutter bounds for the FGSPM plate 

(Prakash and Ganapathi 2006; Zhou et al. 2018). 

8.3. RESULTS AND DISCUSSIONS 

The proposed model is used to validate the accuracy and reliability by 

considering several numerical examples of nonlinear vibration and flutter bounds. 

Then, the nonlinear finite element solutions are obtained in this section to demonstrate 

the nonlinear frequency responses and critical aerodynamic pressure loads for different 

temperature gradients and yawed flow angles influenced by various significant 

parameters. Special emphasis is recorded on saturated porosity distributions on the 

critical aerodynamic loads with yawed flow angles of the FGSPM plate under various 

temperature gradients. The results are derived using non-dimensionalized nonlinear 

frequency parameters. The following are the non-dimensionalized quantities 

considered: 

Non-dimensionalized nonlinear frequency  2
0 0NL NL m ma h D  

          (8.16) 

in which,   3 2
0 0 012 1m m mD E h  

 

where 0mE , 0m , and 0m are the modulus of elasticity, density, and Poisson's ratio of 

the metallic constituent material (Si3N4), respectively, at the reference temperature (T0). 

Further, the temperature-dependent material parameters of the Si3N4 / SUS304 FGSPM 

plate considered for analysis are listed in section 4.3 and Table 4.1. 

8.3.1. Convergence and comparison study 

The robustness of the proposed nonlinear finite element model enables the 

parametric analyses to be carried out by validating and comparing obtained results with 

solutions available in the open literature.  



179 
 

Table 8.1: Comparison of the flutter bounds of the square FG plate with different 

temperature gradients. 

m Sources ω1 ω2 ω cr λ cr 

Tc = 300 K, h = 0.05 

0 

Present [2 × 2] 46.6896 205.11 - - 

Present [4 × 4] 45.2038 110.9326 - - 

Present [6 × 6] 45.2288 111.4524 - - 

Present [8 × 8] 45.2366 111.5802 98.2621 776 

Prakash et al. (2006) 45.258 112.009 98.292 775.78 

Zhou et al. (2018) 45.246 111.697 98.148 775.63 

0.5 

Present [8 × 8] 31.234 76.8942 67.6584 667 

Prakash et al. (2006) 31.244 77.152 67.639 666.01 

Zhou et al. (2018) 31.229 76.931 67.535 665.73 

Tc = 600 K, h = 0.05 

1 

Present [8 × 8] 18.2765 58.589 49.8206 493.64 

Prakash et al. (2006) 18.772 59.197 50.289 499.61 

Zhou et al. (2018) 18.326 58.734 49.892 495.27 

2.5 

Present [8 × 8] 14.7491 50.2064 42.4959 451.68 

Prakash et al. (2006) 15.286 50.846 43.004 458.59 

Zhou et al. (2018) 14.815 50.413 42.628 454.22 

 

Example 1: The aero-thermo-elastic flutter characteristics of the FG plate are carried 

out for the convergence and validation of the proposed model. The geometrical and 

material parameters are identical to the reference literature (Prakash and Ganapathi 

2006; Zhou et al. 2018). Further, to compare the current model's stability and 

effectiveness, various mesh sizes are explored for comparison, and the proposed 

model's responses converge at a mesh size of [8 × 8]. The validation is carried out for 

various VFGI and temperature gradients. It can be observed from Table 8.1 that the 

first two natural frequencies, critical frequency and critical aerodynamic pressure load 

at the point of coalescence of the proposed model, present an excellent agreement with 

the reference literature (Prakash and Ganapathi 2006; Zhou et al. 2018). 
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Example 2: The critical aerodynamic pressure of the simply supported FG porous plate 

for different porosity distributions and porosity volume index subjected to various 

thermal loads has been validated with the reference literature (Zhou et al. 2018). It can 

be found from Tables 8.2 & 8.4 that the obtained results from the proposed model agree 

very well with the reference (Zhou et al. 2018) for various porosity distributions, 

temperature rise, and VFGI. 

