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ABSTRACT 

Fault diagnosis of the internal combustion engine gearbox is extremely important 

for enhancing the efficiency of the engine and preventing the failure of connected 

components. Bearings and gear elements are the primary components of a gearbox, 

which operate in a variety of dynamic conditions with varying load and speed. Because 

of these severe operating circumstances, gear tooth and bearing problems occur in 

gearbox parts. If these flaws are not addressed, the result is a catastrophic breakdown 

of the gearbox, which is extremely costly and also causes additional risks in the 

industry. Monitoring the state of the gearbox while the engine is operating is critical to 

preventing damage to the other components of the engine, which is extremely useful in 

order to minimize component loss. As a result, it is important to select an effective and 

efficient technique for monitoring gearbox health without interfering the engine 

running.  

This research focuses on the condition monitoring of an engine gearbox utilizing 

vibration signals with signal processing and artificial intelligence approaches. The 

gearbox is investigated in both healthy and simulated defective conditions, such as gear 

tooth damage and bearing defects, which occur mostly during operation. The vibration 

signals from the gearbox are collected in both healthy and defective conditions and 

these signals are then analyzed to determine the state of the gear and bearing. The 

current research work is divided into two stages. 

The initial part of the work involves identifying/detection of gearbox conditions 

by analyzing vibration signals using basic signal processing techniques. To identify 

gearbox conditions, signal processing methods such as time-domain analysis, 

frequency domain analysis, time-frequency domain analysis, cepstrum analysis and 

wavelet analysis are used. Employing vibration signals, frequency domain analysis 

gave significant information on the gearbox condition. Even while signal processing 

methods give diagnostic information. Assessing the signals needs expertise in the area 

and these approaches are not suitable for studying nonstationary signals. Machine 

learning/deep learning is one of the best alternatives for building an effective condition 
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monitoring system for developing an autonomous fault detection system for gearboxes 

based on artificial intelligence technologies. 

In the second phase, artificial intelligence models are used to investigate gearbox 

conditions based on vibration signals. Machine learning approaches are divided into 

three stages: feature extraction, feature selection and feature classification. Statistical 

features, empirical mode decomposition (EMD) features and discrete wavelet transform 

(DWT) features are extracted from the vibration signals. These extracted features are 

given as input to the decision tree-J48 algorithm for selecting significant features. The 

classifiers such as support vector machine (SVM), K-star random forest are used to 

classify the conditions of gearbox elements using selected features. Fault diagnosis 

using vibration signals are carried out by making use of different set of features and 

classifiers with selected features from the decision tree technique. The drawback of 

manual feature extraction method is time consuming, laborious, requires expertise to 

understand the features for different set of signals. To address these issues, deep 

learning techniques such as convolution neural network (CNN), residual learning, 

softmax classifier and long short-term method (LSTM) are used to develop an 

automatic feature extraction method for fault diagnosis of gearbox. 

Outcome of the machine learning techniques showed that, vibration signal-based 

fault diagnosis provided better classification accuracy in classifying the gearbox 

conditions. Present research work has demonstrated that discrete wavelet features 

served as best features among all other features such as statistical and EMD features. It 

was also observed that K-star algorithm provided better classification accuracy in 

comparison to other classifiers such as SVM and random forest algorithm. Also, results 

obtained from deep learning techniques provided promising classification accuracy by 

adopting automatic feature extraction techniques such as CNN, residual learning and 

stacked LSTM algorithm. Based on the research work, it is proposed that the 

combination of wavelet feature with K-star algorithm as a classifier is the best feature-

classifier pair for diagnosis of gearbox conditions using vibration signals.  

Keywords: Condition monitoring, Gearbox, IC engine, Vibration analysis, Signal 

processing techniques, Machine learning techniques, Deep learning technique  
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CHAPTER 1 

 INTRODUCTION 

1.1 OVERVIEW 

Internal combustion (IC) engine is an essential component required to power any 

automobile. The IC engine is composed of several systems and components, including 

a piston, a crankshaft, a connecting rod, gears and bearings. Each component in the 

engine contributes significantly to the engine smooth operation and it is essential to 

keep all components in good condition for optimal performance. It is necessary to check 

engine parameters regularly to minimize downtime caused by engine component 

failure. 

The gearbox of an IC engine is a critical component of every automobile. It is the 

component responsible for transmitting power from the driving end to the non-driving 

end (Peng et al. 2016). It is important to examine the state of the engine gearbox on a 

regular basis in order to avoid failure of the complete system and to decrease the 

chances of engine breakdown. Therefore, it is important to identify defects in these 

critical machine parts at the earliest possible stage of their deterioration.  

Condition monitoring (CM) is the practice of monitoring a machine condition 

parameter in such a way that any substantial change indicates the onset of failure. It is 

a critical component of the approach of predictive maintenance. Vibration-based 

monitoring methods have gained substantial momentum in the investigation and 

diagnosis of rotating machine components in recent years. Vibration occurs in machines 

as a result of cyclic excitation forces generated by component misalignment, imbalance, 

wear, or failure (Rao and Yap 2011). There are several machine components that 

operate under various loading conditions on any machine or equipment. IC engines, 

wind tunnels, airplanes, thermal power plants, pumps, generators, gas turbines and 

compressors are just a few examples of systems that are subjected to a range of loads 

under a wide range of operating conditions. CM of individual IC engine components is 

necessary for avoiding failure and minimizing engine downtime in a plant by detecting 

engine component problems using vibration signature analysis. In this work, a two-
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wheeler motorcycle engine is used to diagnose faults in four-stroke IC engine gearbox 

components using vibration signals. Individual component condition is monitored and 

detailed analysis of these rotating components of an IC engine is performed using 

vibration analysis to avoid severe damage to the engine and other connected 

components.  

1.2 IMPORTANCE OF MONITORING AN IC ENGINE GEARBOX 

In an IC engine or any machine, a very small defect can lead to a reduction in the 

expected lifetime of a highly expensive engine. Industries or manufacturers must 

prevent these avoidable losses. These minor defects not only reduce the engine 

performance, but they can also result in the failure of another component. If these small 

defects are neglected, they can result in severe financial loss for the firm or even 

personal injury. Machine condition monitoring is necessary because the information 

collected through monitoring techniques may be used to determine the health of the 

machine. This information may be utilized as warning signs for the scheduled 

maintenance plan and by using these techniques, maintenance or repair costs will be 

reduced. 

Progressive tooth wear and surface bearing defects are the most common causes 

of gearbox failure in IC engines, which have a severe influence on the engine 

performance and efficiency. As a result, it is essential that gearbox components do not 

degrade to the point of causing harm to other gearbox components. Hence, it is 

important to recognize/diagnose the gearbox condition utilizing a condition monitoring 

system while the engine is operating. The next section will discuss the different 

methods of monitoring the condition of a gearbox. 

1.3 TYPES OF CONDITION MONITORING TECHNIQUES 

In general condition monitoring techniques are classified in to two major 

categories, (Prabhu and Sekhar 2008) as follows, 

 Signal based methods 

In the fault detection process, the primary goal of signal processing methods is to 

distinguish between faulty and fault-free instances from the system response signals. 

This is achieved without the need of a mathematical model. Measured signals can be 
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analyzed in three ways: (i) frequency domain, (ii) time domain and (iii) time–frequency 

domain, according to signal processing methods. CM systems involves two types of 

measuring systems namely, direct measurement and indirect measurement. 

Currently, indirect measurements are more suitable for online monitoring of IC 

engine gearbox. Indirect measurements are based on the relationship between the 

measuring data of the engine and the health conditions. The measuring data, such as 

vibration signals, temperature signals, sound signals, lubrication oil analysis, acoustic 

emission (AE) signals, etc. are acquired using particular sensors such as accelerometer, 

temperature sensor, microphone, oil samples, acoustic sensor, etc.   

 Model based methods 

A model-based approach is based on the concept of analytical redundancy and is 

based on the comparison of system wide available measurements with prior information 

represented by the mathematical model of the system. New model-based fault diagnosis 

techniques are developed to meet the demand for increasingly intelligent CM systems 

for the maintenance of modern industrial process. Analytical models can be very useful 

to study the effects of gear tooth geometry on the various parameters, but these models 

are too complex to be of any value in a real-time CM system. The non-linear, stochastic 

and time invariant nature of mechanical systems makes modelling very difficult. A 

transformation between the signal characteristics and the physical system representing 

the process is necessary to establish such a model. Because of the complexity of the 

engine, modelling of the physical system cannot be achieved analytically in most cases.  

1.4 METHODS OF CONDITION MONITORING  

Sensor/transducer is a term that refers to a device that transforms one type of 

energy to another type of energy. It processes a physical quantity of the system under 

study in such a way that it generates a signal that can be read easily by an instrument 

or an observer. During operation, mechanical systems generate a variety of energy 

types, including radiant energy, thermal energy, electrical energy and mechanical 

energy. 
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The input quantities or properties that are to be measured by sensors are called 

measurands. The common measurands for mechanical system monitoring are as shown 

in Figure 1.1.  

 

Figure 1.1 A variety of condition monitoring technologies (Courtesy: NI instruments) 

In general, six types of sensor signals are most widely used to monitor the 

mechanical system i.e., vibration signals, pressure signals, motor power/current signals, 

lubrication oil analysis, temperature analysis, sound signals, acoustic emission signals 

and performance monitoring. In condition monitoring predominantly used techniques 

for fault detection in machines/structures (Scheffer and Girdhar 2004); are as follows, 

(a) Visual inspection 

This method is one of the very basic forms of monitoring technique which 

requires a technically skilled person to interpret the machines visually by hearing sound 

or observing amplitude of vibration induced in the defective machines.   

(b) Performance monitoring 

Performance monitoring is one of the traditional methods of monitoring 

production equipment which relies on visual inspection and physical senses to 

determine whether a piece of machinery is operating properly or not. Additionally, in 

this method, output and manufacturing performance of a machine is tracked to identify 

deviations from expected results. When production output changes, defects increase, or 
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physical characteristics (heat, sound, vibration) deviate noticeably from the normal 

trend, which may indicate equipment problems and possible failures. Indicative 

performance parameters are examined to reveal the machine operating performance. 

This is used to determine the performance problems in equipment. The efficiency of 

machines provides a good insight on their internal conditions. 

(c) Thermography 

Thermography is a non-destructive testing technology for detecting and 

quantifying minute temperature changes in order to assist in the detection of asset and 

plant site deterioration. This is used to detect thermal or mechanical defects in oil 

refineries, steel industries, power plants, boilers, overhead lines, generators, misaligned 

coupling, transformers and cell damage in carbon fiber structures on aircrafts. Thermal 

energy is emitted by objects that are invisible to the naked eye. An infrared camera can 

detect thermal energy and map the object's temperature changes. The recorded picture 

depicts the movement of heat flow to, from and/or through an object. Temperature 

differentials can reveal a variety of issues, including corrosion and erosion, insufficient 

insulation and defects in materials or structures, such as holes or inclusions. 

(d) Lubricating oil analysis 

Lubricating oil is analyzed to detect micro particles of wear debris of bearing and 

gear due to direct contact with the lubricating oil film. Oil analysis mainly gives 

information about fluid properties, contamination and wear debris. Due to excessive 

usage of gearbox, gear and bearing start to wear out and wear particles will be mixed 

with the lubricating oil. Based on the result of oil analysis, health of a machine 

component can be assessed and action can be taken to correct the root cause or to 

mitigate the developing failure. 

(e) Acoustic emission (AE) 

AE monitoring is one of the important condition monitoring techniques for the 

crack detection and failure detection in rotating machineries. During engine operation, 

due to the rapid release of energy from the gearbox material surface or from the 

localized sources in a gear tooth material, a transient elastic wave is created. This wave 

is acquired by the device called AE sensor. Tooth breakage, impact of the bearing faults 

at the housing, crack formation and propagation, plastic deformation in the shear zone, 
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are the major sources of AE in gearbox. By using this AE technique, the condition of 

the gearbox (wear, tooth breakage/chipping) and/or engine conditions can be easily 

analyzed.  

(f) Vibration monitoring 

Vibration analysis is widely used in the large industries to monitor the machines 

and their components. Vibration occurs due to the interaction between the worn tooth 

surface and the mating surface of gear tooth during operation. Variation in applied 

torque and crankshaft rotation could also be the reason for vibration. Vibration 

characteristics such as frequency and amplitude will be varied as the gear tooth wear or 

bearing fault occurs. Many failure modes of the gearbox in IC engine can be revealed 

in the vibration signals. The vibration signal can be easily measured by using 

accelerometer. In CM techniques, more than 70 % of monitoring is based on vibration 

signals. The literature on gearbox fault diagnosis using vibration signals will be 

explained in section 2.4.  

In indirect measurement, signal processing involves analyzing collected signals 

in order to extract, display, analyze, interpret, transform the information contained in 

the signals to another type of signal that may be useful. The signal is then examined 

further using artificial intelligence and/or machine learning techniques in order to build 

a decision-making system (Kumar and Hirani 2021; Li and Chen 2013; Sharma et al. 

2017). The details of signal processing techniques, machine learning techniques and 

deep learning approaches are discussed in chapter 3. 

This thesis makes an attempt to explain gearbox fault diagnosis using vibration 

signals through basic signal processing techniques, machine learning techniques and 

deep learning techniques. The next part will briefly describe the gearbox of an IC engine 

and the various gearbox conditions included in the current study. 

1.5 GEARBOX FAULT CONDITIONS 

The most widely studied IC engine gearbox faults are gear tooth wear, breakage 

(fracture), pitting on gear, crack in the gear tooth, bearing defects at races and ball.  
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 Gear tooth defect 

GB consists of a different number of gears in primary and secondary shaft along 

with bearings at the end for supporting and to carry the loads at various capacities. GB 

faults such as gear tooth defect, pitting, bearing defect, etc., can lead to increased level 

of noise and vibration which causes severe damage to the IC engine components and 

also distresses the smooth running of the GB. Figure 1.2, shows the gear tooth failure 

modes, as depicted by (Amarnath and Praveen Krishna 2014).  

 

 

Figure 1.2 Gear tooth with (a) healthy and (b)-(g) tooth removal at progressive rate 

(Amarnath and Praveen Krishna 2014) 

They considered healthy gear and gear with six stages of depth wise tooth 

removal i.e., 0%, 10%, 20%, 40%, 60%, 80% and 100% tooth removal conditions 

across the tooth width.  Gear tooth wear are generally accepted as the normal tooth 

failure modes, because the other failure modes can be avoided by selecting the proper 

operating parameters. Also, many researchers worked on fault diagnosis of gearbox. 

Peng et al. (2016) conducted fault diagnosis of drivetrain gearbox using fusion of 

vibration and current signals. Barbieri et al. (2019) carried out analysis of automotive 

gearbox faults using vibration signal. Inturi et al. (2021) performed wind turbine 

gearbox fault diagnosis through adaptive condition monitoring system. 
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 Bearing defects 

In automobile engines, ball bearing is one of the major rotating machine 

components and plays an important role in engines. Bearing failure occurs due to 

improper design, contamination, corrosion, poor fitting, distorted components, 

misalignment, fatigue, inadequate internal clearance and low lubrication during 

assembling in the working unit. It is highly necessary to detect early failure in the ball 

bearing to avoid a catastrophic failure of an engine during operation. the most 

commonly used conditions for diagnosis of ball bearing are (i) inner race defect, (ii) 

outer race defect, (iii) rolling element or ball fault. Figure 1.3, shows the bearing failure 

modes, as depicted by (Ding et al. 2020). 

 

Figure 1.3 Bearing conditions (a) Normal/healthy, (b) Outer race fault, (c) roller 

element fault, (d) inner race fault (Ding et al. 2020) 

Ball bearings are extensively used in rotating machines like IC engines, wind 

mills, turbines, generators, centrifugal pumps, etc. Bearing plays a major role in 

automobile engine gearbox. The components which frequently fail in ball bearing are 

inner race, outer race and rolling ball. In IC engines, early fault detection of ball bearing 

is highly necessary to avoid catastrophic failure of engine during running conditions. 

Various monitoring techniques are used to detect the fault in the ball bearing and new 

techniques are being developed in every year.  
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1.6 CONDITION MONITORING USING VIBRATION ANALYSIS  

The fault diagnosis procedure is important in condition-based maintenance which 

comprises of two steps: data collection and interpretation. Continuous or periodic 

recording of data can be used to diagnose the issue by processing, analyzing and then 

interpreting the data. Monitoring the amount and rate of change of measured or 

computed variables indicates the conditions of defective gearbox. Vibration 

monitoring, acoustic emission detection, sound detection, lubricating oil analysis, wear 

debris analysis and infrared thermography are only a few of fault diagnosis techniques 

presently used in the industry. Each method has distinct benefits and may be used for a 

variety of industrial applications. Among these, vibration-based monitoring is often 

used as an efficient method for identifying gearbox defects (Praveenkumar et al. 2018). 

Vibration generated from the gearbox contains vital information of the state of 

gearbox and it can be used to identify developing problems. Regular vibration 

monitoring can help to detect deterioration or defective conditions. Based on literature 

review, almost 70% of real time applications of gearbox condition monitoring system 

are based on vibration signal driven systems. Condition monitoring of gearbox systems 

can be classified as 

• Monitoring based on signal processing techniques 

• Monitoring based on machine learning techniques 

• Monitoring based on deep learning techniques 

 Fault detection using signal processing techniques 

In IC engine, vibration of the engine gearbox is based on the operating speed and 

applied load. The applied load varies due to gearbox condition (healthy/faulty) and 

correspondingly the vibration pattern will alter. These variations in the acquired signal 

can be analyzed in such a way that the rate at which the change in dynamic force per 

unit time is measured and the characteristics of vibrations are derived from the vibration 

patterns obtained. Each component in the system has its own frequency which can be 

determined from its dimensions, rotating speed etc. The condition of those components 

can be analyzed through signal processing techniques such as time-domain, spectrum, 

cepstrum, wavelet analysis etc. A brief introduction about the traditional signal 

processing techniques are as follows. 
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  Time-domain analysis 

The time-series plot is expressed in terms of amplitude and phase information of 

the acquired signal. In the present study, the acquired signals such as vibration signals 

will be analyzed through time series plots in order to identify the condition of the 

gearbox conditions. 

 Spectrum analysis 

  Spectral analysis or Fourier transform is a most widely used technique in 

vibration signal analysis. It converts given signal from time domain to frequency 

domain by integrating the given function over the entire time period. By using the 

characteristic frequency of components, faulty conditions can be identified. This type 

of vibration analysis is called as frequency domain or spectral analysis which relates 

frequency to its components and is widely used as basic approach. In IC engine, 

frequency components such as crank shaft rotational frequency (CRF), gear mesh 

frequency (GMF) are considered as key terms in spectrum of acquired signal to 

recognize the gearbox condition. The detailed analysis of spectra in terms of CRF and 

GMF using vibration signals will be discussed in Chapter 4. 

 Cepstrum analysis 

The Cepsrtum analysis is another kind of signal processing method. The cepstrum 

was originally referred as the power spectrum of the logarithmic power spectrum. The 

cepstrum plots provide the information about the condition of the gearbox by 

investigating the quefrency component in the acquired signal. The detailed study of 

vibration signals of the gearbox conditions is explained in Chapter 4. 

However, in IC engine, the generated signal from the gearbox may be non-

stationary and non-linear in nature. These conventional methods such as time and 

frequency domain techniques are not suitable to analyze the non-stationary signals. This 

leads to the next level of vibration analysis techniques which are highly machine 

specific such as wavelet transform methods.  
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 Wavelet analysis 

Conventional data processing is computed in time or frequency domain. Wavelet 

processing method combines both time and frequency information. Wavelet analysis 

provides the ‘time-frequency’ information in a single plot. The continuous wavelet 

transform method is one type of wavelet analysis and it is used to investigate the 

gearbox condition in the present study. 

 Fault diagnosis based on machine learning techniques 

Machine learning is a technique which is used to train the model with the help of 

training dataset. Based on the information available in the training data, it creates some 

threshold values for classification. Then the trained model analyses and classifies the 

testing dataset using these threshold values. In machine learning technique, the 

monitoring task is performed by classifying the given data. The data is investigated in 

several consecutive steps. These steps are feature extraction, feature selection and 

feature classification respectively. Figure 1.4 illustrates the steps involved in machine 

learning technique.  