Table 8.2: A comparison of the critical aerodynamic pressure of the simply supported 

square FG plate with different VFGI (m). (Tc = 300 K). [Ref: Zhou et al. (2018)]. 

Type ep 
m= 0.2 m=1 m=5 

λ cr λ cr λ cr 
Ref.  Present Ref.  Present Ref.  Present 

Pe 
0 716.68 717.63 625.61 625.72 571 570.19 

0.2 572.25 573.16 481.5 481.45 429.16 428.28 
0.4 438.35 439.03 345.8 345.35 295.35 294.12 

Pc 
0 716.68 717.63 625.61 625.72 571 570.19 

0.2 678.58 679.41 587.31 587.02 533.67 532.19 
0.4 641.53 642.25 549.82 548.99 497.1 494.63 

 

Table 8.3: Comparison of the critical aerodynamic pressure of the square FG plate with 

different porosity distributions. (m = 1). [Ref: Zhou et al. (2018)]. 

Type ep 

Tc = 300K Tc = 450K Tc = 600K 

λ cr λ cr λ cr 

Ref.  Present Ref.  Present Ref.  Present 

Pe 

0 625.61 625.72 561.86 561.13 495.27 493.64 

0.2 481.5 481.45 443.6 442.69 404.24 402.38 

0.4 345.8 345.35 326.15 324.93 306.17 304.07 

Pc 

0 625.61 625.72 561.86 561.13 495.27 493.64 

0.2 587.31 587.02 536.86 535.52 483.23 481.51 

0.4 549.82 548.99 509.47 508.09 467 465.06 

 

Further, validation studies are presented in sections 4.3.1 (except Examples 3 and 6) 

and 7.3.1 of Chapters 4 and 7, respectively. The same has been utilized for the present 

analysis also. 
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The examples above reveal that the proposed model is reliable, accurate, and efficient 

in investigating the nonlinear vibration and flutter behavior of the FGSPM plate in a 

thermal environment. 

8.3.2. Effect of VFGI with different temperature gradients 

The VFGI (m) is a crucial parameter for establishing the properties of the 

FGSPM plate, which determines the stiffness of a material. The fluctuations of the 

critical aerodynamic pressure (λcr) for various amplitude ratios (Wmax/h) of the simply 

supported FGSPM plate with varying VFGI and temperature gradients are shown in 

Figure 8.1. The analysis is carried out for the perfect FG plate, i.e., ep = B = 0. It can be 

observed from Figure 8.1 that the critical aerodynamic pressure increases with an 

increase in the amplitude ratio. It indicates that the hardening behavior of the FG plate 

increases with an increase in the amplitude ratio, leading to an increase in stiffness. 

Besides, the critical aerodynamic pressure decreases with an increase in temperature 

gradient and VFGI for a given amplitude ratio. This is because a drop in ceramic content 

with an increase in the VFGI decreases the plate's rigidity. In addition, the stiffness of 

the plate decreases with an increase in the temperature gradient.  

 
Figure 8.1: The variations of the λcr for various amplitude ratios (Wmax/h) of the simply 

supported FGSPM plate having different VFGI and temperature gradients (a/b = 1, a/h 

= 20, ep = 0, and B = 0). 

8.3.3. Effect of fluid-free porosity and its porosity distributions  

The porosity volume index significantly affects the critical aerodynamic pressure 

of the FGSPM plate. An increase in the porosity volume index reduces the stiffness and 
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weight of the FGSPM plate. The variations of the critical aerodynamic pressure (λcr) for 

various amplitude ratios (Wmax/h) of the simply supported square FGSPM plate with 

different thermal loads and porosity distributions are illustrated in Figure 8.2. The 

parameters considered for the analysis are a/h = 20, m = 1, and B = 0. It can be noticed 

from Figure 8.2 that the critical aerodynamic pressure decreases with an increase in 

porosity volume index for a given porosity distribution, amplitude ratio, and temperature 

gradient. It is because the stiffness of the FGSPM plate decreases as the porosity volume 

index rises. In addition, it can be observed that the centrally distributed porosities have 

higher values of critical aerodynamic pressure than the evenly distributed porosities (Pc 

> Pe) for a given porosity volume index and temperature gradient. It is because the 

stiffness depends on the distribution of the porosities across the thickness of the plate. 

Hence, the FGSPM plate with Pc has greater stiffness than the FGSPM plate with Pe. 

Furthermore, the vehicle structures are subjected to various thermal loadings during the 

voyage to simulate the flight. The variations of the nonlinear frequencies for various 

porosity distributions of the simply supported square FGSPM plate having different 

thermal loads with aerodynamic pressure (λ) are illustrated in Figure 8.3. T0 is the 

reference temperature (300 K) exerted on the bottom surface of the FGSPM plate. 

Besides, it is presumed that the top surface is exposed to three different ambient 

temperatures. The results show that the nonlinear frequencies and critical aerodynamic 

pressure (λcr) of the FGSPM plate drop significantly with the rise in porosity volume 

index and temperature regardless of the type of porosity distribution. It is simple to 

comprehend that a rise in temperature and porosity volume index reduces the structural 

rigidity of the FGSPM plate. In addition, evenly distributed porosities significantly 

impact the critical aerodynamic pressure more than centrally distributed porosities. This 

is because the distribution of porosities across the plate's thickness affects the stiffness 

of the FGSPM plate. However, Pc has greater values of λcr than Pe for a given porosity 

volume index and temperature gradient. 
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            (a) Pe 

 
         (b) Pc 

Figure 8.2: The variations of the λcr for various amplitude ratios (Wmax/h) of the simply 

supported square FGSPM plate with different thermal loads and porosity distributions 

(a/h = 20, m = 1, and B = 0). (a) Pe, and (b) Pc. 
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         (a) Pe 

 
                                     (b) Pc 
Figure 8.3: The variations of the nonlinear frequencies for various porosity 

distributions of the simply supported square FGSPM plate having different thermal 

loads with aerodynamic pressure (λ) (a/h = 20, m = 1, Wmax/h = 1, and B = 0). (a) Pe, 

and (b) Pc. 
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8.3.4. Effect of Skempton coefficient (saturated-fluid pressure)  

The variations of the critical aerodynamic pressure (λcr) for various Skempton 

coefficients (B) of the simply supported square FGSPM plate with different saturated 

porosity distributions and thermal loads are depicted in Figure 8.4. It can be seen in 

Figure 8.4 that the critical aerodynamic pressure increases with an increase in the 

amplitude ratio for a given Skempton coefficient and temperature gradient. This trend 

indicates that the FGSPM plate's hardening response rises when the amplitude ratio 

grows in the presence of saturated fluids. Further, the critical aerodynamic pressure 

increases with an increase in the Skempton coefficient for a given amplitude ratio. It is 

because the rigidity of the FGSPM plate increases with pore fluid pressure (Skempton 

coefficient). Besides, the critical aerodynamic pressure decreases with the temperature 

rise irrespective of the Skempton coefficient and amplitude ratio. In addition, noticeable 

differences in λcr can be observed for both the types of porosity distributions (Pc > Pe) 

for a given Skempton coefficient and temperature gradient. 

 
             (a) Tc = 300 K   
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                    (b) Tc = 400 K   

 
    (c) Tc = 600 K 

Figure 8.4: The variations of the λcr for various Skempton coefficients (B) of the simply 

supported square FGSPM plate with different porosity distributions and thermal loads 

(a/h = 20, m = 1, and ep = 0.2). (a) Tc = 300 K , (b) Tc = 400 K, and (c) Tc = 600 K. 