Figure 1.4 Machine learning steps  

Machine learning methods address most of the problems and are proved to be a 

stronger method. Researchers have reported the capability of many machine learning 

techniques to perform fault diagnosis. Feature extraction and feature classification are 

the most important phases in machine learning techniques. The following subsections 

will give a brief introduction about feature extraction, feature selection and feature 

classification phases of machine learning approach. 
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 Feature extraction 

After acquiring the signals from the system, extracting the information from the 

acquired data and reducing the dimension of them, each data will be transformed into a 

reduced representation called feature vector. This transformation process is called 

feature extraction. Many features such as, statistical features, empirical mode 

decomposition (EMD) features, histogram features, etc. can be seen in the area of fault 

diagnosis and condition monitoring. In the present study, for feature extraction, 

methods such as statistical, discrete wavelet transform (DWT) and EMD techniques are 

applied to vibration signals. A detailed study of extracting the above-mentioned 

features will be discussed in the Chapter 5. After feature extraction, the salient features 

is selected using feature selection method. A brief note on feature selection phase is 

explained in the forthcoming section. 

 Feature selection 

In the second step, the redundant features will be omitted from the feature vector. 

Before classifying the conditions of the gearbox, feature selection method is applied to 

select the salient features. The decision tree, principal component analysis, etc. are the 

dimensionality reduction methods in fault diagnosis. The decision tree technique is used 

as a feature selection method in the present study, because the decision tree (J48 

algorithm) is the best method for feature selection in the area of condition monitoring 

(Elangovan et al. 2010). The following section reports a brief explanation on the process 

of feature classification. 

 Feature classification 

Classification methods categorize feature vectors into the determined groups and 

completes the monitoring process. Artificial intelligence methods are often applied in 

the classification step and make the monitoring algorithm intelligent (Sadat and Rooteh 

2013). The classification of the gearbox conditions is carried out based on selected 

features using artificial intelligent techniques such as support vector machine (SVM), 

random forest algorithm and K star algorithm as classifiers in the present research work. 

Very few researchers have reported the analysis of vibration signals for fault 

diagnosis of the IC engine gearbox using machine learning techniques. Hence, a 
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detailed study is required in this field. In the past decade, advanced signal processing 

methods have played a vital role in the area of fault diagnosis and condition monitoring. 

Also, in machine learning approach, the combination of an artificial intelligent 

technique and the feature extraction method has provided good results in some 

applications. However, that combination cannot ensure the same results to all other 

applications. Thus, there is a need for identifying the best feature-classifier combination 

using vibration signals in fault diagnosis of the IC engine gearbox. Machine learning 

based automated fault diagnosis of the gearbox of an IC engine is very essential for 

automotive, aerospace and industrial applications etc. Hence, in the current research 

work, the focus is more on these techniques to monitor the health of the gearbox.  

The knowledge base of different domains and applications can be quite different 

and often requires extensive specialized expertise within each field, making it difficult 

to perform appropriate feature extraction, or maintain a good level of transferability of 

machine learning models trained in one domain to be generalized or transferred to other 

contexts or settings. Recently, deep learning techniques are being used in the field of 

condition monitoring or fault diagnosis. Traditional machine learning performs better 

with a smaller number of classification problems. However, it has some limitations such 

as (i) manual feature extraction, (ii) requires expertise in the signal processing, (iii) 

difficult to implement in real time.  

 Fault diagnosis based on deep learning techniques 

Traditional feature learning includes constructing features from the input signal, 

searching for relevant and important features using optimum or heuristic methods, 

selecting relevant and important features using filter or wrapper methods and feeding 

the selected features into a classification algorithm. The advantage of deep learning 

(DL) based feature learning is that it eliminates the need of manual feature extraction 

and selection process. This occurs automatically within the DL framework.  

DL is a subset of machine learning that achieves great power and flexibility by 

learning to represent the world as a nested hierarchy of concepts, with each concept 

defined in relation to simpler concepts and more abstract representations computed 

from less abstract ones. The trend of transitioning from classical machine learning 
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algorithms to deep learning can be attributed to the following reasons (Zhang et al. 

2020). 

• data explosion  

• algorithm evolution 

• hardware evolution 

All of the above factors contribute to the new era of applying DL algorithms to a 

variety of data-related applications. Specifically, advantages of applying DL algorithms 

compared to classical ML algorithms include: 

• Best in class performance 

• Automatic feature extraction 

• Transferability 

Therefore, it is considered important to investigate the nature of the signals and 

their dependency on gearbox conditions, specifically for a gear and bearing conditions. 

This study deals with the fault diagnosis of the gearbox using signal processing 

techniques, machine learning techniques and deep learning techniques using vibration 

signals. 

1.7 OUTLINE OF THE THESIS 

Present thesis has been divided into 7 chapters following each paragraph will give 

a brief note on each chapter. 

Chapter 1 introduces the condition monitoring of the gearbox and IC engine, 

importance of the IC engine monitoring, gearbox monitoring techniques, signals used 

for gearbox monitoring, methods of condition monitoring techniques, different faults 

of bearing and gear, machine learning and deep learning techniques. This chapter also 

brings out the brief introduction about monitoring methods used for vibration signals 

of gearbox of an engine and the outline of the thesis can also be seen.   
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Chapter 2 presents a detailed literature review on condition monitoring techniques, 

specifically, signal processing techniques and machine learning techniques in different 

fields of applications. The usage of deep learning techniques in fault diagnosis of 

mechanical elements are explained. Literature on fault diagnosis of IC engine, gear, 

bearing and other rotating elements is presented. The motivation for the present study, 

objective and scope of the research work is defined in this chapter. 

 

Chapter 3 describes the methodology involved in fault detection and classification of 

the IC engine gearbox health conditions. The detailed explanation about signal 

processing techniques is discussed. Machine learning steps such as feature extraction, 

feature selection and classification methods are explained. Also, deep learning methods 

can be seen in this chapter. The details of experimental setup of two stroke and four 

stroke engine gearbox, experimental procedure, description of measuring instrument, 

conditions of gear and ball bearing used in the test can be seen.  

Chapter 4 gives the results and discussion of two stroke engine gearbox fault detection 

and four stroke engine gear tooth defect conditions using vibration analysis. In this 

study, time domain analysis, spectrum analysis, cepstrum analysis and continuous 

wavelet transform method are used for analyzing the vibration signals.  

Chapter 5 is dedicated for investigation of vibration signals through machine learning 

techniques i.e. (i) feature extraction methods such as statistical features, EMD features 

and DWT features, (ii) feature selection using decision tree technique and (iii) feature 

classification using classifiers such as Support vector machine, K-star algorithm and 

random forest algorithm. 

Chapter 6 explains the application of deep learning techniques in diagnosing the 

gearbox fault conditions. Also, two different model were implemented and discussed 

for classifying the gearbox conditions. Results obtained from the deep learning model 

are discussed.  

Chapter 7 concludes the findings of the research work, presents the future scope of this 

study and provides the key contributions from the study. This section is followed by 

the references and the list of publications.  
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CHAPTER 2 

 LITERATURE REVIEW 

2.1 INTRODUCTION 

Recent and major contributions to the state of the art in the diverse and complex 

areas of gearbox in IC engines are discussed in this chapter, with an emphasis on fault 

detection and diagnosis of the system. The following is a summary of the literature 

reviewed. 

Condition monitoring (CM) of rotating machines is picking up significance in the 

industry as a result of the need to build unwavering quality and to reduce conceivable 

loss because of machine breakdown (Chen et al. 2021; Dellomo 1999; Elforjani et al. 

2012; Jing et al. 2019; Laala et al. 2020; Samanta 2004; Sharma and Sukhjeet 2018). 

There are two important monitoring approaches used in condition monitoring: offline 

monitoring and online monitoring. Offline monitoring is related to a variety of signal 

processing techniques for the analysis of rotating or reciprocating machine vibration 

data. This approach collects data using vibration measuring sensor such as an 

accelerometer. After data collection, it may be analyzed using a different signal 

processing techniques, including time domain, frequency domain, cepstrum analysis 

and wavelet transform techniques. Then, based on the interpretation of the data, the 

machine health condition can be determined. In the case of online monitoring approach, 

real-time condition monitoring of a machine is possible since data from machine is 

continuously provided into various machine learning algorithms via a vibration 

measuring sensors. Data can be analyzed by identifying signal characteristics such as 

statistical features, histogram features and empirical mode decomposition features. The 

decision tree algorithm is used for selecting significant features and selected features 

are used as input for classification purposes. Different classifiers have been developed 

for different applications and one must determine the most appropriate classifier by 

comparing it to other classifiers. On the basis of classification accuracy, one can easily 

differentiate the classes of various machine faults. 
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Many researchers have worked in the field of rotating machine condition 

monitoring, considering a number of factors and developed a various fault diagnosis 

technique. In the following section review of the literature is discussed. 

2.2 FAULT DIAGNOSIS OF IC ENGINE  

Machine fault can be identified using several approaches such as vibration 

analysis (Joshuva and Sugumaran 2017), sound analysis (Amarnath et al. 2013; 

Madhusudana et al. 2017), oil analysis (Li and Liang 2011), temperature (Younus and 

Yang 2012), acoustic emission (Toutountzakis et al. 2005) etc. In the above methods, a 

vibration-based investigation is the most extensively used method for identifying the 

health status of rotating components (Al-Badour et al. 2011; Betta et al. 2002; Sakthivel 

et al. 2014; Wang and Hu 2006). The vibration signals are analyzed by signal 

processing methods such as time domain, spectrum analysis, statistical approaches etc. 

The results obtained from the spectrum analysis gives the information of frequency with 

amplitude variation for different conditions. However, in complex machinery, it is 

challenging task to identify defects through the above methods and it takes more time 

for analyzing individual frequency components. To avoid unnecessary failures and 

machine downtime, one has to adopt condition-based monitoring which provides 

information regularly and based on the results obtained, scheduled maintenance can be 

planned. To understand the cause for the fault, continuous monitoring needs to be done 

using machine learning (ML) approach. The fault diagnosis of spark ignition (SI) IC 

engine has become one of the dominant areas of research over the decade. Most of the 

researchers used a combustion parameter for analyzing the defects in engine 

components. 

Currently, with the higher engine speed, power and performance, there is 

tremendous scope in developing online condition monitoring of the automobiles and 

other rotating equipment (Moosavian et al. 2017). Following literature addresses 

condition-based monitoring employed on IC engine/rotating machineries.  

 Lee et al. (1998) analyzed the vibration signals and impulsive sound to detect the 

fault in rotating machinery parts.  These impulsive sound signals were characterized by 

using adaptive line enhancer (ALE) in two stages. This algorithm was applied to 
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diagnose the IC engine faults and industrial gearbox fault. Samimy and Rizzoni (1994) 

carried out experiments on improving knock detection with the application of joint 

time-frequency analysis. In this analysis, engine block vibration and pressure signals 

were used for knock detection. Time-varying filters were used to reduce noise in the 

vibration signals. Results showed that the proposed method was provided good 

accuracy in detecting engine knock. In the conventional method of condition 

monitoring, Fast Fourier transform (FFT) technique was used to identify the defective 

components based on characteristic frequency (CF) of acquired signals (Rai and 

Mohanty 2007). However, in a complex system like an IC engine GB, it is very difficult 

to identify the CF of each component. Even if CF is determined, the signals obtained 

from the GB are highly non-stationary and FFT alone may not be suitable for 

identifying the conditions of the GB (Muralidharan et al. 2014b). Moreover, the 

conventional method of fault diagnosis cannot handle a large amount of data efficiently. 

A significant development of the internet era is the attention given to the data-driven 

approach for fault diagnosis which has better accuracy compared to physics-based 

models (Wang et al. 2019). Some of the literature focused on fault diagnosis of IC 

engine by various acquisition system and diagnosis method are discussed here.  

 Ettefagh et al. (2008) found knock detection in SI engine using vibration signals. 

They proposed a method for modelling cylinder block by autoregressive moving 

average (ARMA) parametric model. Wu and Liu (2009) developed an expert system 

for diagnosing faults in the IC engine using sound emission signals. They adopted 

wavelet packet and artificial neural network (ANN) for classification of engine faults. 

Klinchaeam and Nivesrangsan (2010) investigated valve clearance fault in the petrol 

engine. Experiments were conducted with intake/exhaust valve fault conditions. 

Vibration signals were acquired for both cases and they used the energy analysis 

technique to identify the faults. Moosavian et al. (2013)  made an attempt for diagnosing 

faults in the main journal bearing of an IC engine based on power spectral density 

techniques using two classifiers such as ANN and k-Nearest Neighbour (kNN). The 

results showed that the proposed method can be effectively used for bearing fault 

diagnosis. Sharma et al. (2014) inspected misfire in IC engine by exploiting vibration 



 

20 

 

signals and a J48-decision tree. They extracted statistical features from the signals and 

comparative study of tree-based classifiers was made. 

In recent years, vibration-based fault diagnosis techniques attracted many 

researchers to diagnose the engine components viz cylinder liner, piston scuffing and 

piston scratching (Jiang et al. 2017; Moosavian et al. 2016, 2017; Ramteke et al. 2020). 

Moosavian et al. (2016) investigated piston scuffing fault and its effect on engine 

performance. Vibration signals were acquired for diagnosing the piston defects and 

results showed that vibration analysis was efficient in identifying the scuffing faults. 

Jiang et al. (2017) studied fault detection of valve clearance in IC engine using cylinder 

head vibration signals. Experimental results illustrated that the proposed technique was 

capable of diagnosing valve clearance.  Ramteke et al. (2020) attempted to detect 

cylinder liner fault using vibration and acoustic signals in a diesel engine. Figure 2.1 

illustrates the vibration and sound signal-based cylinder liner fault diagnosis of the 

diesel engine test setup (Ramteke et al. 2020). They obtained a higher amplitude of 

vibration and acoustic signals with liner defect in the cylinder. Also, they extracted a 

few statistical features for classifying the liner fault.  

 

Figure 2.1 Cylinder liner fault diagnosis test setup of diesel engine (Ramteke et al. 

2020) 
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 Moosavian et al. (2016) studied IC engine piston scuffing and its identification 

using vibration signals. Three-body wear mechanisms method was adopted to induce 

defects in the piston. Signals of the engine were analyzed using continuous wavelet 

transform for finding piston defect. Haneef et al. (2017) used numerical method for 

investigating bearing defect using vibration signal in IC engine. Jafarian et al. (2018) 

carried out identification of misfire and valve clearance in the combustion chamber of 

the engine using multiple sensor vibration signal analysis. They considered FFT 

technique for feature extraction from vibration signals. Engine malfunction was 

classified using different classifiers such as ANN, support vector machine (SVM) and 

KNN.  

2.3 FAULT DIAGNOSIS OF BALL/ROLLER BEARING 

Ball bearings are extensively used in rotating machines like IC engines, wind 

mills, turbines, generators, centrifugal pumps, etc. Bearing plays a major role in 

automobile engine gearbox. The components which frequently fail in ball bearing are 

inner race, outer race and rolling ball. In IC engines, early fault detection of ball bearing 

is highly necessary to avoid catastrophic failure of engine during running conditions. 

Various monitoring techniques are used to detect the fault in the ball bearing and new 

methods are being developed in recent years. Vibration based techniques are most 

generally used for fault diagnosis of bearing since local defects in the bearing produced 

successive impulses on contact surface of the bearing and hence housing structure is 

forced to vibrate at different level. 

The utilization of vibration and acoustic emission signal is very common in the 

field of CM of rotating machines. By comparing the signals of a machine operating in 

healthy and defective conditions, recognition of flaws like rotor rub, mass unbalance, 

misalignment in shafts, bearing defects and gear defect is possible. These signals can 

be used to distinguish the beginning of faults developed in the machine elements. With 

the use of online monitoring system, catastrophic failures and machine downtime can 

be reduced (Madhavan et al. (2014); Vernekar et al. (2014)). There are two steps 

involved in the fault diagnosis of ball bearing, first one is to extract feature from the 

acquired vibration signals and next one is to analyze/classify different conditions of the 

ball bearing using these extracted features.  
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Rolling element bearings are critical machine component in all rotating machines 

and monitoring of such member is very important to avoid failure (Tandon et al. 2007). 

Roller bearing is used in most of the rotating machines and fault prone due to fatigue 

and severe working conditions such as lacking in lubrication, heavy and impact loading. 

In most of machine failure cases faulty bearing is considered as the foremost cause of 

failure (Lou and Loparo 2004). Tandon and Choudhury (2000) studied the vibration 

and acoustic measurement method for finding the defects in rolling element bearings.  

Authors gave a detailed discussion about the various techniques used for detecting the 

localized defects, distributed defects and the frequencies of the defective rolling bearing 

elements. Vibration measurement in both time and frequency domains along with signal 

processing techniques such as the high-frequency resonance technique were discussed. 

McInerny and Dai (2003) have presented a paper on basic vibration signal processing 

for bearing fault detection in which characteristic fault frequencies of ball bearings were 

explained and one of the bearing fault detection techniques, traditional spectral analysis 

has been dealt. Tandon et al. (2007) used acoustic emission and shock pulse method 

(SPM) for measurement of fault detection in bearing, on comparing the results of 

healthy and faulty conditions of bearing AE gave more information about the peak 

amplitude and SPM gave a normalized value level that is much higher compare to all 

other methods. 

 Amarnath et al. (2013) reported the study of fault diagnosis of ball bearing using 

sound signals.  These acquired signals with healthy and different faulty conditions of 

bearing were analyzed using machine learning approach. From the sound signal, the 

descriptive statistical features were extracted and important features were selected from 

the decision tree. Classification of selected features was done by using C4.5 decision 

tree algorithm. Figure 2.2 illustrates the sound signal-based condition monitoring of the 

bearing test setup (Amarnath et al. 2013). Kiral and Karagülle (2006) found a method 

based on finite element vibration analysis for fault identification in roller bearing with 

single or multiple faults on various components of the bearing structure using time and 

frequency domain parameters.  
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Figure 2.2 Sound based experimental setup for fault diagnosis of bearing (Amarnath 

et al. 2013) 

 Liu et al. (2013) worked and presented a paper on multi fault classification model 

based on the kernel method of SVM and wavelet frame, wavelet basis was presented to 

develop the kernel function of SVM and wavelet support vector machine (WSVM). 

Wang et al. (2014) presented a paper on a new method to identify compound faults 

from measured, mixed signals of roller bearing which is based on two methods, 

ensemble empirical mode decomposition (EEMD) and independent component 

analysis (ICA) technique. Comparing with conventional methods like FFT based 

Hilbert transform (HT), wavelet analysis and EEMD method the results are classified 

more effectively in proposed method. Zhu et al. (2014) proposed a novel measurement 

method based on the null space pursuit and S-transforms for fault detection in bearing 

vibration signal. Experimental results are indicated the identification of the fault 

frequency of the bearing signal. From the literature, one can notice that vibration 

analysis can be used for rotating machinery fault diagnosis. However, literatures were 

limited in the field of condition monitoring of IC engine ball bearing. Hence, there is 

need for studying vibration signals of IC engine to identify defects in the ball bearing. 
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2.4 FAULT DIAGNOSIS OF GEARS 

Chen et al. (2013) proposed a novel intelligence diagnosis model based on 

wavelet SVM and the immune genetic algorithm. The features selected from the 

vibration signal are preprocessed by EMD. The results of experiment indicating that 

the proposed method was more effective in fault diagnosis of bearing. Antoniadou et 

al. (2015) investigated gear fault under various conditions by using EMD to decompose 

the vibration signals into sensitive signal components associated with definite 

frequency bands of the signal. Figure 2.3 illustrates the vibration-based back-to-back 

gearbox fault diagnosis test setup (Hong and Dhupia 2014). 

 

Figure 2.3 Vibration based fault detection of gearbox test rig (Hong and Dhupia 2014) 

 Hong et al. (2014) studied and formulated the fault detection of planetary gear 

box based on feature extraction algorithms. Fourier series analysis was used to explain 

distinct sidebands which contain important information of diagnostics. Li et al. (2009) 

investigated the gear fault detection using newly developed order cepstrum and radial 

basis function (RBF) and ANN during machine speed up process. In this method, non-

stationary signals are converted it into stationary signals using computer order tracking 

technique. Jena et al. (2013) carried out an experiment for gear fault detection using 

analytical wavelet transform. 

 Amarnath and Praveen (2014) carried out fault identification in helical gears, 

based on vibration and acoustic signals using EMD with statistical analysis. Yu et al. 