Further, the variations of the nonlinear frequencies for various Skempton coefficients 

(B) of the simply supported square FGSPM plate having different thermal loads and 

saturated porosity distributions with aerodynamic pressure (λ) are depicted in Figure 

8.5. The results from Figure 8.5 show that the nonlinear frequency increases with the 
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Skempton coefficient for a given temperature gradient. The FGSPM plate exhibits the 

lowest nonlinear frequency and critical aerodynamic pressure load under a drained 

situation (no fluid; B = 0). It is due to the compressibility of the pores being high at this 

stage (no fluid in pores). Therefore, the behavior of the FGSPM plate replicates that of 

functionally graded porous plates without fluid when the compressibility of the fluid in 

pores is large (B = 0; drained state). In contrast, in undrained conditions, the 

compressibility of the fluid reduces with the Skempton coefficient. As a result, 

nonlinear frequencies and critical aerodynamic pressure increase. Moreover, in drained 

conditions, the FGSPM plate has the lowest stiffness; hence, the nonlinear frequencies 

and λcr are also at their lowest. In addition, the maximum critical nonlinear frequencies 

and λcr can be reached when the compressibility of the fluid in cavities (B > 0) is low. 

Consequently, the FGSPM plate behaves similarly to stiff plates.  

Further, it can be observed from Figure 8.5 that the critical nonlinear frequencies and 

λcr decrease with an increase in the temperature gradient and porosity volume index for 

a given Skempton coefficient and porosity distribution. However, the evenly distributed 

porosities significantly impact the variation of critical nonlinear frequencies and λcr 

than the centrally distributed porosities (Pe < Pc) for a given Skempton coefficient, 

temperature gradient, and porosity volume index. 

8.3.5. Effect of thickness ratio and aspect ratio 

The effect of thickness ratio on the critical aerodynamic pressure for different 

Skempton coefficients (B) of simply supported FGSPM plates having different porosity 

distributions and thermal loads is presented in Figure 8.6. It is inferred from Figure 8.6 

that the critical aerodynamic pressure reduces significantly as the thickness ratio 

increases from 10 to 20 for a given Skempton coefficient, porosity distribution, and 

temperature gradient. This is because the stiffness reduces as the plate transforms from 

a thick plate to a thin plate, which reduces the plate's stiffness. Further, the critical 

aerodynamic pressure decreases as the thickness ratio increases from 20 to 40. 

However, a noticeable difference is negligible. It indicates that the smaller thickness 

ratios result in increased rigidity.  
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                    (a) Pe, and Tc = 300 K            (b) Pe, and Tc = 400 K                                          (c) Pe, and Tc = 600 K 

 
              (d) Pc, and Tc = 300 K                         (e) Pc, and Tc = 400 K              (f) Pc, and Tc = 600 K 

Figure 8.5: The variations of the nonlinear frequencies for various Skempton coefficients (B) of the simply supported square FGSPM plate 

having different thermal loads and porosity distributions with aerodynamic pressure (λ) (a/h = 20, m = 1, and Wmax/h = 1).
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Additionally, it can be noticed that, for a given porosity distribution and temperature 

gradient, no substantial difference in the variation of λcr can be found for thinner plates 

with an increase in the Skempton coefficient and thickness ratio. As a result, the 

influence of pore fluid pressure is insignificant for thinner plates.  

Moreover, in the case of thin plates, the aspect ratio could be regarded as a critical plate 

geometry element. The dynamic behavior of the plate is influenced by the increasing 

geometric instability as the structural components become thinner. The influence of 

aspect ratio on a thin rectangular plate (b/a = 0.5) with the shorter side aligned along 

the flow direction is presented in Figure 8.7. It may be concluded that the critical 

aerodynamic pressure is more significant for plates with b/a = 0.5 than for those with 

b/a = 1 or 2 for a given Skempton coefficient, porosity distribution, and temperature 

gradient.  

Besides, the critical aerodynamic pressure increases with the Skempton coefficient for 

both thickness and aspect ratios. In contrast, λcr decreases as the temperature rises. This 

trend is observed for both types of porosity distribution. However, centrally distributed 

porosities have higher λcr values than evenly distributed porosities (Pc > Pe) for both 

thickness and aspect ratio. 

 
         (a) Pe 
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                                (b) Pc 
Figure 8.6: Effect of thickness ratio on the critical aerodynamic pressure for different 

Skempton coefficients (B) of simply supported FGSPM plate having different porosity 

distributions and thermal loads (a/b = 1, Wmax/h = 1, m = 1, and ep = 0.2). 

 
                 (a) Pe  
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      (b) Pc 

Figure 8.7: Effect of aspect ratio on the critical aerodynamic pressure for different 

Skempton coefficients (B) of simply supported FGSPM plate having different porosity 

distributions and thermal loads (a/h = 20, Wmax/h = 1, m = 1, and ep = 0.2). 

8.3.6. Effect of yawed flow angles 

The effect of yawed flow angles on the critical aerodynamic pressure (λcr) of the 

square FGSPM plate having different VFGI, porosity volume index (ep), and thermal 

loadings is depicted in Figure 8.8. It can be seen from Figure 8.8 that the highest critical 

aerodynamic pressure is attained at a yawed flow angle equal to 45º, and the lowest 

values appear at yawed angles equal to 0º and 90º. The curves of the variation of critical 

aerodynamic pressure (λcr) of the FGSPM plate are symmetric to the yawed flow angle 

of 45º. The trend is similar for a chosen VFGI, porosity volume index, porosity 

distributions, and temperature gradients. Consequently, it reveals that the critical 

aerodynamic pressure is dependent on the yawed flow angle. Besides, from Figure 8.8, 

it can be found that the λcr decreases with an increase in the VFGI, porosity volume 

index, and temperature gradient for a chosen yawed flow angle and porosity distribution. 

In addition, the evenly distributed porosities significantly impact the λcr of the FGSPM 

plate more than the Pc.  
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  (a) Pe and Tc = 300 K    (b) Pe and Tc = 400 K                (c) Pe and Tc = 600 K  

    
                       (d) Pc and Tc = 300 K                                       (e) Pc and Tc = 400 K                   (f) Pc and Tc = 600  

Figure 8.8: The variations of the critical aerodynamic pressure (λcr) of the square FGSPM plate having different VFGI, porosity volume 

index (ep), and thermal loadings with yawed flow angles (a/h = 20, Wmax/h = 1, and B = 0). 
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         (a) Tc = 300 K 

 
                       (b) Tc = 400 K 

 
     (c) Tc = 600 K 

Figure 8.9: The variations of the critical aerodynamic pressure (λcr) of the square 

FGSPM plate having different Skempton coefficient (B), porosity distributions, and 

thermal loadings with yawed flow angles (a/h = 20, Wmax/h = 1, m = 1, and ep = 0.2).
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    (a) Pe and SSSS                                                         (b) Pc and SSSS 

                                               
   (c) Pe and CCCC                                                         (d) Pc and CCCC 

Figure 8.10: The variations of the λcr with amplitude ratio (Wmax/h) of the square FGSPM plate having different yawed flow angles, 

porosity distributions, and thermal loadings with boundary conditions (a/h = 20, m = 1, B = 0.2, and ep = 0.2). 
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However, Pc has higher values of λcr than Pe for a chosen yawed flow angle. Besides, 

regarding the yawed flow angle variation, the variation range of λcr is greater for Pc than 

for Pe. 

Furthermore, the variations of the critical aerodynamic pressure (λcr) of the square 

FGSPM plate having different Skempton coefficients (B), porosity distributions, and 

thermal loadings with yawed flow angles are depicted in Figure 8.9. It can be observed 

from Figure 8.9 that the critical aerodynamic pressure increases with an increase in the 

Skempton coefficient for a chosen yawed flow angle. Further, the same trend is 

observed, as discussed in Figure 8.8. 

8.3.7. Effect of boundary conditions 

The influence of different boundary conditions on the critical aerodynamic 

pressure (λcr) with amplitude ratio (Wmax/h) of the square FGSPM plate having different 

yawed flow angles is illustrated in Figure 8.10. It can be noticed from Figure 8.10 that 

the critical aerodynamic pressure (λcr) increases with an increase in the yawed flow angle 

for a given boundary condition and amplitude ratio. However, λcr decreases with an 

increase in the temperature gradient for simply supported and clamped boundary 

conditions. In addition, clamped boundary conditions have higher values of λcr for a 

chosen yawed flow angle. In the meantime, evenly distributed porosities and simply 

supported boundary conditions significantly affect λcr more than the clamped boundary 

condition and Pc for a given yawed flow angle.  