(2016) proposed a new method for compound fault diagnosis of gearbox using 

morphological component analysis. This method could identify fault in the gearbox 

corresponding to bearing defect and gear defect. Sawalhi and Randall (2014) identified 

different gear parameters of a wind turbine based on vibration signals. The gearbox 
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with one planetary gear and two helical gears in parallel stages individually were 

studied. Muralidharan et al. (2015) presented the fault diagnosis of helical gearbox 

using vibration signals. Variational mode decomposition (VMD) method was used for 

analyzing signals and statistical features extracted from the VMD.  These features were 

used for classification of fault conditions using different decision tree algorithm and 

results provided satisfactory efficiency in classifying fault condition of gear. 

 Heidari and Ohadi (2014) studied gearbox fault identification based on vibration 

signals under varying speed conditions using the wavelet transform and Shannon 

entropy for feature extraction. Elasha et al. (2015) investigated pitting detection in 

worm gearbox based on vibration analysis. Three different worm gearboxes were 

studied using vibration analysis involving three different techniques, namely, statistical 

analysis, spectral kurtosis and enveloping. Konar and Chattopadhyay (2015) used 

wavelet and Hilbert transform for detecting multi-class fault diagnosis in the induction 

motor using vibration signals in the radial direction.   

2.5 FAULT DIAGNOSIS OF OTHER MACHINE ELEMENTS 

 Madhusudana et al. (2016b) identified milling tool conditions using vibration 

analysis through signal processing techniques like spectrum, cepstrum and wavelet 

transform analysis. Figure 2.4 shows the test setup used for milling tool monitoring 

using vibration analysis. Muralidharan et al. (2014a) identified different faults in the 

belt conveyor carrying system using statistical feature and decision tree algorithm. 

Joshuva and Sugumaran (2017) carried out a comparative study of best first tree and 

functional tree algorithm for analyzing vibration signals of wind turbine under various 

conditions of blade. Bordoloi and Tiwari (2014a) performed multi fault class 

identification of gears using SVM with the frequency domain data. In this study, main 

focus was on optimizing multi class ability of SVM technique with the help of genetic 

algorithm, artificial bee colony algorithm and grid search method.  
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Figure 2.4 Fault diagnosis of face milling tool test setup (Madhusudana et al. 2016b) 

  Gangadhar et al. (2014) carried out fault diagnosis of single point cutting tool 

of lathe machine using vibration signals through decision tree algorithm for selection 

and classification of features. This algorithm gave about 89% classification accuracy in 

identifying tool wear condition.   

2.6 SIGNAL PROCESSING TECHNIQUES  

There are many numbers of different signal processing technique which are used 

for extracting information from signals acquired from the mechanical elements. 

Frequency domain analysis, cepstrum analysis and wavelet analysis belong to the signal 

processing techniques. A significant number of research works using these techniques 

have been carried out, some of them are discussed in the following sections. 

 Time domain analysis 

Time domain analysis uses the time history of the signal and uses to record what 

happens to a parameter of the system versus time. Transducers are available to record 

the time domain signals of the system which in the form of displacement, velocity, 
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acceleration etc. Accelerometer, load cells, microphone, pressure sensor are some of 

the commonly used transducers for measuring time domain signals.  

 Frequency domain analysis 

Fourier showed that any waveform that exists in real world can be generated by 

adding up sine waves. In time domain signals, it is very difficult to understand the 

amplitude variation and frequency information is also not available in the time domain 

plots. The frequency domain signal or frequency spectrum is a plot of amplitude of 

vibration response versus the frequency and can be derived by using the Fourier 

Transform of the time domain signals. Fourier transforms includes some advanced 

techniques such as Fast Fourier transform (FFT), short time Fourier transform (STFT) 

and discrete Fourier transform (DFT). These are used to determine the frequency 

component in the acquired vibration signals.  

 Kar and Mohanty (2008) carried out experiments to investigate a fault in the 

multistage gear box under transient load. For the experiment, they considered three 

defective conditions and three transient loading conditions. Signals of gear box were 

processed using advanced techniques such as DWT and multi resolution Fourier 

transform (MFT). Yang et al. (2009) investigated bearing fault using vibration and 

current signals. FFT is used for conversion of time domain signals to frequency domain 

signals. Luo et al. (2012) proposed some new techniques for fault detection in gear 

based on multi scale chirplet path pursuit (MSCPP) and fractional Fourier transform 

(FRFT). Ocak and Loparo (2004) investigated bearing defect of induction motor at 

running speed using vibration signals from the motor. Lokesha et al. (2011) presented 

various signal processing methods for diagnosis of faults in a single stage gear box. 

They considered FFT, Morlet wavelet and Laplace wavelet for processing acquired 

signals under different gearbox conditions.  

 Ji et al. (2018) carried out experiments on a single and twelve-cylinder engine for 

estimating combustion parameters like peak pressure rise rate and peak combustion 

pressure. Surface vibration signals were considered for the analysis using frequency 

spectrum method. Hong and Dhupia (2014) studied and formulated the fault detection 

of planetary gear box based on feature extraction algorithms. Spectrum analysis method 

was utilized to explore distinct sidebands which contain significant evidence of 
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diagnostics. Vashisht and Peng (2018) applied switching control and STFT for 

detection of crack in the ball bearing. 

 Cepstrum analysis 

Cepstrum analysis is one of the signal processing techniques which clusters 

different frequencies corresponding to components that exists in the rotating 

machine/system. The cepstrum plots are used to identify the conditions of the 

system/cutting tool with the help of quefrency information in the acquired signals 

Borghesani et al. (2013) carried out experiments for fault diagnosis of rolling element 

ball bearing under various speed condition using cepstrum analysis. For experimental 

study, various faulty conditions were used and analyses were done. Liang et al. (2013) 

used different techniques for fault diagnosis of induction motor, namely power 

spectrum, cepstrum, higher order spectrum and neural network analysis. They also 

suggested that cepstrum analysis is very suitable for detection of harmonic family with 

uniform spacing or family of sidebands usually found in the gearbox, bearing and 

engine vibration fault spectrum. Park et al. (2013) considered a new method for early 

fault detection of ball bearing using the minimum variance cepstrum (MVC), 

experimental results are showing that MVC can be used as analysis tool for fault 

detection of periodic fault signals. Morsy and Achtenová (2014) used cepstrum analysis 

for diagnosis of vehicle gearbox. Results are clearly demonstrated that for detecting 

faults, cepstrum analysis was better in comparison to spectrum analysis.   

 Wavelet analysis 

Wavelet analysis is new development in the area of applied mathematics and 

signal processing technique. Wavelet is a waveform of limited duration that has an 

average value of zero. Since FT is suitable only for stationary signals and fixed 

resolution, a new wavelet design was developed using wavelet transform to overcome 

the drawbacks of FT.  

Many wavelets have been developed, like the continuous wavelet transform 

(CWT), Morlet wavelet and Discrete wavelet transform (DWT). CWT technique is has  

the capacity to detect non-periodic, non-stationary and transient features of acquired 

signals. Wu and Chen (2006) used CWT technique to diagnose the faults in IC engine 

along with its cooling system. The results obtained from the experiments have shown a 
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good amount of accuracy in identifying the conditions of IC engine such as engine fault 

diagnosis and cooling fan blade fault conditions. Zarei and Poshtan (2007) investigated 

current signal to recognize the bearing defect in the induction motor using Meyer 

wavelet in the wavelet packet structure. Kankar et al. (2011) analyzed the vibration 

signal using CWT technique in order to identify the roller ball bearing condition.  

 Chandran et al. (2012) investigated a gear fault by applying Laplace wavelet 

kurtosis for processing vibration signals of the gear under various condition. Rafiee et 

al. (2010) proposed an automatic feature extraction algorithm for fault diagnosis of gear 

and bearing using wavelet transform analysis. Li et al. (2013) developed a multiscale 

slope feature extraction method for the rotating machinery fault diagnosis using wavelet 

based multi resolution analysis. In their study, bearing and gear box were tested on 

separate test setup. Yan et al. (2014) analyzed different wavelet transforms theories for 

fault diagnosis of rotary machines which include CWT based fault diagnosis, DWT 

based fault diagnosis, WPT based fault diagnosis and second-generation wavelet 

transform based fault diagnosis. Al-Badour et al. (2011) studied the diagnosis of 

rotating machines using time frequency and wavelet analysis. For analysis of vibration 

signals two wavelets were selected, namely continuous wavelet and WPT.  Jena et al. 

(2013) investigated faults in the motor vehicle piston using sound signals. They used 

CWT technique with complex morlet wavelet as mother wavelet for processing 

acquired sound signals. Madhusudana et al. (2016) performed the experiments on fault 

detection of milling tool by applying different signal processing techniques such as 

Fourier analysis, cepstrum analysis and wavelet analysis. Results showed that the time-

frequency plot of vibration signal and CWT plots provided better information compared 

to the plots obtained by spectrum and cepstrum analyses. 

In the present study, vibration signals with associated signal processing 

techniques were efficiently used for detecting the condition (Healthy or defective) in 

the ball bearing and gear. 

2.7 MACHINE LEARNING TECHNIQUES 

In recent times, machine learning techniques have become the primary tools for 

understanding machine conditions based on the features of past data. To understand the 
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cause of the fault, continuous monitoring needs to be done using a machine learning 

(ML) approach. For training features, computer algorithm is built and optimized based 

on the past data set of the machine. Many researchers have carried out fault diagnosis 

of machineries by considering machine learning techniques. In machine learning, three 

important steps are involved namely feature extraction, feature selection and feature 

classification. 

 Feature extraction 

The huge number of acquired digital signals from the machine or system cannot 

be directly used for machine learning. The required fault information is extracted from 

these huge data in the form of features such as statistical features, empirical mode 

decomposition features, wavelet features, etc. The following subsections will provide 

the usage of different features in condition monitoring and fault diagnosis. 

 Statistical features 

The descriptive statistical features viz. mean, mode, skewness, maximum, 

minimum, standard error, range, median, sample variance, sum, standard deviation and 

kurtosis are estimated from the acquired signals. These twelve features are some of the 

statistical parameters that have been used widely for the research work in the area of 

condition monitoring and fault diagnosis. Jegadeeshwaran and Sugumaran (2015) 

investigated a fault diagnosis of automotive hydraulic brake system using statistical 

features of vibration signals of the system under different condition. Saimurugan et al. 

(2016) diagnosed on-road gearbox fault using vibration signal by inducing artificial 

fault on gear tooth. Authors extracted statistical features and used decision tree for 

feature selection and classification. Gangadhar et al. (2014b) carried out fault diagnosis 

of lathe machine single point cutting tool by employing statistical features of vibration 

signals. 

 Empirical mode decomposition features 

EMD is method used to decompose complex signals in to finite or small number 

of components. These components are called as intrinsic mode functions (IMF). EMD 

is used to decompose raw vibration signals into IMFs that represent the oscillatory 

modes generated by the components of the mechanical systems. 
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 Ghaderi and Kabiri (2017) demonstrated automobile engine fault diagnosis 

through sound signal by employing EMD on acquired signals. Best-first algorithm was 

used to ignore irrelevant features. Three classifiers were used for classification and were 

compared amongst for their classification accuracy. Amarnath and Praveen (2012) 

showed that EMD based statistical features are effective in detecting early failure in 

roller bearing and helical gear unlike time domain statistical features which are 

susceptible to noise and non-stationary characteristic of acquired acoustic signal. The 

approach considered only a few fault conditions and used a single (EMD) feature 

extractor for diagnosis. Lei et al. (2013) reviewed a fault diagnosis of machine 

components such as rolling bearings, gears and rotors by using EMD technique.  Dybala 

and Zimroz (2014) carried out a rolling ball bearing diagnosis using EMD technique. 

Liu et al. (2015) presented bearing fault diagnosis based on least squares support vector 

machine (LS-SVM) and EMD. The weighted LS-SVM was used to remove the high-

frequency intermittent noises, LS-SVM rolling prediction model was applied to 

extrapolate the signal and spine cubic interpolation is replaced by LS-SVM regression 

to reduce the end effects. 

 Discrete wavelet transforms features 

DWT decomposes the signal into two frequency sub bands such as low frequency 

band (approximate coefficients) and high frequency band (detailed coefficients) 

through high pass filters and low pass filters. Subsequently, the decomposed low 

frequency component of the signal is again decomposed into approximate and detailed 

coefficients. This iteration will go on and at each step the approximate coefficient is 

considered as a DWT feature. 

 Saravanan and Ramachandran (2010) carried out fault diagnosis of gearbox using 

vibration signals. They extracted DWT features from the vibration signals and 

classification was done using ANN. Wu and Kuo (2009) presented fault diagnosis of 

an automotive generator using DWT features and ANN for fault classification. 

Saravanan and Ramachandran (2009) studied the gear fault diagnosis using DWT 

feature and J48 decision tree for selection and classification of features. Wu and Liu 

(2008) carried out fault diagnosis of IC engine using DWT and neural network. Wu et 

al. (2009) studied gear fault classification using vibration signals. They used DWT and 
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adaptive neuro-fuzzy inference system (ANFIS) method for fault identification in the 

gear. 

 Feature selection 

All extracted features from measured data are not required to extract the 

diagnostic information. Dimensionality reduction techniques remove the redundant 

information to reduce the original higher dimension for the ease of processing and 

computation. Recently, the use of feature reduction and feature selection for data 

preparation before feeding into the classifier has received considerable attention (Cao 

et al. 2003). In the present study decision tree was used for selecting significant features 

from the feature vector. It is the procedure used to select subset of ‘M’ features from 

the existing set of ‘N’ features (M<N). The role of the feature selection in machine 

learning system are as follows;  

➢ It enables the machine learning algorithm to train faster  

➢ It reduces the complexity of a model and makes it easier to interpret  

➢ It improves the accuracy of a model if the right subset is chosen and  

➢ It reduces overfitting  

The details of the usage of feature selection technique are discussed in the following 

sections. 

 Decision tree technique 

Decision tree technique is widely used in machine learning and classification 

fields. Decision tree can be used for both feature selection and classification of features. 

A decision tree is a tree-based knowledge representation methodology used to represent 

classification rules. J48 algorithm (A WEKA implementation of C4.5 algorithm) is a 

widely used technique to construct decision trees (Sugumaran et al. 2007). Saimurugan 

et al. (2011) considered decision tree for selecting important features from the vibration 

signals of rotating system. Jegadeeshwaran and Sugumaran (2015) presented fault 

diagnosis of automobile hydraulic brake system using C4.5 decision tree algorithm for 

feature selection and SVM algorithm for classification. Sun et al. (2007) presented a 

fault diagnosis of rotating machinery based on decision tree and principal component 

analysis (PCA) based algorithms. Krishnakumari et al. (2016) conducted fault diagnosis 
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of spur gear using decision tree and fuzzy classifier. They extracted statistical features 

from the vibration signals then feature selection was performed by J48 decision tree 

algorithm. Vernekar et al. (2015) carried out fault diagnosis of IC engine gearbox using 

DWT feature. They used decision tree for selecting features and SVM was used as 

classifier for classification of features. Kumar et al. (2019) studied multi sensor data 

fusion for fault diagnosis of gearbox using DWT features. They used decision tree for 

selecting contributing features and ANN, SVM, PSVM as classifiers for classification. 

 Classification of features 

Feature classification is the last phase of the machine learning approach. In the 

classification process, the classification algorithm develops a model with the help of 

training data and the trained model is used to classify the data belonging to various 

classes of faults. There are various classification techniques to classify the gearbox 

conditions. ANN, SVM, Naïve Bayes and K-star algorithm are used by many 

researchers in the fault diagnosis of rotating machineries. The following subsections 

provide the details about the use of classification algorithms for online IC engine 

gearbox monitoring. 

 Support vector machine (SVM) 

SVM is one of the most widely used classification algorithm in machine learning 

applications, because of its accuracy and good generalization capabilities (Saimurugan 

et al. 2011). SVM is used in many fields for classifying the data such as text recognition, 

face detection, biomedical, satellite data etc. SVM is a relatively new computational 

learning method (Cortes and Vapnik 1995). SVM was originally made for classification 

and nonlinear regression tasks (DEÁK et al. 2014; Vora et al. 2015). SVM is based on 

statistical learning theory and it works on the principle of risk minimisation. 

Saimurugan et al. (2011) investigated multi component fault diagnosis using vibration 

signals of the roller bearing. They used decision tree for selection of important features 

and SVM as classifiers for feature classification of vibration signal for fault detection 

in the roller bearing. Kankar et al. (2011) carried out rolling element ball bearing fault 

detection using vibration signals and continuous wavelet transform signal processing 

technique. In their study, fault classification is done based on three machine learning 

techniques, i.e., SVM, ANN and Self-Organizing Maps (SOM). From the results, they 
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found that SVM with Meyer wavelet is giving a good amount of accuracy in identifying 

the faults in the roller bearing element. 

 K star algorithm 

K star algorithm is one of the instance-based classifier algorithms. This is the 

class of a test instance which is based on training instances identical to it, as determined 

by few similarity functions. It is different from other instance-based learners in the way 

that it utilizes an entropy-based distance function. Instance based learners classify an 

instance by comparing it to a data base of pre-classified examples. The essential 

assumption is that similar instances will have similar classification. This algorithm uses 

entropic measure, based upon probability of transformation of an instance into another 

by random selection between all possible transformations. Taking entropy as a measure 

for an instance distance is very much beneficial and information theory provides an 

advantage in measuring the distance among the instances. A uniform method of 

management of real valued, symbolic and missing value attributes is obtained.  

Madhusudana et al. (2016a) carried out condition monitoring of face milling tool 

under different conditions of tool using vibration signals. They extracted histogram 

features from the signals and classification was done using K star algorithm. Pawar et 

al. (2016) considered decision tree, K star algorithm and wavelet transform for fault 

diagnosis of helical gear box using vibration signals. Painuli et al. (2014) studied fault 

diagnosis of lathe tool monitoring using vibration analysis. Statistical features extracted 

from the acquired signals and classification was performed using K star algorithm. 

Results shows that K star was able to achieve 78% classification accuracy in classifying 

the conditions of the tool. 

 Random forest algorithm 

Random Forest is a type of artificial intelligence technique to identify the state of 

machinery component. The Random Forest algorithm was developed by Breiman 

(2001)and is based on building a decision tree. In the initial stage, the training set 

consisting of features is divided into in-bag and out-bags set. The method of 

bootstrapping is repeated several times on feature set to produce several in-bag and out-

bag set subsets. A decision tree is modeled for each in-bag data and the out-of-bag set 
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is used for evaluating the classification accuracy of each decision tree. The final 

outcomes based on algorithm are obtained from out-bag sets from the entire training 

dataset. Every decision tree casts a vote for one class and this vote can be used to 

estimate the generalization capability of the classifier. The class from the feature set is 

recognized by gaining maximum vote (Peng and Chiang 2011). The Random Forest 

error rate depends on the correlation between any two trees in forest and strength of 

each tree in the forest. Increasing the correlation increases the forest error rate. On the 

other hand, a tree with a low error rate is a strong classifier (Vakharia et al. 2017). 

Cerrada et al. (2016) proposed fault diagnosis of spur gear using genetic algorithm for 

selecting features and random forest for classification. Classification accuracy of about 

97% is achieved using the random forest algorithm. Quiroz et al. (2018) used the 

random forest algorithm for fault identification in an induction motor. The results of 

the algorithm showed improved accuracy in differentiating healthy and faulty cases of 

the induction motor. 

2.8 LIMITATIONS OF MACHINE LEARNING TECHNIQUES 

The signal processing, manual feature extraction techniques and models give 

good diagnosis results, but some of their limitations mentioned below. 

• Feature extraction techniques require expertise in the field of signal processing. 

Generally, researchers use statistical, HHT, WPT and EMD for feature 

extraction. Hence, effectiveness of the model depends upon quality of feature 

extracted. 

• Manual feature extraction is time consuming and laborious. 

• SVM, KNN, decision tree, Bayesian network and other architectures are 

employed on extracted feature; which are not easy to fit on complex non-linear 

functions. It requires large number of hidden layers that increases computational 

burden. 

• They can extract only limited number of faults, typically 3 to 6 types. A few of 

the models fail as number of fault cases increase and therefore cannot be used 

in real time failure analysis. 
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Conventional approaches such as back propagation neural network (BP-NN) and 

SVM have limitations such as increased computing power requirement to process huge 

number of datasets within time. Due to the above-mentioned shortcomings of 

traditional machine learning algorithms, attention was focused on ANN and its variants. 