8.4. CONCLUSIONS 

This chapter presents the geometrically nonlinear vibration and flutter behavior 

of the supersonic FGSPM plate in a thermal environment. The IFSDT and von 

Karman's geometric nonlinearity with supersonic first-order piston theory are utilized 

to develop a nonlinear FE model. Meanwhile, the temperature-dependent effective 

material properties are obtained using a modified power-law series. The constitutive 

equations incorporate saturated fluids in the pores by employing the linear 

poroelasticity theory. Hamilton's principle and direct iterative methods are used to 

extract the solutions.  
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Numerous intriguing findings observed in numerical investigations can lead to the 

following conclusions: The effect of pore fluid pressure significantly influences the 

flutter bounds compared to the fluid-free FG porous plate by varying fluid 

compressibility within the pores. The FGSPM plates under undrained conditions have 

a more significant critical aerodynamic pressure (λcr) than the FG porous plate under 

drained conditions. The evenly distributed porosities are significantly more affected by 

pore fluid pressure on the flutter bounds than the centrally distributed porosities. The 

critical aerodynamic pressure decreases with an increase in the temperature gradient, 

porosity volume index, yawed flow angle, and VFGI for a given amplitude ratio and 

porosity distribution. However, critical aerodynamic pressure increases with the 

Skempton coefficient. Parametric studies on thickness and aspect ratios indicate that 

the influence of pore fluid pressure is insignificant for thinner plates. The critical 

aerodynamic pressure is dependent on the yawed flow angle on the supersonic FGSPM 

plate. The highest critical aerodynamic pressure is attained at a yawed flow angle of 

45º, and the lowest values appear at yawed angles of 0º and 90º. In addition, the clamped 

boundary conditions have higher values of λcr for a chosen yawed flow angle than the 

simply supported boundary conditions. 
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CHAPTER 9 

CONCLUSIONS AND FUTURE SCOPE 

This chapter summarizes the significant outcomes of the present research work 

and the possible future improvements in the analysis of functionally graded porous 

structures.  
9.1. MAJOR FINDINGS 

This dissertation investigates the influence of porosity distributions, saturated 

porosities, two-directional gradation, temperature, and geometrical non-uniformities on 

the nonlinear vibration and flutter behavior of the porous FG plates and shells. The 

nonlinear finite element model has been derived using shear deformation theory and 

von Kármán's nonlinearity relations with the aid of the total potential energy principle 

to evaluate the structural behavior of the porous FG plates and shells. The constitutive 

equations of FG porous structures are developed by accounting for the coupling 

between elastic, porosity, two-directional gradation, saturated porosities, and thermal 

fields. Temperature distribution across the thickness of the FG porous plate has been 

considered for the analysis. The effective material properties have been determined 

using the modified power-law series. The numerical solutions are obtained by using the 

direct iterative method and Newmark's integration method. The numerical evaluation 

suggests that the porosity distributions, saturated porosity distributions, and two-

directional gradation significantly influence the nonlinear responses of the FG porous 

plates and shells. Special attention has been devoted to evaluating the influence of 

saturated porosities on the flutter bounds of the FGSPM plates. 

The numerical analysis is carried out to investigate the nonlinear free vibration and 

transient responses of the FG porous plates with geometrical non-uniformities with and 

without thermal loading. The significance of different porosity distributions and 

geometrical non-uniformities such as skewness, variable thicknesses (linearly, bi-

linearly, and exponentially) along with various material and geometrical parameters on 
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the nonlinear free vibration and transient responses is well established. The different 

porosity distributions are emphasized to understand the behavior of the FG porous 

plates. It is observed that the geometrical nonuniformities and different porosity 

distributions significantly influence the nonlinear responses of the FG porous plates 

with and without thermal loading.  