ANN is composed of many simple and interconnected neurons. These neurons are 

connected to each other by links that have associated weights. The weights between 

each neuron determine the significance of the input to each neuron. As it is trained, 

these weights are updated as the ANN learns. Many variations of the ANN exist such 

as Convolutional Neural Networks (CNN), Deep Neural Networks (DNN), Recurrent 

Neural Networks (RNN), Long Short-Term Memory (LSTM), Deep Belief Networks 

(DBN) Generative Adversarial Networks (GAN). Among these, CNN and LSTM are 

the most popular ones for diagnostics of faults in rotating machinery. CNN is mostly 

used in image recognition.  

2.9 DEEP LEARNING TECHNIQUES  

Over last decade, researchers widely used methods like SVM, ANN, decision 

tree, random forest, etc. These methods were commonly used with high accuracy by 

extracting deep features from raw vibration signals. However, automatic feature 

extraction methods increased the demand in case of fault diagnosis of rotating machine 

elements with high accuracy and less complexity. To address the short comings of 

machine learning methods researchers  introduced stacked LSTM, an advancement of 

recurrent neural networks (RNNs), for bearing fault diagnosis (Yu et al. 2019). LSTM 

layers have capability of manual feature extraction, which solves gradient descent 

problem present in RNN. They used three LSTM layer for automatic feature extraction 

and softmax layer for classification. 

Recently, deep learning techniques are used due to their effectiveness and quality 

of feature extraction, recognition and classification. The deep learning model comprises 

of multiple layers stacked with the network to extract high-level features from raw input 

data and provides significant results. Deep learning techniques are used in image 

processing, speech recognition, natural language processing and image recognition etc. 

Since the vibration signal of the rotating element of mechanical systems has similar 

dimensionality like image processing and speech recognition, deep learning 
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architecture can be used for fault diagnosis of mechanical components based on their 

raw vibration data. 

 Tian and Liu (2019) proposed a deep convolutional neural network (DCNN) 

based fault detection model. DCNN extracts features automatically from sensor signal 

and eliminates the need of expertise in the area of signal processing or feature 

engineering. Now a days, there are many deep learning techniques being used for 

diagnosis (Ince et al. 2016). Deep learning techniques are applied to extract features 

from fault bearing signals (Cabrera et al. 2017). DCNN was proposed to extract features 

in time and frequency domain of rolling element and antibody immunity algorithm was 

used for bearing fault detection in real time. Fault type was identified by comparing 

both time and frequency domain analysis results.  

It is difficult to get accurately labelled data in industries for training which 

requires large amount of data sets. Thus, data augmentation is used to get additional 

valid labelled data for training. Li et al. (2020) proposed deep learning model based on 

data augmentation. Two methods of augmentation method were investigated namely 

datasets -based method and sample -based method. The performance of proposed model 

was estimated with respect to data augmentation techniques. An effective fault 

detection of any rotating component has always been a significant issue in mechanical 

industries. Zhang et al. (2019) proposed a deep learning model composed of CNN block 

and residual learning blocks. Using residual learning, one can go much deeper with 

neural networks without gradient descent or gradient explosion problem. Based on the 

signal analysis method, intelligent fault detection techniques have been extensively 

used for fault detection in rolling bearing and TCM. Chen et al. (2020) proposed a CNN 

and stacked LSTM based deep learning model for automatic feature learning from the 

raw vibration sensor signals. Researchers considered two CNNs for feature extraction 

and two LSTM models to find out fault type based on learned features. The multi-scale 

CNN and LSTM model was comprised of a feature extractor and classifier, it takes raw 

vibration signal directly as input without any data pre-processing operation. 

Lu et al. (2017) proposed a stacked denoising auto-encoder (SDA) based deep 

learning model for health monitoring for a signal having ambient noise and fluctuation 

condition of rotating machinery component. It is a robust feature representation 
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technique. SDA based deep learning techniques are divided into three parts: (i) division 

of training and testing samples; (ii) establishment of hierarchy deep learning 

architecture; (iii) establishment of transmitting rule for model training. The presented 

model achieved good accuracy of classification; however, having difficulty in network 

training. Sun et al. (2016) proposed a deep neural network (DNN) for fault diagnosis in 

induction motor, adopted sparse auto-encoder (SAE), unsupervised feature learning 

techniques. The SAE operates on unlabelled raw vibration datasets that help in 

denoising coding. The learned features were given to a neural network-based classifier 

for finding faults in the motor. SAE improved the robustness of features leaning with 

noisy data. The auto-encoder extreme learning machine (ELM) based technique was 

used for bearing fault diagnosis and to overcome the deficiency of previous neural 

networks techniques; i.e., difficulty in network training and more training time (Mao et 

al. 2017).  

In deep learning methods, CNNs and LSTM are specially designed for any 

complex non-linear data. Initially, CNN was used in the image processing domain; 

presently, its application considered in many fields, like computer vision, speech 

processing, etc. Cai et al. (2020) presented a stacked LSTM based hybrid system for 

tool condition monitoring. Feature extraction was performed by stacked LSTM model 

from the vibration signals of the tool. For validating the model, authors used NASA 

Ames milling and 2010 PHM data challenge datasets. Outstanding performance was 

obtained from this model in tool wear prediction and hence the model is used when 

experiments run under many operating conditions. Guo et al. (2016) proposed a deep 

CNN based fault diagnostic algorithm for bearing diagnosis. This method comprises 

three convolutions layer, three pooling layers and one fully connected layer at the top 

of the model as a classifier. The deep learning approaches accomplished great success 

in the field of fault diagnosis of the rotating component.  

CNN with residual learning and LSTM achieved great success in fault diagnosis 

and the vanishing gradient problem addressed during training. CNN model gives better 

classification accuracy with more layer. However, after reaching deeper in CNN 

network performance gets degraded due to the gradient problem. Thus, attaining much 

deeper deep learning network is harder to train. The residual learning block introduced 
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to train network and easy to reformulate NNs layers in terms of residual function with 

input layer and it avoids gradient explosion problem.  In present study, 1D time-series 

data and LSTM techniques were considered. LSTM architecture provides longer-term 

dependencies and can add or remove information from the cell regulated by gates, thus 

providing better classification accuracy. 

2.10 MOTIVATION FROM THE LITERATURE 

Literature review concludes that condition monitoring is a significant technique 

for fault diagnosis of rotating machine components and used for detecting early faults 

in the machines to avoid severe failure of machine during the working condition. 

Condition monitoring techniques are applicable in industries to monitor heavy 

machines to avoid downtime by notifying various vibration and temperature variation 

of machines. In machines and any mechanical structural failure is due to vibration of 

machine components. To avoid damages and failure of structures in machine 

component many researchers have worked on early fault detection in structure and 

machineries. In case of IC engine or rotating machines failure arises primarily by defect 

in ball bearing and defect in transmission gear unit. Even though many researchers 

worked on fault diagnosis of mechanical gear box and electrical induction motor. A lot 

of investigations are still possible in IC engine fault diagnosis using different 

monitoring techniques. Many numbers of techniques can be used for condition 

monitoring of IC engine considering combustion and loading unit. Most significant 

approach for condition monitoring is vibration analysis, which permits differentiating 

healthy and faulty engine components.  

Vibration analysis involves time domain or frequency domain which can provide 

only information regarding past conditions of defective components of the engine. The 

concept can be extended with an advanced signal processing technique, machine 

learning techniques and deep learning approaches for developing online condition 

monitoring of the IC engine to identify different conditions of ball bearing and gear. 

Performance of monitoring technique in fault diagnosis depends on the classifier used 

for classification. Still many investigations are possible in finding best classifier. Many 

investigations are possible in building on-line fault diagnosis system using vibration 

signals with data mining techniques. In this research work, vibration signals of healthy 
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and simulated faulty conditions are acquired which are used for offline monitoring 

using signal processing techniques and online condition monitoring of IC engine using 

machine learning and deep learning techniques. 

2.11 OBJECTIVES 

Condition monitoring of IC engine gearbox will be carried out using vibration 

analysis. In order to accomplish fault diagnosis of IC engine it is essential to fix number 

of major objectives. 

The main objectives for proposed work are; 

1. To investigate bearing faults of two stroke IC engine gearbox using vibration 

analysis through signal processing and machine learning techniques. 

2. To build a four stroke IC engine setup with combustion process and loading 

system (Eddy current dynamometer) for condition monitoring of IC engine 

through vibration analysis. 

3. To investigate faults in components of gearbox of an IC engine such as bearings 

and gears using signal processing techniques. 

4. To diagnose faults of bearings and gears of gearbox of an IC engine based on 

vibration signals through machine learning approach. 

5. To develop a deep learning model for diagnosis of bearing and gear faults in the 

gearbox of an engine. 

2.12 SCOPE OF RESEARCH WORK 

The scope of the current research work is drawn as follows; 

• Fault diagnosis of ball bearing of two stroke IC engine gearbox using vibration 

signals is studied using signal processing and machine learning techniques.  

• In the present work, experiment will be carried out on gearbox of four stroke IC 

engine with combustion and loading arrangement using eddy current 

dynamometer under different conditions of the engine.  

• Investigation and fault identification of the basic components of gearbox like 

roller ball bearing and gear based on vibration signal analysis. 
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• Fault diagnosis of IC engine using conventional signal processing techniques 

such as time domain, spectrum, cepstrum, STFT and wavelet transform under 

various conditions of engine components. 

• Machine learning techniques such as SVM, random forest and K star are used 

for classifying the features in order to diagnose the gearbox conditions. 

• Determination of best feature and classifier combination for diagnosing the 

gearbox of an IC engine in two stroke and four stroke IC engine. 

• Use of deep learning techniques such as CNN, residual learning, stacked LSTM 

methods for automatic feature extraction and classification of gearbox conditions.  

• The study is to identify the most effective condition monitoring technique for 

predicting gearbox conditions more accurately while decreasing the error rate.  

2.13 SUMMARY 

This chapter discussed a review of existing gearbox condition monitoring 

techniques. Literature was primarily divided into categories on the monitoring of IC 

engine, gearbox elements such as gear and bearing condition monitoring using recorded 

signals. Also, applications of signal processing techniques and machine learning 

technique are discussed with respect to different mechanical systems. Advanced deep 

learning techniques are also discussed with respect to rotating machineries. Along with 

the above, an overview of each application method is discussed, citing many 

researchers who have successfully implemented these techniques for their respective 

area of research. In addition, this chapter discussed the objectives and scope of the 

current research work. Chapter 3 discusses the methodology and experimental approach 

used in this research.  
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CHAPTER 3 

 METHODOLOGY AND EXPERIMENT DETAILS 

3.1 INTRODUCTION 

This chapter describes the methodology involved in achieving the objectives of 

this research work. For performing fault diagnosis of the gearbox, a two-stroke and a 

four-stroke IC engine have been chosen. Experiments were conducted on a two-stroke 

engine gearbox which was cranked by a motor without applying load. In the four-stroke 

engine, a test rig was established to conduct experiments in actual running condition 

with loading arrangement by Eddy current dynamometer. The gearbox runs at various 

loading conditions. Finding faults is very difficult in the system. Hence, a physical 

parameter such as vibration has to be used for the diagnosis of faults.   

3.2 METHODOLOGY 

The proposed research work involves three stages. They are as follows: 

(1) Fault detection based on signal processing techniques 

(2) Fault diagnosis using machine learning approach 

(3) Fault diagnosis using deep learning approach 

Monitoring of gearbox is basically divided into two types (i) offline monitoring 

and (ii) online monitoring. Offline monitoring of the IC engine gearbox is based on 

signal processing techniques. Online monitoring of the IC engine gearbox is based on 

machine learning and deep learning approaches. These methods are discussed in the 

next sections. Figure 3.1 shows the methodology followed in monitoring system for 

fault diagnosis of gearbox in two stroke IC engine gearbox. Figure 3.2 shows the 

methodology followed in monitoring system for fault diagnosis of gearbox in four 

stroke IC engine gearbox. 
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 Fault detection based on signal processing techniques 

Analysis of the gearbox of an IC engine will be carried out using vibration 

signals from the set of experiments. Vibration signals carry information about the 

rotating components of the gearbox as they bear external applied load. The signal 

processing techniques, viz; time domain, spectrum technique, cepstrum technique, 

short time Fourier transform (STFT) technique and continuous wavelet transform 

(CWT) technique are employed for analyzing the vibration signals. The aforementioned 

techniques are an effective approach for detecting and diagnosing the faults of gears 

and bearings in the gearbox. The detailed description about the signal processing 

techniques is explained in the chapter 4 

 Fault diagnosis using machine learning techniques 

Machine learning (ML) is the use of computer algorithms that improve and 

become more efficient by gaining and applying knowledge through repeated exposure 

to data. ML uses its own experience rather than explicitly programmed instructions. 

The collected signals such as vibration signals will be processed and analysed to 

diagnose the condition of the gearbox through ML technique. These algorithms build a 

model based on the input data, which is called training data and is used for future 

prediction. Continuous monitoring of gearbox signals provides early warning of the 

faults arising in the system, in order to avoid unplanned downtime of machine cost and 

time.  

From literature study, it is understood that ML techniques are quite helpful in 

developing automatic diagnosis models for gearboxes. In online monitoring, ML 

techniques are used to classify the vibration signals of an IC engine into healthy and 

faulty conditions of gearbox components. ML mainly involves three stages; (i) feature 

extraction, (ii) feature selection and (iii) feature classification. In the present study 

features such as statistical, empirical mode decomposition (EMD)and discrete wavelet 

transform (DWT) are extracted from the vibration signals. Decision tree technique is 

used to select most important feature for classification. Support vector machine (SVM), 

Random Forest (RF) algorithm and K star algorithm are employed as classifiers. The 

details of ML techniques are described in chapter 5.  
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Figure 3.1 Methodology of Two stroke IC engine gearbox fault diagnosis 

 Fault diagnosis using deep learning techniques 

DL is a class of ML techniques that uses multiple layers to progressively extract 

higher-level features from the raw input. In the field of DL, convolutional neural 

network (CNN) is feedforward network that outperforms others when it comes to 

generalizing and training networks with complete connectivity across adjacent layers. 

A CNN's architecture is composed of several stages. Each stage serves a distinct 

purpose. Each role is automatically filled by the algorithm. Each CNN architecture has 

four characteristics: multiple layers, pooling/subsampling, shared weights and fully 

connected layers. In the present study, CNN with residual learning, softmax function 

and long short-term memory (LSTM) are used for diagnosing the gearbox faults in four 

stroke IC engine. The acquired vibration signals of bearing and gear from four stroke 

IC engine gearbox are given as input to the CNN and classification is performed. The 

more details of the DL models are discussed in chapter 6.  



 

46 

 

 

Figure 3.2 Methodology of Four stroke IC engine gearbox diagnosis
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3.3 EXPERIMETNAL SETUP 

In order to meet the objectives of this research work, it is essential to set up an 

experimental test rig to conduct the experiments. In this study, gear and bearing faults 

of a gearbox are considered to find the fault detection based on signal processing 

techniques and machine learning approach. Experiments are conducted on gearbox of 

a two-stroke motorcycle engine to diagnose the bearing faults without considering load 

and combustion. Then, experiments were carried out on a four-stroke single cylinder 

spark ignition engine, to diagnose gearbox faults such as gear and bearing.  

The following sections discuss the details of the experimental test rig and 

procedures involved in the experiments. 

The experimental test rig consists mainly of 2 major equipment: 

➢ Two stroke single cylinder engine driven by a motor  

➢ Four stoke single cylinder SI engine with Eddy current dynamometer 

 Experimental set up of two stroke IC engine without combustion and without 

loading arrangement 

Experiments were conducted on a two stroke IC engine gearbox without 

combustion and loading for fault diagnosis of ball bearings using vibration signals 

under healthy and simulated faulty conditions. The schematic view of two stroke engine 

setup is shown in Figure 3.3. DC motor is attached to output shaft of the gearbox to 

power the crank and a dimmer-stat is used for controlling the voltage supply for the 

motor. 
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Figure 3.3 Schematic of two stroke engine test setup 

The experiment is conducted at a constant crankshaft speed of 1600 rpm. 

Vibration signals are acquired using an accelerometer during engine running condition. 

Then, the analog signal is converted to digital by a DAQ (NI 9234) system with a 

sampling rate of 25 kHz and these signals are saved in PC and processed in LabVIEW 

for further analysis. Figure 3.4 shows the physical test set up of two stroke engine 

gearbox.   

 

 

 

 

 

 

 

 

Figure 3.4 Experimental test rig for two stroke IC engine gear box 
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The vibration signals of the engine gear box are acquired for healthy and 

different simulated faulty conditions of roller ball bearing. The experiment is conducted 

for healthy and four simulated faulty conditions of the bearing, namely; 

a. Inner race defect 

b. Outer race defect 

c. Ball defect  

d. Combined faults of inner and outer race of bearing   

A total of 150 vibration samples are collected, out of which 30 samples for 

healthy and remaining signals are for each of the faulty conditions of the bearing. The 

data are stored in the computer for further analysis. In occurrence of inner race fault 

while transmitting impulses to outer surface area of casing, inner race defect had more 

transfer segments.  

Table 3.1 Condition of ball bearing 

Cases Nature of fault Samples collected 

a Healthy 30 

b 2.5 mm inner race defect 30 

c 1.5 mm outer race defect 30 

d 2.5 mm inner and outer race 30 

      e 2 mm ball defect 30 

In general, these impulses are weak in vibration signals and are difficult to find 

out. Therefore, analysis of inner race fault is very difficult (Lin and Qu 2000). 

Therefore, to understand inner race defect, a hole of 2.5 mm was drilled on it. Different 

conditions of ball bearing are shown in Table 3.1 for fault diagnosis of bearings.  
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(a) 

 

 

 

 

 

  

 

 

(b) 

 

Figure 3.5 Two stroke IC Engine test gear box (a) Testing bearing location; 

 (b) Sectioned view of engine gearbox 

Figure 3.5 shows the sectioned view of engine and location of bearing in the 

gear box. Table 3.2 gives the specification of ball bearing used for fault diagnosis in the 

IC engine. 

 

Test Bearing  
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        Table 3.2 Bearing specification of the test rig 

Bearing parameter Value 

Outer race diameter (mm) 42 

Inner race diameter (mm) 20 

Ball diameter (mm) 6.3 

Pitch diameter (mm) 31.5 

Number of balls 9 

Contact angle (°) 0(assumed) 

 

 Experimental setup of 4 stroke IC engine with combustion and eddy current 

dynamometer 

Schematic representation of experimental setup consists of a four-stroke single 

cylinder IC engine with an eddy current dynamometer attached to it for applying load 

and a data acquisition system as shown in Figure 3.6. 

 

Figure 3.6 Schematic diagram of 4 stroke IC Engine setup using vibration signals 
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Experiments are conducted on a 4-stroke single cylinder twin spark ignition (SI) 

engine under its actual running condition. The specifications of the engine used in the 

test is shown in Table 3.3. The applied load to engine is controlled using an eddy current 

dynamometer having a capacity of 7.5 kW, which is coupled with the output shaft of 

the engine through a chain drive. It is equipped with variable electromagnets to change 

the magnetic field strength to control the amount of load applied. Speed of the engine 

during the test was maintained constant by keeping crankshaft rotational speed at 4300 

rpm in 2nd gear position. 

Table 3.3 Test engine specifications 

 

 

 

 

Figure 3.7 shows the complete experimental set up with a data acquisition 

system for acquiring the vibration signals from the engine gearbox. The experiment is 

conducted for healthy gearbox condition and each defective condition of gear wheel 

one after the other by replacing and reassembling the gear specimen.  

 

Figure 3.7 Test rig of 4-stroke IC engine 

Engine parameter Particulars 

Type of engine DTS-I, 4-stroke, natural air cooled 

Torque 10.8 Nm @ 5500 rpm 

Displacement 124.6 cc 

Power 11 bhp @8000 rpm 

Number of gears Five 
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The position of defective gear in the engine primary shaft is displayed in opened 

view of gearbox in Figure 3.8. 

 

Figure 3.8 Inside view of engine gearbox 

Similarly, experiments are conducted for healthy and defective conditions of 

ball bearing. The position of test bearing in the engine is displayed in opened view of 

gearbox in Figure 3.9. 

 

Figure 3.9 Location of test bearing in engine gearbox 
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 Experimental procedure 

a. The condition of the engine was confirmed to be good before the test by 

inspecting its various machine components, particularly engine gearbox parts. 

b. In this experiment, the vibration signal was acquired from engine gear box for 

different condition of gear at constant crank shaft speed of approximately 4300 

rpm at 2nd gear position. 

 

Figure 3.10  Different conditions of the gear (a) Healthy, (b) 25% defect, (c) 50% 

defect, (d) 75% defect, (e) 100% defect 

c. In case of gear, artificial defect was introduced by machining the gear tooth 

progressively with 25%, 50%, 75% and 100% (one tooth removal) of the tooth 

face height as shown in Figure 3.10. The different conditions of gearbox used 

in this experiment are shown in Table 3.4.  

d. In case of bearings, artificial defects were made on bearing surface, such as 

inner race defect, outer race defect and combined defects at inner and outer race 

as shown in Figure 3.11. 
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Figure 3.11 Ball bearing conditions used in the GB (a) Healthy, (b) Spall at inner race, 

(c) Spall at outer race, (d) Combined defects at inner and outer race 

e. Test was conducted at three different loading conditions such as no load, half 

load and full load condition by the applying torque on the gearbox using eddy 

current dynamometer. 
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Table 3.4 Different conditions studied on engine gearbox fault diagnosis 

Test No. Condition of gear tooth and ball 

bearing 

Engine gearbox condition 

1 Normal Healthy 

2 One mm tooth thickness removal 25% defect 

3 Two mm tooth thickness removal 50% defect 

4 Three mm tooth thickness removal 75% defect 

5 Four mm tooth thickness removal 100 % defect 

6 2.5 mm defect at inner race Spall at inner race 

7 1.7 mm defect at outer race Spall at outer race 

8 2.5 mm defects at inner and outer race Combined defects at inner 

and outer race 

For acquiring the vibration signals, a piezoelectric accelerometer (Model-IEPE 

YMC 145A100, sensitivity-104.6 mV/g, Range- ±50g, Temperature- -41 to 121 ˚C, 

Response frequency>15 kHz) was mounted over the engine gearbox casing.  

National Instruments hardware and LabVIEW 14 software were used for data 

acquisition and analysing the vibration signals. NI DAQ 9234, four channel, ±5 V, 24-

bit DAQ system was used with an accelerometer to acquire the vibration signals of the 

engine and stored in the system. In this study, all signals have been acquired at a rate 

of 25.6 kHz sampling frequency. 

3.4 SUMMARY 

The detailed overview of the research work and methodology adopted are 

discussed in first section of this chapter. Methodology involves three different 

approaches. First one is fault detection based on signal processing approach; second 

one is fault diagnosis based on machine learning approach and third one is deep learning 

applications in fault diagnosis of engine gearbox. Also, brief explanation about two 

stroke and four stroke engine gearbox test setups are discussed. The procedure involved 

in conducting experiments are also included with information of sensors and data 

acquisition systems used for the experimentation. In the subsequent chapters, above 

said methods have been applied to study fault diagnosis of gearbox.  
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CHAPTER 4 

 FAULT DIAGNOSIS OF IC ENGINE GEARBOX USING SIGNAL 

PROCESSING TECHNIQUES 

4.1 INTRODUCTION 

Condition monitoring of IC engine gearbox based on vibration signal processing 

is an attractive research area (Peng et al. 2013). Vibration signal analysis using signal 

processing technique is extensively used for condition monitoring of rotating 

machinery systems (Jena et al. 2013; Rq et al. 2014). The purpose of this chapter is to 

study the fault diagnosis of IC engine gearbox using vibration signals and signal 

processing techniques. Vibration signals from the gearbox are acquired for healthy and 

induced faulty conditions of the gear and bearing. Experiments are conducted on ball 

bearing of two stroke IC engine gearbox without considering combustion and load. 

Then experiments are conducted on driving gear of four stroke IC engine gearbox with 

combustion and loading arrangement. The acquired signals are processed and analyzed 

using signal processing techniques. Spectrum, cepstrum, short time Fourier transform 

(STFT) and wavelet analysis are performed on acquired signals of the gearbox.  

4.2 OFFLINE MONITORING OF IC ENGINE GEARBOX 

In offline monitoring, different signal processing techniques were used for 

vibration analysis. The methods such as time domain analysis, spectrum analysis, 

cepstrum analysis, wavelet analysis are used in this present study and discussed briefly 

in the following subsection. 

 Time domain analysis 

Time domain study gives the dynamic variation of vibration levels and the 

recorded data reveals amplitude variation with respect to time. It is very difficult to 

recognize the defective conditions of machine elements from time domain analysis. 

Root mean square (RMS) is a time domain feature, which gives information of the 

signal by taking mean average of the data points. For all the conditions RMS value is 

calculated and given in time domain plots. 
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 Spectrum analysis 

Fourier transform (FT) is used to obtain frequency information of vibration 

signals. A Fourier integral pair is given in equations (4.1) and (4.2). 

𝑓(𝑡) =
1

2𝜋
∫ 𝐹(𝜔)𝑒−𝑗𝜔𝑡𝑑𝜔
∞

−∞
    (4.1)                      

𝐹(𝜔) = ∫ 𝑓(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡
∞

−∞
    (4.2)   

In equation (4.2), F(ω) is the FT of the signal f(t). The FT is appropriate for 

analyzing signals which are stationary and periodic in nature. Fast Fourier transform 

(FFT) is the advanced algorithm of FT and these techniques are used by many 

researchers in fault diagnosis of machinery components (Vernekar et al. 2014). 

 Cepstrum analysis 

Cepstrum analysis is one of the nonlinear signal processing techniques used for 

identifying a family of harmonics in the spectrum of the gearbox signals. The cepstrum 

is defined as the inverse Fourier transform of the logarithm of the power spectrum and 

is called the spectrum of the spectrum. This approach has a variety of applications, such 

as in the field of speech and image processing. Recently, this approach has also been 

used in the area of fault diagnosis of machines using vibration signals (Zhang et al., 

2019).  

The real cepstrum of the signal x(n) is given by equation (4.3) (El Morsy and 

Achtenová., 2014). Figure 4.1 depicts the relationship between the spectrum and 

cepstrum. 

𝑐𝑟𝑒𝑎𝑙 =
1

2𝜋
 ∫ log|𝑋(𝑒𝑗𝜔)|𝑒𝑗𝜔𝑛𝑑𝜔

𝜋

−𝜋
       (4.3)                                                                    
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Figure 4.1 Relationship between spectrum and cepstrum 
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 Short-Time Fourier Transform (STFT) 

STFT is a time-frequency analysis technique which has the ability to analyze 

non-stationary signals by dividing them into small time-domain series of equal length 

through a windowing function. Then, by applying FT, the plots are obtained which give 

information about time and frequency at different positions. The STFT is performed to 

obtain information about time and frequency instantaneously by multiplying the 

window function by the time domain signal.  

The STFT methods were followed for analyzing non-stationary signals x(t) by 

using equation (4.4) (Owens 1988). 

𝑆𝑇𝐹𝑇𝑋
𝑊(𝜏, 𝜔) =  ∫ 𝑥(𝑡)𝑊∗(𝑡 − 𝜏)𝑒−𝑖𝜔𝑡∞

−∞
𝑑𝑡 (4.4)                

In equation (4.4), x(t) is signal to be analyzed, ω is rotational frequency, W* is 

a window function and 𝜏 is time variable. The difference between FFT and STFT can 

be observed by comparing equations (4.2) and (4.4), i.e., only in terms of window 

function. The performance of STFT depends on this windowing function (Moosavian 

et al. 2017). In the analysis, the hamming window function is used for getting time 

frequency information. 

 Continuous Wavelet Transform (CWT) Analysis 

Wavelet analysis (Wang et al. 2011; Yan et al. 2014)is one of the important 

signal processing techniques in fault detection. This technique can be used for non-

stationary signal analysis (Zheng et al. 2002). In wavelet analysis, the most important 

part is that it will give information about time and frequency simultaneously to 

understand signals in a better way. CWT is a more promising technique in the family 

of wavelet transforms. This will display the frequency information with respect to time 

along with amplitude variation. The plots obtained from the CWT are called 

spectrograms, which can be varied with different scaling parameters. 

The CWT of time domain signal x(t) is given by equation (4.5); 

𝐶𝑊𝑇 𝑋𝜓(𝑎, 𝑏) =
1

√𝑎
∫ 𝑥(𝑡)𝜓∗ (

𝑡−𝑏

𝑎
)𝑑𝑡,    {𝑎, 𝑏 ∈ 𝑅,   𝑎 ≠ 0

∞

−∞
   (4.5)           
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In equation (4.5), ψ* (t) is the complex conjugate of the analyzing wavelet, ‘a’ is the 

scaling parameter, ‘b’ is the translation parameter. X𝜓 (a,b) is a new transformed signal 

of  function ‘a’ and ‘b’. In the transformed signal,  
1

√𝑎 
  is energy exhibition feature in 

wavelet transform and energy of signal is normalized by multiplying term 
1

√𝑎 
 at each 

scale of individual wavelet constant (Wu and Chen 2006). 

 Morlet wavelet under CWT 

The Wavelet family contains a very large number of different wavelets for 

different applications. In that, the Morlet wavelet belongs to the CWT family, which is 

suitable for analysis of non-stationary signals generated by vibrating machinery 

components. The mother wavelet of this is given by equation (4.6) (Zheng et al. 2002). 

𝜳(𝒕) =  
𝟏

√𝝅 
𝟒 (𝒆𝒋𝝎𝟎𝒕 − 𝒆−

𝝎𝟎
𝟐

𝟐 )𝒆−
𝒕𝟐

𝟐        (4.6)   

In equation (4.6), ‘𝜓’ is mother wavelet, ‘ω0’ represents central frequency of the mother 

wavelet. The term 𝑒
−(

𝜔0
2

2
)
 is used for fine-tuning non-zero mean of the complex 

sinusoid. It can be irrelevant when ω0>5. If ω0>5, the redefined mother wavelet is given 

in equation (4.7).  

𝛹(𝑡) =  
1

√𝜋
4 𝑒𝑗𝜔0𝑡 𝑒−

𝑡2

2     (4.7)  

4.3 EXPERIMENTAL RESULTS OF TWO STROKE IC ENGINE GEARBOX 

   Vibration signals from the IC engine gear box under different conditions of ball 

bearing are investigated using various signal processing techniques such as; time 

domain, frequency domain and wavelet analysis. Experiments are conducted on ball 

bearing fault diagnosis of two stroke engine gearbox without considering external load. 

Vibration signals from the gearbox casing are acquired and analyzed. The result 

obtained from these methods are discussed in the following sections. 
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 Time domain study and Spectrum analysis 

Time domain plots of vibration signals under different conditions of ball bearing 

are plotted as shown in Figure 4.2. In time domain plots, it is very difficult to 

differentiate the nature of the bearing status because time domain plots convey the 

dynamic variation of vibration signals in terms of amplitude with respect to time. Also, 

it doesn’t provide any information about frequency component of the given signal.  

 

Figure 4.2 Time domain plots of bearing conditions of (a) Healthy, (b) Inner 

race defect, (c) Outer race defect, (d) Ball defect, (e) Inner and Outer race defect 

Figure 4.3 depicts the spectrum graphs of vibration signals under different 

conditions of the ball bearing. In IC engine gearbox, crankshaft rotational frequency is 

dominating all other components frequencies of the gearbox. The spectrum plots will 

show the nature of vibration signs of ball bearing under healthy and different induced 

faulty condition. 
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In IC engine gearbox vibration spectrum plots, the analysis bandwidth is limited 

to a range of 200 Hz, since the rotational frequency of crankshaft is 27 Hz and its 

harmonics can be detected within 200 Hz range. From Figure 4.3, for the different 

condition of bearing, peak frequency is observed at 27 Hz, 54 Hz and 84 Hz. These are 

first, second and third harmonics of crankshaft rotational frequency.  
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Figure 4.3 Frequency domain plots of bearing conditions of (a) Healthy, 

(b) Inner race defect, (c) Outer race defect, (d) Ball defect, (e) Inner and Outer race 

defect 

For identifying the bearing condition, the amplitude of vibration of these 

harmonics is analysed. In healthy bearing condition, the peak amplitude of vibration is 

0.08 m/s2, where-as in inner race defect case the amplitude of vibration is 0.13 m/s2 

with respect to first harmonic(fs). Similar increment in vibration amplitude can be seen 

in the outer race, ball defect and combined inner and outer race of bearing with respect 

to peak amplitude of vibration of healthy bearing condition. 
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 CWT analysis 

As seen from the Figure 4.4, one can say that there is a slight variation in the 

amplitude of fundamental crankshaft rotational frequency of about 27 Hz with respect 

to different conditions of the ball bearing. In addition to spectrum analysis, CWT 

technique is used to identify the conditions of IC engine. Figure 4.4 depicts the CWT 

plots of vibration signals under different conditions of ball bearing such as; (a) healthy, 

(b) inner race defect, (c) outer race defect, (d) ball defect and (d) inner and outer race 

defects. 

From the CWT plots, a good amount of accuracy is seen in identifying the faults 

in terms of amplitude variation with respect to time frequency plots. In CWT plots, the 

amplitude variation at a frequency band of 500-1500 Hz corresponding to different 

conditions of ball bearing can be seen in Figure 4.4. 
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Figure 4.4 Continuous wavelet transforms plots of (a) Healthy condition, (b) Inner 

race defect, (c) Outer race defect, (d) Ball defect, (e) Inner and Outer race defect 

Based on the above vibration analysis of a bearing, it can be seen that, even in 

the presence of a defect in the bearing, it is quite difficult to determine which frequency 

corresponding to a particular defective condition. The reason behind this is, the crank 

shaft rotates at a higher rate, which has the significant influence on the frequency 

spectrum of the gearbox, which is the dominant frequency among all others. As a result, 

when considering a component at the system level, it is difficult to detect component 

damage using vibration spectrum analysis. This can be overcome through the 

application of machine learning techniques. 

4.4 EXPERIMENTAL RESULTS OF FOUR STROKE IC ENGINE GEARBOX 

In this work, vibration analysis of four-stroke IC engine gearbox under real-

time operating condition with different loading cases are studied. From the gearbox of 

the engine, vibration signals are acquired under healthy gear, 50% tooth defect and 

100% tooth defect. These signals are studied with various signal processing techniques. 

 Time domain analysis 

Figure 4.5 depicts the time domain plots of gearbox under no load conditions 

with healthy, 50% gear tooth defect and 100% gear tooth defect. In these plots, one can 

observe slight variation in amplitude in comparison with different load and cases of 

gear defects.  
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In Figure 4.5(a), for no load with healthy condition amplitude is very small (-5 

m/s2 to +5 m/s2) whereas in Figure 4.5(b) and 4.5(c) for 50% defect and 100% defect 

respectively, the amplitude is slightly higher (-6 m/s2 to +6 m/s2) when compared to 

healthy. Impacts are very clear in 100% gear tooth defect condition. 

 

Figure 4.5 Time domain plots of no-load condition (a) Healthy tooth, (b) 50% 

defect tooth, (c) 100% defect tooth 

Similarly, Figure 4.6 and 4.7 indicates time series plots for load1 and load2 

condition. In comparison with healthy condition, variation of amplitude and impacts of 

defective gear were clearly indicated by 50% defect and 100% defect in increasing 

loading conditions. 
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Figure 4.6 Time domain plots of load1 condition (a) Healthy tooth, (b) 50% 

defect tooth, (c) 100% defect tooth 

Even though time domain analysis gives time information with respect to 

various conditions of gearbox, identifying the severity of defect is difficult using it. For 

better understanding of conditions of gearbox, frequency information is needed and this 

can be done by spectrum analysis using FFT.  
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Figure 4.7 Time domain plots of load2 condition (a) Healthy tooth, (b) 50% 

defect tooth, (c) 100% defect tooth 

 Frequency domain analysis 

The information of frequency of gearbox components is obtained from FFT 

algorithm. In IC engine gearbox, the crankshaft rotational frequency (CRF) found to be 

dominating all other frequencies and the same can be noticed from spectrum plots in 

Figure 4.8, Figure 4.9 and Figure 4.10 for different load conditions of gearbox. These 

plots display the gearbox vibration signature for healthy, 50% defect and 100% defect 

conditions under varying load conditions with CRF and its harmonics (1X,2X,3X…. 

etc.,) and gear mesh frequencies (GMF).  
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In IC engine gearbox, the significant frequencies are CRF and GMF. Hence, 

spectrum plots of the gearbox show amplitude variation at these two frequencies and 

its harmonics. Table 4.1 shows gear ratios at different locations of the engine test rig. 

By using this gear ratio, engine rpm was calculated for comparing frequency component 

under different conditions of gearbox. GMF is calculated by equation (4.1).  

 GMF = Tn × N     (4.1) 

where, ‘Tn’ is number of gear teeth and ‘N’ is rpm of gear. 

Table 4.1 Gear ratio from dynamometer to engine 

Location Gear ratio 

Dynamometer to output shaft of engine 42/14 (3.00) 

Output to input shaft of engine 31/17 (1.824) 

Input to crankshaft of engine 75/21 (3.571) 

Table 4.2 shows GMF for no load condition (i.e., at zero torque). For different 

defect conditions, amplitude of GMF and CRF will be observed in the spectrum plots. 

GMF is one of important parameters for detecting fault in the gearbox. If broken tooth 

gear meshes with tooth of other driven gear, GMF will show indication by revealing its 

increase in amplitude and sideband around the GMF with respect to healthy gear.  

Table 4.2 GMF at no load 

Location Speed (rpm) Frequency (Hz) 

Speed at dynamometer 220 3.6 

Gear speed 660 11 

Pinion speed 1204 20 

Crankshaft speed 4300 72 

Gear mesh frequency 20460 341 
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Table 4.3 shows GMF for load1 (at torque 9.6 Nm) and respective frequencies 

are tabulated at different positions of the gearbox using gear ratio. This torque has been 

applied from the eddy current dynamometer to the output shaft of an engine 

Table 4.3 GMF at load1 

Location Speed (rpm) Frequency (Hz) 

Speed at dynamometer 215 3.58 

Gear speed 645 10.75 

Pinion speed 1176.5 19.6 

Crankshaft speed 4201 70 

Gear mesh frequency 19995 333 

Table 4.4 displays GMF for load2 condition (at torque 13.3 Nm) and respective 

frequencies at different positions of the gearbox. At 0, 9.6 Nm and 13.3 Nm applied 

torque conditions the speed of the engine is observed as 4300, 4201and 4104 rpm 

respectively. The frequency corresponding to different load conditions are tabulated in 

Tables 4.2, 4.3 and 4.4.  

Table 4.4 GMF at load2 

Location Speed (rpm) Frequency (HZ) 

Speed at dynamometer 210 3.5 

Gear speed 630 10.5 

Pinion speed 1150 19.2 

Crankshaft speed 4104 68.4 

Gear mesh frequency  19530 326 

Figure 4.8 shows the spectrum plots for the no load condition. In Figure 4.8(a) 

for healthy condition, the 2X component of crankshaft rotational frequency amplitude 

is about 0.45 m/s2. Whereas in case of Figure 4.8(b) and Figure 4.8(c) for 50% defect 
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3X 

GMF 

2X 

X 

3X 

GMF 

2X 

X 

3X 

GMF 

and 100% defect case the amplitude of 2X component increased to 0.73 m/s2 and 1.1 

m/s2 respectively. This indicates the presence of defects in the engine gearbox.  

 

Figure 4.8 Spectrum plots of no-load condition (a) Healthy tooth, (b) 50% defect 

tooth, (c) 100% defect tooth 

Similarly, the variation of GMF is also observed with respect to the frequency 

band of 1000-1300 Hz which is in the range of 3rd and 4th harmonics of GMF. In Figure 

4.9(a), the GMF largest peak amplitude is around 0.15 m/s2 for healthy gear and in 

Figure 4.9(b) and Figure 4.9(c) the GMF is increased to 0.19 m/s2 for 50% defect and 

0.27 m/s2 for 100% defect respectively. This clearly indicates that, the gear box is 

having tooth defect in the running condition of gear. Similar variation of amplitude in 
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case of load1 and load2 can be observed with respect to CRF with its 2nd harmonics and 

GMF in the band of 1000-1300 Hz. 

Figure 4.9 illustrates the spectrum plots for load1 conditions. Spectrum plots 

exhibit increase in amplitude with increase in defect conditions for different conditions 

of the gearbox.  