Besides, the nonlinear vibration and dynamic responses of the two-directional FG 

porous plates and shells are evaluated. The nonlinear finite element of the TDFGP 

plates/shells is derived by considering the effects of two-directional gradation with 

porosities in the constitutive equations. The comprehensive analysis reveals that the 

volume fraction grading profiles in different directions exhibit a predominant effect on 

the responses of the TDFGP plates and shells. In addition, the TDFGP shells exhibit 

higher values of nonlinear frequencies and deflections than the TDFGP plate. 

Further investigation is devoted to revealing the influence of saturated porosities and 

their distributions on the nonlinear vibration and supersonic flutter characteristics of the 

FGSPM plate under thermal loading. Particular emphasis has been paid to considering 

the effect of various pore fluid pressures on the different saturated porosity distributions 

to characterize the flutter bounds under thermal loads. The linear poroelasticity theory 

incorporates saturated porosity into the constitutive equations. Besides, the quasi-

steady piston theory has been used to consider the effects of aerodynamic pressure. The 

results reveal that the pore fluid pressure and distribution of porosities have noticeable 

effects on the nonlinear behavior of the FGSPM plate.  

The major outcomes drawn from the above research work are outlined as follows: 

1. The nonlinear frequency ratio (NLFR) (ωNL/ω) and nonlinear frequency parameter 

(NLFP) (ωNL) both increase as the amplitude ratio (Wmax/h) increase in the presence 

of porosity and temperature. 

2. The effect of geometrical non-uniformities on the NLFR and NLFP of porous FG 

plates is always more significant than those with uniform thickness. 

3. The NLFR and NLFP are more sensitive to centrally distributed porosities (Pc) than 

evenly distributed porosities (Pe) in an elevated thermal environment. 
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4. The geometrically nonlinear transient deflection of the porous FG skew plate in a 

thermal environment increases as the volume fraction grading index and 

temperature increase. Furthermore, the transient deflection decreases as the skew 

angle increases. The Pe type has a minimal impact on geometrically nonlinear 

deflections compared to the Pc. 

5. The linear frequency, nonlinear frequency, and nonlinear deformations can be 

changed significantly by altering the volume fraction gradation profiles in the 

required direction for each material with a suitable combination of materials. 

6. For TDFG porous structures, centrally distributed porosities have the highest linear 

frequencies, while evenly distributed porosities exhibit the largest nonlinear 

frequencies and deflections. Porous FG plates have the lowest nonlinear to linear 

frequency ratio and deformations compared to various shell geometries.  

7. The saturated fluid pressure in the pores significantly influences the linear, 

nonlinear frequencies and nonlinear deformations compared to the fluid-free FG 

porous plates by varying the fluid compressibility within the pores. 

8. The FGSPM plate under undrained conditions has enhanced stiffness because of 

pore fluid pressure compared to the FGSPM plate in drained conditions.  

9. Evenly distributed porosities in the FGSPM plate significantly impact the flutter 

behavior more than the centrally distributed porosities. 

10. Flutter analysis reveals that the nonlinear frequency and critical aerodynamic 

pressure have greater values for FGSPM plates than FG porous plates in drained 

conditions. Hence, FGSPM plates are more suitable for flights at supersonic speed. 

9.2. SCOPE FOR THE FUTURE RESEARCH 

 The elementary purpose of this thesis has been fulfilled by the contributions 

presented in the preceding chapters of this dissertation. However, there is still scope for 

further research to enhance FG porous structures' performance. Among them, a few 

possible future research scopes have been outlined as follows: 

1. The nonlinear vibration analysis of multi-directional porous FG structures in 

thermal and hygrothermal environments is a challenging objective. 

2. Analysis of FG saturated porous structures in a thermal environment using non-

local theory is still an overlooked area. 
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3. Nonlinear analysis of the FG saturated porous structures with solid-fluid 

interactions under thermal loading is a challenging objective. 