 

Figure 4.9 Spectrum plots of load1 condition (a) Healthy tooth, (b) 50% defect 

tooth, (c) 100% defect tooth 

Similarly, for load2 conditions, spectrum plots indicate same trend as the defect 

condition severity changes from healthy to 50% defect and 100% defect as can be 

observed from Figure 4.10. 
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Figure 4.10 Spectrum plots of load2 condition (a) Healthy tooth, (b) 50% 

defect tooth, (c) 100% defect tooth 

Spectrum analysis provides information of frequency but there is a drawback 

that no information of time period is available in the FFT plots. For further detailed 

understanding other time frequency methods need to be studied. In next sub section 

cepstrum method is discussed for analyzing the gearbox conditions.  

 

 



 

74 

 

 Cepstrum analysis 

Cepstrum plots of IC engine gearbox under healthy, 50% defect and 100% 

defect with no load, load1 and load2 conditions are displayed in Figure 4.11, 4.12 and 

4.13 respectively. Cepstrum plots indicate harmonics of dominant frequency and it is 

represented by quefrency with respect to amplitude variations for various gearbox 

conditions.  

Figure 4.11 (a), (b) and (c) show cepstrum plots for no load condition for 

healthy, 50% defect and 100% defect of gear tooth respectively. As discussed in the 

spectrum analysis, GMF is in the range of 1000-1300 Hz which slightly alters due to 

variation in fuel and air mixture during combustion. In cepstrum analysis, the notion 

‘frequency’ is replaced by ‘quefrency’ and it varies with respect to different conditions 

of the gearbox. In Figure 4.11(a) for no load with healthy condition, corresponding 

quefrency is about 0.0008203 sec, and it shows acceleration of the gearbox of about 

0.06116 m/s2 which is used as reference for finding faulty conditions of the gearbox.  

As the condition of the gearbox is changed to 50% defect, quefrency is about 

0.00078125 sec, and it indicates acceleration level of about 0.6973 m/s2 which is shown 

in Figure 4.11(b). Similarly, for 100% tooth fault condition, quefrency is about 

0.0007812 sec, and it shows acceleration level of about 0.09205 m/s2 in Figure 4.11(c). 

This increase in amplitude at the dominant quefrency clearly implies that there is a fault 

in the IC engine gearbox. In cepstrum plots, along with dominant quefrency, its 

harmonics are also observed. 
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Figure 4.11 Cepstrum plots of no-load condition (a) Healthy tooth, (b) 50% defect 

tooth, (c) 100% defect tooth 

Load1 and load2 cepstrum plots are also exhibiting same trend in increasing 

acceleration amplitudes with respect to quefrency of the gearbox. Figure 4.12(a) shows 

healthy condition under load1 with quefrency of 0.00070312 sec, and its corresponding 

acceleration level is about 0.0812 m/s2. In case of 50% defect and 100% defect, 

quefrency is 0.00078125 sec and amplitude have increased to 0.08285 m/s2 and 0.09697 

m/s2 respectively.    
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Figure 4.12 Cepstrum plots of load1 condition (a) Healthy tooth, (b) 50% defect tooth,  

(c) 100% defect tooth 

In Figure 4.13(a), (b) and (c) for healthy, 50% defect and 100% defect 

conditions, the quefrency is about 0.00078125 sec and corresponding accelerations are 

0.0643 m/s2, 0.0857 m/s2 and 0.0973 m/s2 respectively. 
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Figure 4.13 Cepstrum plots of load2 condition (a) Healthy tooth, (b) 50% defect tooth,  

(c) 100% defect tooth 

From the above discussion, it is clear that spectrum and cepstrum analysis of 

the gearbox provides information of frequency and quefrency but there is a drawback 

that no information of time period is available in the FFT and cepstrum plots. For further 

detailed understanding other time frequency methods need to be implemented. In next 

sub sections, STFT and wavelet transform methods have been discussed for analyzing 

the gearbox conditions.  

 Short time Fourier transform 

FFT analysis is suitable only for analyzing stationary signals. Since engine 

gearbox vibration signals are non-stationary, analysis of vibration signals is performed 

using STFT. For understanding non-stationary nature of engine gearbox vibration 
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signals, the windowing function with Fourier transform was used. Here, different 

window functions were compared and the better performing one was adopted in the 

analysis. Figure 4.14, 4.15 and 4.16 illustrate the STFT time-frequency plots for no 

load, load1 and load2 with different conditions of the gearbox respectively.  

In Figure 4.14, frequency band of about 1000–1300 Hz was excited by gearbox 

fault. This band indicates 3rd or 4th harmonics of GMF which increased as the fault 

condition increased. Similarly, for load1 and load2 conditions, the excited band 

increased slightly in the band of 1000-1300 Hz when compared to no load condition. 

 

Figure 4.14 STFT plots of no-load condition (a) Healthy tooth, (b) 50% defect tooth,  

(c) 100% defect tooth 

Figure 4.15 depicts time frequency plots for load1 condition and indicates 

increasing level in band of frequency in the range of 1000-1300 Hz. In these time-

0.2 0.4 0.6 0.8

0

480

960

1440

1920

2400

F
re

q
u

e
n

c
y

 (
H

z
)

Time (sec)

0.000

0.2990

0.5980

0.8970

1.196

1.495

0.2 0.4 0.6 0.8

0

480

960

1440

1920

2400

F
re

q
u

e
n

c
y

 (
H

z
)

Time (sec)

0.000

0.3083

0.6167

0.9250

1.233

1.542

1.850

0.2 0.4 0.6 0.8

0

480

960

1440

1920

2400

(c)

(c)

(b)

F
re

q
u

e
n

c
y

 (
H

z
)

Time (sec)

0.000

0.3160

0.6320

0.9480

1.264

1.580

(a)



 

79 

 

frequency plots, excited band is giving information about faults in the gearbox but the 

extent of amplitude variation is unclear under a particular fault condition.  

 

Figure 4.15 STFT plots of load1 condition (a) Healthy tooth, (b) 50% defect tooth,  

(c) 100% defect tooth 

Similarly, Figure 4.16 shows time frequency plots for load2 condition and these 

plots display increasing band of frequency in the range of 1000-1300 Hz. In STFT 

analysis, selecting, the window function is very tedious and to get information about 

time, frequency resolution will be lost and vice versa. To address this problem, wavelet 

analysis is adopted in the next subsection. 
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Figure 4.16 STFT plots of load2 condition (a) Healthy tooth, (b) 50% defect tooth,  

(c) 100% defect tooth 

 Continuous wavelet transforms 

Figure 4.17, 4.18 and 4.19 show the CWT plots of IC engine gearbox under 

different conditions such as healthy, 50% defect and 100% defect with varying load 

conditions respectively. CWT plots for no load, load1 and load2 describe the time-

frequency information very clearly with variation of amplitude as the gear condition 

changes from healthy to 100% defect condition. 
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Figure 4.17 CWT plots of no-load condition (a) Healthy tooth, (b) 50% defect 

tooth, (c) 100% defect tooth 

In Figure 4.17(a) at no load with healthy condition, frequencies are concentrated 

at 800-1500 Hz with acceleration level of 15 m/s2. In Figure 4.17(b) for no load with 

50% defect condition, frequencies are concentrated at 800-1500 Hz with acceleration 

level of 14 m/s2. In Figure 4.17(c), for no load with 100% defect condition, frequencies 

are concentrated at 800-1500 Hz with acceleration level of 14 m/s2. As the loading 

condition changes from load1 to load2, the increase in amplitude for different 

conditions of gearbox shows significant increase in the acceleration level up to 25 m/s2. 

This increase in amplitude of gearbox indicates that faulty gear produces higher impacts 

on the gearbox casing if any abrupt change occurs during running of an engine. 

In Figure 4.18(a) for load1 with healthy condition, the acceleration level is 14 

m/s2 and for load1 with 50% defect and 100% defect, acceleration levels increase up to 

15 m/s2 and 25 m/s2 respectively. This vibration impacts can be clearly observed in 

Figure 4.18(c).  
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Figure 4.18 CWT plots of load1 condition (a) Healthy tooth, (b) 50% defect 

tooth, (c) 100% defect tooth 

Similar trend can be seen in load2 condition in Figure 4.19 (a), (b) and (c) for 

healthy, 50% defect and 100% defect conditions respectively. In Figure 4.19, the 

acceleration level for healthy condition is 15 m/s2, for 50% defect is 15 m/s2 and for 

100% defect is 25 m/s2 and also harmonics are clearly indicating the time at which these 

higher magnitudes of vibration occur due to gearbox defect conditions. 
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Figure 4.19 CWT plots of load2 condition (a) Healthy tooth, (b) 50% defect tooth,  

(c) 100% defect tooth 

In comparison with different signal processing techniques, wavelet analysis 

provides better information for time-frequency analysis with variation of amplitude. 

Also, CWT plots clearly, indicate harmonics of frequency, as load increases with 

respect to gear faulty conditions in load1 and load2 conditions. To develop an automatic 

fault diagnosis system, ML techniques are essential and details of the ML techniques 

are discussed in next chapter. 

4.5 SUMMARY 

This chapter has illustrated the analysis of vibration signals acquired for healthy 

and different faulty conditions of gearbox elements such as bearing and gear using the 

time domain analysis, spectrum analysis, cepstrum analysis and wavelet transform 

analysis for detecting the faults. It was found that the time domain analysis gives overall 

vibration level but do not provide any fault diagnostic information. Spectrum analysis 
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is the most widely used signal processing technique, but sometimes quite difficult to 

identify the defect frequency and it requires expertise in the domain.  

Cepstrum analysis is a suitable method to identify and distinguish the fault 

quefrencies. Wavelet analysis is three-dimensional representation of a signal which is 

inherently suited to indicate transient events in the signals. Since IC engine gearbox 

generates non-stationary signals and complex signals, fault diagnosis of gearbox can be 

effectively monitored using advanced signal processing technique rather than 

traditional approaches. Machine learning approach is one of the promising tools which 

can be easily applied for fault diagnosis. Chapter 5 presents the techniques used for 

fault diagnosis of the gearbox of an IC engine using machine learning approach for 

online tool condition monitoring. 
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CHAPTER 5 

 FAULT DIAGNOSIS OF IC ENGINE GEARBOX USING 

MACHINE LEARNING TECHNIQUES 

5.1 INTRODUCTION 

Machine learning (ML) is a branch of artificial intelligence related to the 

development of techniques for computers to learn. More specifically, ML is an 

approach for building computer programs by analysing large data sets. Most of the ML 

methods are iterative in nature and require high-speed processors in order to function 

properly. Because of the advances in technology, the application of ML methods for 

solving problems in real time has become more popular. ML methods are widely used 

in a variety of applications, such as image processing, structured data analysis, market 

analysis, medical, automation and fault diagnosis. This chapter explains investigation 

of the vibration signals of a gearbox in an IC engine using ML methods, which are used 

to diagnose faults in the gearbox. 

5.2 MACHINE LEARNING APPROACH 

ML approach comprises of three phases, namely; (i) feature extraction, (ii) 

feature selection, (iii) feature classification. In feature extraction, the significant hidden 

information available in the acquired vibration signals are extracted in the form of 

statistical features, discrete wavelet features and empirical mode decomposition 

features. In the feature selection phase, a subset of the existing features is selected 

without any transformation. In the present study, decision tree algorithm is used as a 

feature selection technique. ML method has two steps in the third phase. Initially, 

classification algorithms are trained with the help of features selected from the training 

data of different fault signals. In the second step, the trained algorithm is evaluated 

using selected features from the test data. The classification phase identifies the class 

of fault. In the current research, classifiers such as support vector machine (SVM), 

random forest tree and K star algorithms are used. 
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The flow chart of ML method followed to diagnose gear faults and bearing 

faults in an IC engine is depicted in Figure 5.1.      
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A significant amount of work has been carried out in the past to determine the 

efficiency of ML methods for fault diagnosis. Many previous studies considered either 

one element or two elements with limited set of fault classes. It is important to verify 

the ability of ML methods in classifying multiple faults in multiple elements of 

mechanical system. Also, it is important to study the influence of number of faults on 

various elements in fault diagnosis. Identifying the number of faults is difficult because 

the sensor signal with one fault or many faults resemble similar. Hence identifying that 

significant feature that distinguishes between signals is critical. Only a few researchers 

have reported the application of ML techniques to analyse gearbox vibration signals in 

order to diagnose the faults. Hence, a detailed investigation is needed in this area. The 

current study discusses diagnosis of gearbox elements such as bearings and gears in a 

four-stroke internal combustion engine.  

The following section explains the steps involved in machine learning 

techniques. ML has three important phases namely; 

➢ Feature extraction- Statistical features, Discrete wavelet features, 

Empirical mode decomposition features 

➢ Feature selection-(Decision tree- J48 algorithm) 

➢ Feature classification- Bearing fault diagnosis, Gear fault diagnosis 

 Feature extraction 

Feature extraction is the process which transforms or projects the original data 

set into a new subspace which has a smaller number of dimensions. This is also called 

dimensionality reduction. It gives useful information about the acquired signals. In this 

study, vibration signals undergo statistical, empirical mode decomposition and discrete 

wavelet transform feature extraction methods. The details of these methods are 

discussed in the following sections.  

 Statistical features 

From the vibration signals, statistical features such as mean, mode, standard 

deviation, skewness, standard error, sample variance, maximum, minimum, range, 
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median, sum and kurtosis were extracted under different conditions of the engine 

gearbox. These are described in brief as follows. 

Maximum:- The maximum is the highest value in the given data set. 

Minimum: - Minimum is the lowest value in the given data set. 

Mode:- The mode is the number that frequently occurs in the set of data. 

Range:- The range is the difference between the uppermost and lowermost value in the 

given information set. 

Median: - Median is the mid-value in the sequence of numbers. 

Sum:- The sum is referring to the summation of all the feature values in the given data 

set. 

Mean: - Mean is the set of the average of all the data points and is given by equation 

(5.1). 

𝑀𝑒𝑎𝑛(𝑥) =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1     (5.1) 

Standard deviation: - Standard deviation (SD) is the proportion of how spread-out 

numbers are in a given data set and is given by equation (5.2).   

𝑆𝐷 = √
∑𝑥2−(∑𝑥)2

𝑛(𝑛−1)
    (5.2) 

Skewness: - Skewness is the asymmetry from the mean of data distribution and is given 

by equation (5.3).   

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
𝑛

𝑛−1
∑(

𝑥𝑖−𝑥

𝑠
)
3

   (5.3) 

Variance: - Sample variance is the square of the standard deviation and can be 

calculated by equation (5.4),  

𝜎2 =
∑𝑥2−(∑𝑥)2

𝑛(𝑛−1)
    (5.4) 
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Standard error:- The standard error refers to the error coming across when a 

measurement of sampling distribution differs from its value and is given by equation 

(5.5). 

 𝑆𝐸 =
𝜎

√𝑛
      (5.5) 

Kurtosis: - Kurtosis is the value used to define the variation of given data around the 

mean and is given by equation (5.6) 

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = {
𝑛(𝑛+1)

(𝑛−1)(𝑛−2)(𝑛−3)
∑(

𝑥𝑖−𝑥

𝑠
)
4

} −
3(𝑛−1)2

(𝑛−2)(𝑛−3)
       (5.6) 

where,  𝑥 - is the sample  

𝑛 - is the number of samples per second 

�̅�- is the mean 

𝜎- is the variance 

𝑠- is the standard deviation 

 Empirical mode decomposition 

EMD is adaptive transform, time-space analysis method suitable for non-

stationary and non-linear signals.  EMD is a method of breaking a time series data into 

components called intrinsic mode functions (IMF). These modes provide insight into 

the signal. IMF have mean value zero and one extreme between zero crossings. EMD 

uses sifting process to decompose signal into IMF. For an initial sequence a mean 𝑛 is 

computed 𝑚 using the upper and lower envelope from a cubic spline interpolated 

between maxima and minima. Arbitrary parameter is used for locality.   

 The effectiveness of EMD depends on the arbitrary point selected. The steps 

followed to obtain the EMD is as follows 

The first component is computed as  

𝑏1 = 𝑋(𝑡) − 𝑛1     (5.7) 

The first IMF contains high frequency oscillations which are marked as noise 

in the initial sequence, are rejected. The procedure followed to extract IMF from its 

initial sequence is called sifting.  
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In the second sifting process 𝑏1 is treated as data and 𝑛11 is the mean of  𝑏1 with 

upper and lower envelopes.  

𝑏11 = 𝑏1 − 𝑛11     (5.8) 

The sifting is repeated 𝑘 times until 𝑏1𝑘 is IMF i.e.,  

𝑏1𝑘 = 𝑏1(𝑘−1) − 𝑛1𝑘      (5.9) 

Then, 𝑏1𝑘 is designated as  

𝑐1 = 𝑏1𝑘, the first IMF from the data. 

This first IMF contains high frequency noise, it is separated from rest of the data  

𝑋(𝑡) − 𝑐1 = 𝑟1     (5.10) 

The procedure is repeated on 𝑟𝑗 which results in set of intrinsic mode functions. 

The number of IMFs derived depends on length of signal (Max Lambert, Andrew 

Engroff, Matt Dyer 2020). Sifting stops when residue 𝑟𝑛 becomes monotonic. The 

components derived from EMD are synthetic and helpful in understanding the structure 

of the input data and facilitates its analysis.  

Energy amplitude 𝐸𝑛𝑖 of the IMF is calculated by equation (3.18) 

𝐸𝑛𝑖 = ∑ |𝑐𝑖(𝑡)|
2𝑚

𝑖=1       (5.11) 

 Here 𝑚 is discrete data length of concerned IMF function  

A vector of energy function which can be used as features is constructed as shown in 

equation (5.12). 

 𝑇 = {𝐸𝑛1 𝐸𝑛2 𝐸𝑛3……𝐸𝑛𝑚}   (5.12) 

  Here 𝑛 is number of IMF`s. Normalizing the feature vector (𝑇) is done to avoid 

dominance of larger attributes over smaller numeric range, since some IMF generated 

might have larger IMF energy. �́� is normalized feature vector which is used as input to 

classifiers as given in equation (5.13) (Vernekar et al. 2017).    

 �́� = {
𝐸𝑛1

𝐸
,
𝐸𝑛2

𝐸
, … . . ,

𝐸𝑛𝑚

𝐸
} = {𝐸1, 𝐸2, … , 𝐸𝑛}  (5.13) 
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 Discrete wavelet transforms features  

The Wavelet transform provides a better representation of the signal by 

considering different time-scales and also different coefficients of wavelet using a small 

wavelet basis function. This small wavelet basis function is a short wave with finite 

energy features. Many applications in the fields of engineering and mathematics, like 

signal denoising, compression, image processing and feature extraction techniques, use 

wavelet transform extensively for getting hidden information. DWT is one such type of 

wavelet transform technique with a fast algorithm based on conjugate quadratic filters. 

Mathematically, DWT is represented by the following equation (5.14).  

The DWT of a signal x(t) is indicated by 

𝑑𝑤𝑡(𝑗, 𝑘) =
1

√2𝑗
∫𝑥(𝑡)𝜓∗ (

𝑡−𝑘2𝑗

2𝑗
)𝑑𝑡   (5.14) 

 Wavelet coefficients are computed using the following expressions (5.15) to (5.18). 

𝜙(𝑡) = √2∑ ℎ(𝑘)𝜙(2𝑡 − 𝑘)𝑘    (5.15) 

𝜓(𝑡) = √2∑ 𝑔(𝑘)𝜙𝑘 (2𝑡 − 𝑘)   (5.16) 

𝑎𝑗,𝑘 = ∑ ℎ(2𝑘 − 𝑚)𝑎𝑗−1,𝑚𝑚     (5.17) 

𝑑𝑗,𝑘 = ∑ 𝑔(2𝑘 − 𝑚)𝑎𝑗−1,𝑚𝑚     (5.18) 

Here, h(k) is a high pass filter and g(k) is a low pass filter. These filters are 

chosen based on the wavelet function ψ(t) and scaling function ϕ(t). The low-frequency 

component  𝑎𝑗,𝑘 is an approximation coefficient derived from the low-frequency filter 

and the high-frequency component 𝑑𝑗,𝑘is a detail coefficient derived from the high-

frequency filter. Figure 5.2 displays the approximation and detail coefficient of DWT.  
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Figure 5.2 Approximations and detail coefficients of DWT 

 

The details of the DWT feature with its feature vector can be found in 

studies(Aralikatti et al. 2020; Vernekar et al. 2015). 