4. Experimental verification of the proposed nonlinear finite element model will 

be handy for future applications of FG porous structures in a thermal 

environment. 
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APPENDIX - I 
The various nodal strain displacement matrices  ß , elemental stiffness, rigidity 

matrices, and vectors used in Eq. (4.14) are given as follows: 

The generalized nodal strain displacement matrix is explicitly written as follows: 

   1 2 3 8ß ß ß ß ... ßtb tb tb tb tb  ;  

     1 2 1 21 21 23 28ß ß ß ß ß ß ... ß ; 

   1 2 3 8ß ß ß ß ... ßrb rb rb rb rb  ;  

   1 2 3 8ß ß ß ß ... ßts ts ts ts ts ; 

   1 2 3 8ß ß ß ß ... ßrs rs rs rs rs ; 

1 2 3 8ß ß ß ß ... ßTemp tb Temp tb Temp tb Temp tb Temp tb           ; 

1 2 3 8ß ß ß ß ... ßTemp ts Temp ts Temp ts Temp ts Temp ts           ; 

where  ßtbn ,  1ß n ,  2ß n ,  ßrbn , ßtsn ,  ßrsn , 
ßTemp tb   , and  

ßTemp ts   are the sub-

matrices, in which n =1,2,3, …, 8 and are given by  
 
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n

n
rsn

n

 
  

  ; 

0
ß

n 0

n 00

n

Temp tb
n

x

y



 
       
    ; 

0
ß

0 0

n0

n

n

Temp tsn
n

x

y



 
       
    
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Elemental Stiffness matrices 

The elements stiffness matrices for bending and stretching deformations, as well 

as transverse shear deformations, are given as follows:  

    
0 0

ß Ð ß
a b Te

tb tb tb tbK dxdy      ;     
0 0

ß Ð ß
a b Te

trb tb trb rbK dxdy       

    
0 0

ß Ð ß
a b Te

rrb rb rrb rbK dxdy       

                    1 2 2 1 2 1 1 20 0
ß Ð ß ß ß ß Ð ß ß ß1 Ð ß ß1

2 2
a b T T T T Te

tbNL tb tb tb tb tbK dxdy          
 

       2 10 0
ß ß Ð ß

a b T Te
trbNL trb rbK dxdy      ; 

1
2

Te e
rtbNL trbNLK K        

   
0 0

a b Te
t tM ymN N dxd       where,  

/2

/2

h

h

dzm 


 
 

    
0 0

ß Ð ß
a b Te

ts ts ts tsK dxdy      ;     
0 0

ß Ð ß
a b Te

trs ts trs rsK dxdy       

    
0 0

ß Ð ß
a b Te

rrs rs rrs rsK dxdy      ;      

0 0
ß Ð ß

a b Te
Temp tb Temp tb Temp tb Temp tbK dxdy                     

 
0 0

ß Ð ß
a b Te

Temp ts Temp ts ts Temp tsK dxdy               ; 

The rigidity matrices and vectors are given by  

   
/2

/2

Ð ,
h

tb b
h

Q dzz T


   
 ; 

   
/2

/2

Ð ,
h

trb b
h

Q z z dzT


   
; 

 
/2

2

/2

[ ]Ð ,
h

rrb b
h

zQ z dzT


   
 

   
/2

/2

Ð ,
h

sts
h

dz TQ z


   
; 

   
/2

/2

Ð ,t s

h

rs
h

Q T dzz


   
 ;  

   
/2

/2

Ð ,r s

h

rs
h

Q T dzz


   
; 

  
/2

/2

0Ð 1 1,
h

T
Temp tb b fg

h

Q T dzz T 


       
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APPENDIX - II 
The generalized nodal strain displacement matrix for aerodynamic loading used 

in Eq. (8.12) is explicitly written as follows: 

1 2 3 8...fe fe fe fe feA A A A A        

where feA   is the sub-matrix, in which n =1,2,3, …, 8 and are given by 

1

0

0 0

0 0 0
0 0

cos

feA
w
x



 
 
      
 
 

   

Elemental Stiffness matrices 

The elements stiffness matrices for aerodynamic loading is given by  

0 0

T

Af e f e f e

a beK yA A dxd             
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