𝑣𝑖
𝑑𝑤𝑡 = {𝑣1

𝑑𝑤𝑡, 𝑣2
𝑑𝑤𝑡, … 𝑣𝑛

𝑑𝑤𝑡}𝑇   (5.19)                                                   

𝑣𝑖
𝑑𝑤𝑡 is the element associated to the different resolutions and can be calculated as 

follows; 

𝑣𝑖
𝑑𝑤𝑡 =

1

𝑛𝑖
∑  Wi,j   

2 ;   i = 1,2, … . 8ni
j=1          (5.20)                                  

where n1=27, n2=26,.…. n8=20, 

𝑣𝑖
𝑑𝑤𝑡   is ith DWT feature vector, 

 ni  is the number of samples in the sub band, 

𝑤𝑖,𝑗 
2  is the sub-band for the jth detailed coefficient. 

𝑣𝑖 provides mean square value of the decomposed signal at various levels  

These extracted DWT(v1-v8) feature vectors with different classes are 

considered as input to the decision tree for choosing important features, to reduce 

computational time. The following section describes the details of the feature selection. 
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 Feature selection 

The feature selection process is different from feature extraction. Here, no new 

features are generated. Given a set of features F = {x1…xn}, feature selection is to find 

a subset of F F that maximizes the learners ability to classify the patterns. In machine 

learning, feature selection is also known as variable selection, attribute selection, or 

variable subset selection. It is a process of selecting a subset of relevant features 

(variables, predictors) for use in model construction. The importance of feature 

selection methods is as follows. 

• This is more important when the number of features are very large. 

• Need not use every feature for creating an algorithm. 

• It can assist the algorithm by feeding only those features that are really 

important. 

The more contributing features will have feature value with minimum variation 

within a class and maximum variation between the classes. The role of feature selection 

methods in machine learning is given as follows. 

➢ It enables the machine learning algorithm to train faster. 

➢ It reduces the complexity of a model and makes it easier to interpret. 

➢ It improves the accuracy of a model if the right subset is chosen. 

➢ It reduces overfitting. 

There are several feature selection techniques available in machine learning; 

among them, the decision tree technique is widely used for feature selection in the area 

of fault diagnosis of mechanical components. 

 Decision tree (DT) or J48 algorithm 

In this investigation, the DT was used for the selection of features. DT is an 

approach used to order information into discrete structures utilizing tree shape 

algorithms. The fundamental motivation behind the DT is to depict the mechanical 

evidence included in the data. This method finds application in engineering, marketing, 

medical and statistical surveying measurements. A typical DT is characterized by the 

J48 decision tree algorithm in the WEKA C4.5 algorithm. It comprises of branches, 
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number of leaves, number of nodes and one root node. The occurrence of feature 

components in a DT signifies the critical information from the related feature available 

in the selection method. An individual branch in a tree signifies a series of nodes from 

the root to the leaf and every node characterizes a feature or attribute. The method of 

construction of the DT and the use of the same for the selection of features are described 

below. 

➢ The group of features is given as input to the WEKA C4.5 algorithm and 

resulting outcome yields a DT. 

➢ In the DT branches, each analytical value of the originated feature node is 

displayed. 

➢ It consists of a leaf node that specifies class names and whatever nodes remain 

associated with the classes are the ones that are actually classified in the tree.  

➢ Beginning from the root node of the tree to the node of the leaf, essential vectors 

of the feature are classified with the use of DT. 

➢ In every single tree, the decision node is the most valuable feature.  

The valuable features distinguished in view of the standards which raise the ideas 

of entropy and information gain decrease are discussed in the following section. 

• “Information gain” and “Entropy reduction” 

Information gain is an anticipated decrease in entropy by apportioning the 

samples given in the attribute. Entropy is the amount of impurity present in a group of 

instances. It will reduce uncertainty by adding information. This information gain 

associates the entropies of the original classification and the classification after 

information inclusion. This gain (𝑆, 𝐴)  of an attribute ‘𝐴’ to a group of instances ‘𝑆’ 

can be calculated using equation (5.21)  

𝐺𝑎𝑖𝑛(𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − ∑
|𝑆𝑣|

|𝑆|
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣)𝑣∈𝑉𝑎𝑙𝑢𝑒(𝐴)         (5.21) 

In the equation (5.21), ‘𝐴’ has value ‘𝑣’, ‘𝑆𝑣’ is the subset of ‘𝑆’ for the feature 

(𝐴) and value (𝐴) is the arrangement of all possible values for ‘𝐴’ attribute. 
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The first part of the equation ‘𝑆’ denotes the original group entropy and the 

second part is predictable entropy value of the set after ‘𝑆’ is divided by the feature ‘𝐴’ 

of the attribute. The predicted entropy portrayed continuously by the next part is 

immediate of the entropies of every subset. ‘𝑆𝑣’ weighted by part of the tests |𝑆𝑣|/|𝑆| 

that have a place with ‘𝑆𝑣 ' Gain (𝑆, 𝐴)  in this manner the normal decrease in entropy 

is caused by the significant estimation of a feature ‘𝐴’. Entropy is given by equation 

(5.22). 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = ∑ −𝑃𝑖 log2 𝑃𝑖
𝑐
𝑖−1    (5.22) 

In equation (5.22), ‘𝑐’ is the number of classes. ‘𝑃𝑖’ is the extent of ‘𝑆’ having 

a place with class ‘𝑖.’ 

 Feature classification 

A classifier is an algorithm that is used to assign class labels to data points. Classifiers 

are more than just sorting unlabeled data into discrete classes. Classifiers have dynamic 

rules which can handle vogue and unknown values. Most classifiers use probability 

estimates to manipulate data classification. Each classifier is evaluated using a 10-fold 

cross-validation method. It is a method widely used for achieving high generalization 

accuracy.   

The following steps are followed by a classifier: 

• The dataset is divided into two parts: training data set and test data set 

• Fit the classifier to the training data set (pre-processed dataset) 

• Predict the test result  

• Validate with 10-fold cross-validation  

In the present study, classification is performed using following classifiers viz;  

➢ Support vector machine 

➢ K star 

➢ Random Forest  

The details of each classifier algorithm are described briefly in the following 

subsection. 
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 Support vector machine 

SVM is one of the classifiers which comes under supervised learning 

approaches used in machine learning systems in the field of regression and 

classification. It is an arrangement of interrelated controlled learning strategies that 

provide information and recognize designs. The SVM technique was first proposed by 

Vapnik and its cutting-edge manifestation was proposed by Coretes and Vapnik (Cortes 

and Vapnik 1995). The basic SVM manages the study of binary classification. Figure 

5.3 shows the standard SVM classifier, where two different training data points 

(visually represented as squares and stars), are linearly classified. SVM performs the 

classification process by separating the training data set into two classes (namely 

positive classes as squares and negative classes as stars) in such a way that margin is 

maximized, so that generalization error is minimized. The nearest data points on which 

margin are defined is referred to as support vectors (Bansal et al. 2013). These points 

play an important role in the process of creating a hyper plane. 

In the training data set, {(𝑥𝑖, 𝑦𝑖)}; 𝑖 = 1 𝑡𝑜 𝐿, 𝑋𝑖 ∈  𝑅
𝑛, 𝑦𝑖 ∈ (1,−1) where ‘xi’ 

is the input vector and ‘yi’ is the indicator vector, ‘L’ specifies total number of data 

points in the set. In the equation (5.23) and (5.24), ‘w’ is the weight vector, ‘ξ’ is the 

slack variable, ‘b’ is the bias and c > 0 is the regularization constraint. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  
1

2
‖𝑤‖2 + 𝑐 ∑ 𝜉𝑖

𝐿
𝑖=1    (5.23) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {
𝑦𝑖(𝑤

𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖
𝜉𝑖 ≥ 0;          𝑖 = 1 𝑡𝑜 𝐿

   (5.24) 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 (𝑤𝑇𝑥 − 𝛾)    (5.25) 
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Figure 5.3 Classification of positive and negative classes using SVM 

Where, ‘w’ and ‘γ’ are decision functions found from the equation (5.25). 

Decision functions will predict the new set of features of their class after completion of 

training. If f(x) value is positive, then a new set of features will be under a healthy class 

of bearing condition or else it will be in a faulty class of bearing condition. There are 

two types of SVM which have been developed, namely v-SVC and c-SVC which are 

used in the fault diagnosis of rotating machines (Bordoloi and Tiwari 2014b). 

 K star 

K star is an instance-based classifier with entropy as a distance measure. It is 

consistent in handling real-valued attributes along with symbolic attributes. Summing 

transformations of all possible paths as a distance measure forms a unified approach for 

classification. The instance-based approach classifies an instance by comparing it with 

a pre-classified instance. A similar instance being classified is assumed to have a similar 

classification. The domain-specific distance function delivers quantitative similarity 

between instances to yield a final classification, then the instance is moved to a 

classification database. The algorithm used for category prediction and classification is 

detailed in this section.  
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Consider a set of instances I, such that transformations performed on set I yields 

T. Every instance in T maps to one another. Distinguished member σ belonging to T 

maps instances to themselves.  Let P be set of prefix codes terminated by σ to form T*. 

Members of T* define a transformation on I: 

𝑡̅(𝑎) = 𝑡𝑛(𝑡𝑛−1(… . 𝑡1(𝑎)… )) 𝑤ℎ𝑒𝑟𝑒 𝑡̅ = 𝑡1, … 𝑡𝑛   (5.26) 

A probability function p is defined on T* which satisfies the following properties: 

0 ≤
𝑝(�̅�𝑢)

𝑝(�̅�)
≤ 1     (5.27) 

∑ 𝑝(𝑡𝑢) = 𝑝(𝑡)𝑢     (5.28) 

𝑝(Λ) = 1     (5.29) 

Hence,  

∑ 𝑝(𝑡̅) = 1�̅�∈𝑃     (5.30) 

A probability function P* is defined between say, instance a to b for all paths 

between the limits: 

𝑃∗(𝑏|𝑎) = ∑ 𝑝(𝑡)�̅�∈𝑃:�̅�(𝑎)=𝑏     (5.31) 

K* function is defined as  

𝐾∗(𝑏|𝑎) = −𝑙𝑜𝑔2𝑃
∗(𝑏|𝑎)    (5.32) 

Here K* is obtained in terms of units of complexity by applying logarithm on 

P*. K* is non-zero and non-symmetric function. 

The probability of an instance ‘a’ belonging to category ‘C’ is calculated by 

adding the probabilities of all the instances belonging to ‘C’.  

𝑃∗(𝐶|𝑎) = ∑ 𝑃∗(𝑏|𝑎)𝑏∈𝐶     (5.33) 

The probability of classifying an instance for each category is calculated. The 

relative probabilities give an estimation of category distribution with instance space 

represented by a.  The category with the highest probability of classification of the new 
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instance is chosen for classification or by obtaining a normalized probability 

distribution for classification. 

 Random forest 

Random forest (RF) is an ensemble supervised learning method. It can be used 

for both classification and regression (Liaw and Wiener 2002). Since it is an ensemble 

learning method, it takes the average of the predictions of each decision tree to achieve 

the final prediction output. In random forest, variables are given more importance due 

to their interaction with other variables. The variable’s importance is estimated by 

observing prediction errors increase with out-of-bag (OOB) data for that variable while 

all other variables are left unaltered. RF is classified by two methods, namely, variable 

importance method and by proximity measure. In the variable importance method, the 

classification is done based on the interaction between instances by obtaining predicted 

error in relation to OOB computed. Classification using proximity measure is done by 

computing fractions of trees that fall into same node of similar observation using a 

proximity matrix. The variable importance method can also be used for model 

reduction.  

The algorithm steps: 

1. Draw ntree bootstrap samples from the original data 

2. Grow an unpruned classification for each bootstrap sample by randomly 

sampling mtry of predictors at each node and choose the best split among those 

variables 

3. Predict new data by aggregating the predictions 

Obtain error rate based on training data: 

1. Predict the data at each bootstrap iteration (calling them out-of-bag) 

2. Aggregate the OOB predictions and calculate the error rate 

The necessary calculations are carried out tree by tree to form the forest. A lot 

of trees are required for stable estimates of variable importance. For classification 



 

100 

 

problems with unbalanced class frequency, it is necessary to change the prediction 

rules(Breiman 2001; Pal 2005). 

   RF is a type of classifier consisting of an arrangement of trees sorted out into 

classifiers {h(x, 𝝫k), k = 1,…} where { 𝝫k } are free, indistinguishably dispersed random 

vectors and in each tree settles on a unit decision for the most prominent class for 

considering input x. RF combines the classifiers h1(x), h2(x),….hk(x)and gives a 

training set which is drawn extensively from the distribution of the random vectors 𝑋, 𝑌. 

The margin function is given by  

   𝑚𝑔(𝑋, 𝑌) = 𝑎𝑣𝑘𝐼(ℎ𝑘(𝑋) = 𝑌) − 𝑚𝑎𝑥𝑗≠𝑌 𝑎 𝑣𝑘𝐼(ℎ𝑘(𝑋) = 𝑗)  (5.34) 

   The margin estimates the degree to which number of votes at 𝑋, 𝑌 for the correct 

class surpasses the normal vote in favor of some other class. In equation (5.34), ‘𝐼’ is 

the indicator function.  A higher value of the margin indicates more trust in the 

grouping. The simplification error is given by equation (5.35). 

      𝑃𝐸∗ = 𝑃𝑋,𝑌(𝑚𝑔(𝑋, 𝑌) < 0)    (5.35) 

The following section provides a detailed analysis and discussion on fault 

diagnosis of the IC engine gearbox using ML techniques. 
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5.3 FAULT DIAGNOSIS OF BEARING IN FOUR STROKE IC ENGINE  

ML techniques are used to analyse the acquired acceleration signals and 

diagnose the bearing conditions. The current study focuses on feature extraction via 

statistical, EMD and DWT techniques. Following that, features are selected using the 

decision tree method and classification is performed using artificial intelligence 

techniques such as SVM, RF algorithms and K star models. Each step is explained 

through the experimental results, which are discussed in detail in the following 

subsections. 

 Fault diagnosis using statistical features 

The information obtained from the acquired time domain data are called time-

domain features. Descriptive statistical tool employed for computing time domain 

features. Statistical features such as mean, mode, standard deviation, skewness, 

minimum, maximum, range, standard error, variance, kurtosis and sum were extracted 

under healthy and faulty conditions of the bearing. Features tabulated in Table 5.1 are 

extracted from the time domain vibration signal, only 2 sample of each condition 

chosen for depiction. Features are used as inputs to classifier after selecting significant 

ones. 
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Table 5.1 Statistical feature extracted from bearing vibration signals 

Sample  

number Mean 

Standard  

error Median Mode 

Standard  

deviation 

Sample 

 variance Kurtosis Skewness Range Minimum Maximum Sum CLASS 

1 0.0008 0.0046 -0.0100 -0.754 0.736 0.542 3.080 0.049 10.53 -4.99 5.53 21.71 Healthy 

2 0.0005 0.0047 -0.0021 -0.118 0.749 0.561 2.568 0.011 10.25 -5.08 5.17 13.30 Healthy 

1 0.0103 0.0057 0.0052 -0.325 0.918 0.843 4.286 0.079 13.64 -6.40 7.24 264.12 IR fault 

2 0.0093 0.0059 0.0111 -0.045 0.944 0.892 3.853 0.099 15.67 -7.28 8.39 239.02 IR fault 

1 0.0077 0.0072 0.0130 -1.060 1.146 1.312 3.921 0.021 18.77 -9.96 8.80 196.57 OR fault 

2 0.0072 0.0074 0.0092 0.236 1.179 1.389 5.104 0.109 22.23 -10.74 11.48 183.69 OR fault 

1 0.0065 0.0067 0.0027 -0.075 1.076 1.158 30.699 -0.541 25.61 -13.17 12.44 167.68 IR & OR Fault 

2 0.0059 0.0068 0.0025 0.240 1.083 1.174 31.164 -0.505 25.76 -13.20 12.56 151.49 IR & OR Fault 
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Figure 5.4 Decision tree of statistical feature of bearing data set in four stroke IC engine gearbox 
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 Feature selection using decision tree 

All extracted descriptive statistical features are used as an input to the decision 

tree and J48 algorithm constructs the decision tree with only significant features from 

set of extracted features. A data set of 360-samples are fed as input to the feature 

selection algorithm and corresponding output decision tree is shown in Figure 5.4. 

Classes are denoted by rectangular blocks (condition of the bearing) in obtained 

decision tree. Inside the parenthesis, two numbers are separated by a slash in rectangular 

blocks. The first number (in case of two numbers) or single number represents the 

number of data points (samples) that support in decision-making. The abbreviation used 

in decision tree are: b1=Healthy bearing with no load, b2=Healthy bearing with T1 

torque, b3=Healthy bearing with T2 torque, b4=Spall at inner race with no load, b5= 

Spall at inner race with T1 torque, b6= Spall at inner race with T2 torque, b7= Spall at 

outer race with no load, b8=Spall at outer race with T1 torque, b9= Spall at outer race 

with T2 torque, b10=Spall on both inner race and outer race with no load, b11= Spall 

on both inner race and outer race with T1 torque, b12= Spall on both inner race and 

outer race with T2 torque. The features are indicated by F1-mean, F2-standard error, 

F3-median, F4-mode, F5-standard deviation, F6-sample variance, F7-kurtosis, F8-

skewness, F9-range, F10-minimum, F11-maximum, F12-sum. 

As observed from Figure 5.4, the tree structure of different classes has been 

formed in such a way that when F2 is greater than 0.024254 and F10 greater than -

14.471017 value it is classified as healthy condition, whereas, when the F7 is greater 

than 0.024254 and F10 less than/equal to -14.471017 value it is classified as spall at 

outer race with no load condition and so on. The bearing conditions (healthy, spall at 

IR, spall at OR, Spall at both inner race and outer race) are represented as leaves in the 

tree. Among 12 features, except F4, F5, F6and F12 all other 8 features are selected by 

decision tree as most significant features. These selected features are treated as input to 

the classifiers such as SVM, random forestand K-star algorithms.   

 Feature classification 

The objective of this investigation is to classify bearing conditions as healthy or 

faulty by using K star, RFand SVM. These classifiers are used most commonly in fault 

diagnosis of mechanical components. Ten-fold cross validation method is used for 
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dividing data into training and testing the diagnosis model. This method divides data 

into ‘k’ equal parts every time and one set are used as testing samples and remaining 

‘k-1’ is used as training samples. This is repeated for 10 times and average classification 

accuracy is obtained for the model. Classifier results are presented for bearing diagnosis 

in following subsection.  

▪ K star algorithm 

The selected statistical features of vibration signals are given as input to the K 

star algorithm. The identified classification of the bearing conditions is presented in the 

Table 5.2. 

Table 5.2 Confusion matrix of K star algorithm for bearing data set 

a b c d e f g h i j k l class 

28 0 0 0 0 0 1 1 0 0 0 0 a= b1 

0 30 0 0 0 0 0 0 0 0 0 0 b=b2 

0 0 30 0 0 0 0 0 0 0 0 0 c=b3 

0 0 0 24 1 0 0 0 1 3 1 0 d=b4 

0 0 0 0 18 10 0 1 0 1 0 0 e=b5 

0 0 0 0 10 13 0 0 3 0 1 3 f=b6 

2 0 0 0 0 0 28 0 0 0 0 0 g=b7 

1 0 0 0 2 0 0 20 4 0 2 1 h=b8 

0 0 0 0 0 2 0 1 26 0 1 0 i=b9 

0 0 0 1 2 3 0 0 0 20 2 2 j=b10 

0 0 0 0 0 2 0 4 2 1 20 1 k=b11 

0 0 0 0 0 2 0 3 0 0 0 25 l=b12 

 

Table 5.2 illustrates the confusion matrix with K star algorithm as the classifier. 

Here, seventy-eight instances were misclassified and K star algorithm provided the 

classification accuracy of about 78.33% for the given vibration signals. 

▪ RF algorithm 

Eight statistical features of vibration signals are given as input to the random 

forest algorithm. The identified classification of the bearing conditions is presented in 

Table 5.3. 

It shows the confusion matrix with random forest algorithm as the classifier. 

Here, sixty-four instances were misclassified and random forest algorithm provided the 

classification accuracy of about 82.22% for the given vibration signals. 
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Table 5.3 Confusion matrix of random forest algorithm for bearing data set 

a b c d e f g h i j k l class 

29 0 0 0 0 0 1 0 0 0 0 0 a= b1 

0 30 0 0 0 0 0 0 0 0 0 0 b=b2 

0 0 30 0 0 0 0 0 0 0 0 0 c=b3 

0 0 0 27 0 0 0 0 1 1 1 0 d=b4 

0 0 0 0 18 7 0 0 3 1 0 1 e=b5 

0 0 0 0 10 15 0 0 2 0 1 2 f=b6 

2 0 0 0 0 0 28 0 0 0 0 0 g=b7 

0 0 0 0 2 0 0 21 3 0 3 1 h=b8 

0 0 0 1 1 0 0 2 24 0 2 0 i=b9 

1 0 0 1 0 0 0 0 0 25 1 2 j=b10 

0 0 0 1 0 3 0 2 0 0 23 1 k=b11 

0 1 0 0 0 2 0 1 0 0 0 26 l=b12 

 

▪ SVM algorithm 

The confusion matrix of the SVM model for statistical features of vibration 

signals are presented in Table 5.4. Based on the confusion matrix, 141 instances out of 

360 instances were misclassified with classification accuracy of 60.83%. As the 

classification efficiency is considerably less as compared to random forest and K star 

algorithms, SVM with statistical features is not suitable for bearing fault diagnosis.  

Table 5.4 Confusion matrix of SVM algorithm for bearing data set 

a b c d e f g h i j k l class 

30 0 0 0 0 0 0 0 0 0 0 0 a= b1 

0 30 0 0 0 0 0 0 0 0 0 0 b=b2 

0 0 30 0 0 0 0 0 0 0 0 0 c=b3 

0 0 0 26 2 0 0 0 1 0 1 0 d=b4 

0 0 0 0 25 0 0 0 1 4 0 0 e=b5 

0 0 0 1 22 0 1 0 0 4 0 2 f=b6 

11 0 0 0 0 0 19 0 0 0 0 0 g=b7 

7 0 0 0 10 0 0 1 3 0 0 9 h=b8 

0 0 0 0 4 0 0 0 26 0 0 0 i=b9 

1 0 0 1 7 2 0 0 0 17 1 1 j=b10 

1 0 0 1 9 0 0 1 17 0 0 1 k=b11 

1 0 0 0 2 8 1 1 0 0 2 15 l=b12 
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▪ Summary 

The statistical features from the acquired vibration signals were extracted and 

the contributing features for classification were selected using decision tree (J48 

algorithm) technique. The effectiveness of a selected set of features in identification of 

fault was presented. Table 5.5 summarizes the classification efficiencies of various 

classifiers with statistical features. The random forest algorithm has provided a highest 

classification efficiency of about 82.22% with statistical features as compared to the 

performances of other classifiers as shown in Table 5.5. 

Table 5.5 Classification accuracy achieved with statistical feature for different 

classifiers for bearing data set 

Classifier SVM Random 

forest 

K star 

Classification 

accuracy (%) 
60.83 82.22 78.33 

 Fault diagnosis using EMD features 

EMD decomposes the acquired vibration signals into IMFs as features for each 

class of the bearing condition. The first 8 IMFs contains mainly the dominant fault 

information, which is used to construct the amplitude energy feature vector to verify 

the performance of the proposed model. Feature energy vector T' were attained using 

equation 5.13 and served as an input vector to decision tree (J48 algorithm). Table 5.6 

presents evaluated energy feature vector (two samples per each class) using EMD 

method. 
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Table 5.6 EMD feature extracted from bearing vibration signals 

Sample 

No. 

Class E1 E2 E3 E4 E5 E6 E7 E8 

1 Healthy 0.252 0.355 0.305 0.295 0.102 0.051 0.55 0.55 

1 Healthy 0.400 0.573 0.486 0.361 0.148 0.083 0.238 0.238 

2 IR fault 0.420 0.61 0.341 0.452 0.164 0.058 0.223 0.223 

2 IR fault 0.526 0.606 0.277 0.447 0.231 0.118 0.074 0.074 

3 OR fault 0.548 0.68 0.262 0.383 0.086 0.054 0.073 0.073 

3 OR fault 0.599 0.715 0.249 0.221 0.096 0.044 0.057 0.057 

4 IR & OR 

Fault 0.846 0.498 0.150 0.091 0.043 0.021 0.027 0.027 

4 IR & OR 

Fault 0.554 0.765 0.258 0.176 0.077 0.033 0.032 0.032 

 Feature selection by decision tree algorithm 

Each EMD feature represents a signal characteristic while, some features 

provide more information than others. Thus, all EMD features are fed into the decision 

tree (J48 algorithm) for feature selection. The decision tree for EMD features of 

vibration signals is shown in Figure 5.5. It has formed a tree like structure such that 

when E6 is greater than 0.0945, E2 is less than/equal to 0.62, then it classified as healthy 

bearing with T2 condition. Also, if E6 lies in between 0.0945 and 0.0462, then it is 

classified as healthy bearing with no load condition and so on.  

The decision tree for EMD features is depicted in Figure 5.5 and it recognised 

E1, E2, E3, E4, E5, E6 and E7 as significant features. The classification will be carried 

out using these selected features.
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Figure 5.5 Decision tree of EMD feature of bearing data set in four stroke IC engine gearbox 
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 Feature classification 

The EMD features of vibration signals are analysed using classifiers namely 

SVM, random forest and K star models. The classifiers use significant features such as 

E1, E2, E3, E4, E5, E6 and E7 from all bearing conditions. The classifier test mode is 

10-fold cross validated with training and testing data. The following table summarizes 

the results of each classification model in the form of a confusion matrix. 

▪ RF algorithm 

The confusion matrix for ball bearing vibration signals is shown in Table 5.7. 

A data set of 360 samples contains 30 samples of each class of the bearing. From Table 

5.7, out of 360 instances, 85 instances were misclassified by random forest algorithm 

with classification accuracy about 76.38% for the given vibration signals. 

Table 5.7 Confusion matrix of random forest algorithm for EMD features of bearing 

a b c d e f g h i j k l class 

26 3 1 0 0 0 0 0 0 0 0 0 a= b1 

3 26 1 0 0 0 0 0 0 0 0 0 b=b2 

0 2 28 0 0 0 0 0 0 0 0 0 c=b3 

0 0 0 27 1 1 1 0 0 0 0 0 d=b4 

0 0 0 0 17 13 0 0 0 0 0 0 e=b5 

0 0 0 2 8 16 0 0 0 0 0 4 f=b6 

1 0 0 0 0 0 24 5 0 0 0 0 g=b7 

0 0 0 1 0 0 10 12 7 0 0 0 h=b8 

0 0 0 0 0 0 0 3 25 2 0 0 i=b9 

0 0 1 1 0 0 0 1 1 25 1 0 j=b10 

0 0 0 0 0 1 0 0 1 2 23 3 k=b11 

0 0 0 0 1 1 0 0 0 0 2 26 l=b12 

▪ SVM algorithm 

The seven selected EMD features of vibration signals are given as an input to 

the SVM model. The outcome of the classifier is confusion matrix shown in Table 5.8. 

From the confusion matrix of SVM classifier with EMD features, it is found that 98 

instances were misclassified and the classification efficiency is about 72.77%. SVM 

has a moderate classification accuracy for fault diagnosis, but is less efficient than the 

random forest algorithm. As a result, SVM models with EMD features are not 

recommended. 
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Table 5.8 Confusion matrix of SVM algorithm for EMD features of bearing 

a b c d e f g h i j k l class 

24 4 2 0 0 0 0 0 0 0 0 0 a= b1 

3 26 1 0 0 0 0 0 0 0 0 0 b=b2 

2 1 27 0 0 0 0 0 0 0 0 0 c=b3 

0 0 0 29 1 0 0 0 0 0 0 0 d=b4 

0 0 0 0 14 16 0 0 0 0 0 0 e=b5 

0 0 0 2 8 16 0 0 0 0 0 4 f=b6 

0 0 3 0 0 0 22 5 0 0 0 0 g=b7 

0 0 1 0 0 0 16 3 10 0 0 0 h=b8 

0 0 0 0 0 0 1 0 26 3 0 0 i=b9 

0 0 1 0 0 0 0 0 1 26 2 0 j=b10 

0 0 0 0 0 1 0 0 1 4 21 3 k=b11 

0 0 0 0 1 0 0 0 0 0 1 28 l=b12 

 

▪ K star algorithm 

The outcome of the K star is presented in the form of confusion matrix as shown 

in the Table 5.9. 

Table 5.9 Confusion matrix of K star algorithm for EMD features of bearing 

a b c d e f g h i j k l class 

26 3 0 0 0 0 1 0 0 0 0 0 a= b1 

4 26 0 0 0 0 0 0 0 0 0 0 b=b2 

1 1 26 0 0 1 1 0 0 0 0 0 c=b3 

0 0 0 27 0 2 0 0 0 0 1 0 d=b4 

0 0 0 0 10 20 0 0 0 0 0 0 e=b5 

0 0 0 1 10 15 0 0 0 0 0 4 f=b6 

0 0 0 0 0 0 20 10 0 0 0 0 g=b7 

0 0 0 0 0 0 9 14 6 1 0 0 h=b8 

0 0 0 0 0 0 0 3 26 1 0 0 i=b9 

0 0 1 1 0 0 0 1 1 23 3 0 j=b10 

0 0 0 0 0 1 0 0 1 2 19 7 k=b11 

0 0 0 0 1 2 0 0 0 0 6 21 l=b12 

From the confusion matrix, 107 instances were misclassified out of 360 

instances. The overall classification efficiency was found to be 70.27%, which is lesser 

than random forest and SVM classifiers. Hence, the K-star model with EMD features 

for fault diagnosis of the bearing was not considered. 
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▪ Summary 

The EMD features were extracted from the acquired vibration signals and a 

decision tree was used to select the important features. The effectiveness of a selected 

set of features in the classification of faults was illustrated. Table 5.10 summarizes the 

classification efficiencies of various classifiers with EMD features.  

Table 5.10 Classification accuracy achieved with EMD feature for different classifiers 

for bearing data set 

Classifier SVM Random 

forest 

K star 

Classification 

accuracy (%) 
72.77 76.38 70.27 

In comparison to the performance of other classifiers, the random forest 

algorithm achieved a maximum classification efficiency of 76.38% when using EMD 

features. 

 Fault diagnosis using DWT features 

The vibration signals were analysed using the discrete wavelet transform 

method. It divides the input signal into two elements: high-frequency elements and low-

frequency elements. The low-frequency elements are further discretized. The DWT 

technique treats the high-frequency element at each discretisation step as a feature. 

From the acquired vibration signals, eight discrete wavelet features (v1, v2… v8) were 

extracted for each class of the ball bearing. Table 5.11 illustrates the discrete wavelet 

features obtained using the DWT; out of 30 samples, only two samples corresponding 

to each bearing condition are shown. These features were used as inputs to the decision 

tree, to select the most significant features which give the highest classification 

accuracy.  
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Table 5.11 DWT feature extracted from bearing vibration signals 

Sample 

No. 

Class v1 v2 v3 v4 v5 v6 v7 v8 

1 Healthy 13.1 94.7 6.12 23 10.2 28.6 93.9 143 

1 Healthy 11.6 81.4 5.09 19.2 17.9 52.2 215 367 

2 IR fault 1.98 3.98 4.5 4.94 8.78 48.9 230 521 

2 IR fault 2.46 5.65 7.48 7.73 14.4 74.2 288 458 

3 OR fault 76.6 2.82 6.36 8.89 9.05 49 179 233 

3 OR fault 78.7 2.89 6.59 8.29 9.39 42.9 191 267 

4 IR & OR 

Fault 2.88 12.9 24.2 8.95 11.1 49.1 223 491 

4 IR & OR 

Fault 2.32 9.75 17.8 8.13 9.62 42.7 199 426 

 Feature selection by decision tree 

For feature selection, the decision tree technique (J48 algorithm) was used. All 

the extracted wavelet features from twelve classes were fed into the algorithm, which 

formed the decision tree as shown in Figure 5.6. In Figure 5.6., v4 feature is a root node 

of the tree, based on which the tree structure is formed. When v4 value is greater than 

29.5 and v5 is greater than 23.2 it is classified as healthy bearing condition at no load. 

When the v4 value is greater than 29.5 and v5 is less than or equal to 23.2, it is classified 

as healthy with T1 bearing condition and so on. Eight features such as v1, v2, v3, v4, 

v5, v6, v7 and v8 were selected out of eight wavelet features from the decision tree. 

The detailed accuracy of classification is discussed in the following section. 
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Figure 5.6 Decision tree of DWT feature of bearing data set in four stroke IC engine gearbox 
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 Classification 

The selected wavelet features were treated as an input and fed to the classifiers 

such as SVM, random forest and K-star models. The results obtained from the models 

were analysed and discussed below.  

▪ K star algorithm 

  The selected wavelet features, such as v1, v2, v3, v4, v5, v6, v7 and v8, were 

used as inputs to the K star algorithm. The confusion matrix is depicted in Table 5.12. 

It shows the outcome of the K star algorithm for DWT features of vibration signals.  

Table 5.12 Confusion matrix of K star algorithm for DWT features of bearing 

a b c d e f g h i j k l class 

30 0 0 0 0 0 0 0 0 0 0 0 a= b1 

0 30 0 0 0 0 0 0 0 0 0 0 b=b2 

0 0 30 0 0 0 0 0 0 0 0 0 c=b3 

0 0 0 28 0 1 0 0 0 1 0 0 d=b4 

0 0 0 1 17 12 0 0 0 0 0 0 e=b5 

0 0 0 0 7 21 0 2 0 0 0 0 f=b6 

0 0 0 0 0 0 29 1 0 0 0 0 g=b7 

0 0 0 0 0 0 0 29 1 0 0 0 h=b8 

0 0 0 0 0 0 0 0 30 0 0 0 i=b9 

0 0 0 1 0 0 0 0 0 29 0 0 j=b10 

0 0 0 0 0 0 0 0 0 0 29 1 k=b11 

0 0 0 0 0 0 1 0 0 0 0 29 l=b12 

From the confusion matrix, only 29 instances were misclassified out of 360 

instances. The overall classification efficiency is found to be 91.94%, which shows 

better performance of K star classifier. Hence, the K-star model with DWT features can 

be considered for fault diagnosis of the bearing. 

▪ RF algorithm 

  The selected wavelet features such as v1-v8 were treated as an input to the 

random forest algorithm. The confusion matrix obtained by the random forest for DWT 

features of vibration signals is shown in Table 5.13.  

From the confusion matrix, only 41 instances were misclassified out of 360 

instances. The overall classification efficiency was found to be 88.61% and which can 

be accepted for fault diagnosis, but it is lesser than the classification efficiency 
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(91.44%) of the K star classifier. Thus, the combination of random forest algorithm and 

DWT features for fault diagnosis of the bearing is not preferable. 

Table 5.13 Confusion matrix of random forest algorithm for DWT features of bearing 

a b c d e f g h i j k l class 

30 0 0 0 0 0 0 0 0 0 0 0 a= b1 

0 30 0 0 0 0 0 0 0 0 0 0 b=b2 

0 0 30 0 0 0 0 0 0 0 0 0 c=b3 

0 0 0 28 2 0 0 0 0 0 0 0 d=b4 

0 0 0 1 16 13 0 0 0 0 0 0 e=b5 

0 0 0 0 10 18 0 1 0 0 0 1 f=b6 

0 0 0 0 0 0 30 0 0 0 0 0 g=b7 

0 0 0 0 0 0 1 25 4 0 0 0 h=b8 

0 0 0 0 0 0 0 1 29 0 0 0 i=b9 

0 0 0 0 0 0 0 1 1 26 2 0 j=b10 

0 0 0 0 0 0 0 0 0 0 29 1 k=b11 

0 0 0 0 0 1 0 1 0 0 0 28 l=b12 

▪ SVM algorithm 

  The SVM classifier is used to classify the different conditions of the bearing 

using selected (v1-v8) DWT features of vibration signals. The confusion matrix is the 

outcome of the SVM representing the classification as shown in Table 5.14.  

Table 5.14 Confusion matrix of SVM algorithm for DWT features of bearing 

a b c d e f g h i j k l class 

30 0 0 0 0 0 0 0 0 0 0 0 a= b1 

0 30 0 0 0 0 0 0 0 0 0 0 b=b2 

0 0 30 0 0 0 0 0 0 0 0 0 c=b3 

0 0 0 29 1 0 0 0 0 0 0 0 d=b4 

0 0 0 2 28 0 0 0 0 0 0 0 e=b5 

0 0 0 0 27 0 2 1 0 0 0 0 f=b6 

0 0 0 0 0 0 30 0 0 0 0 0 g=b7 

0 0 0 0 7 0 2 17 4 0 0 0 h=b8 

0 0 0 11 2 0 0 0 17 0 0 0 i=b9 

0 0 0 8 5 0 0 0 9 8 0 0 j=b10 

0 0 0 19 7 0 0 0 2 1 0 1 k=b11 

0 0 0 0 0 0 1 0 0 4 7 18 l=b12 

  From the confusion matrix, 123 instances out of 360 instances were 

misclassified and the classification efficiency was found to be 65.83%. As the 

classification efficiency is considerably low when compared to K star algorithm, SVM 

with DWT features for fault diagnosis of bearing is not preferable. 
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▪ Summary 

The DWT features were extracted from the acquired vibration signals and 

feature selection was performed using decision tree technique. The performances of the 

selected feature set in classification of faults were discussed. The summary of 

classification accuracies of different classifiers with DWT features is shown in Table 

5.15. 

Table 5.15 Classification accuracy achieved with DWT feature for different classifiers 

for bearing data set 

Classifier SVM Random 

forest 

K star 

Classification 

accuracy (%) 
65.83 88.61 91.94 

Table 5.15 shows that the K star algorithm provides a maximum classification 

efficiency of about 91.94% with DWT features as compared to the performances of 

other classifiers. 

 Overall conclusion from bearing vibration signal analysis based on machine 

learning approach 

The performance of classifiers and various feature extraction methods used in 

the study of bearing fault diagnosis using vibration signals is summarized in Table 5.16. 

Based on comparison of performance, the K star model achieved a maximum 

classification accuracy of approximately 91.94% when used with DWT features. The 

combination of K star with DWT outperforms all other classifiers using any of the 

feature extraction techniques listed in the Table 5.16. Also, a combination of random 

forest model and the DWT feature technique resulted in a classification accuracy of 

88.61%, which is nearer to highest classification accuracy of 91.94 % (obtained by the 

K star model with the DWT features). However, the performance of the random forest 

model with DWT features (88.61 percent classification accuracy) can be considered for 

fault diagnosis, but this combination requires more computational time than the K star 

model with DWT features. Thus, the K star technique can be recommended for fault 

diagnosis of bearing vibration signals when combined with the DWT features method.  
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Table 5.16 Comparison of classification accuracy for various feature extraction and 

classifiers 

Feature 

type 

Selection 

of 

feature  

Classification 

algorithm 

Instances 

classified 

correctly  

Misclassified 

instances 

Accuracy of 

classification 

(%) 

Statistical Decision 

tree 

K star 282 78 78.33 

Random 

forest 

296 64 82.22 

SVM 219 141 60.83 

EMD K star 253 107 70.27 

Random 

forest 

275 85 76.38 

SVM 262 98 72.77 

DWT K star 331 29 91.94 

Random 

forest 

319 41 88.61 

SVM 237 123 65.83 

5.4 FAULT DIAGNOSIS OF GEAR IN FOUR STROKE IC ENGINE 

ML techniques are used to analyse the vibration signals and diagnose gear 

conditions A statistical, EMD and DWT feature extraction is carried out as precursor 

of ML. The decision tree algorithm is used to select significant features for 

classification. SVM, Random Forest and K star models are used as classifiers to 

diagnose the gear conditions. The steps involved in feature selection and classification 

are described in the subsequent sections. 

 Fault diagnosis using statistical features 

Time-domain features are obtained from acquired vibration signals. Section 3.3 

describes the various statistical features. Total 12 different features are computed using 

descriptive statistical method. Table 5.17 shows features extracted from the vibration 

signal. After selecting important features, classifier will classify the conditions of gear 

using selected features. 
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Table 5.17 Statistical feature extracted from gear vibration signals 

Sample  

number Mean 

Standard  

error Median Mode 

Standard  

deviation 

Sample 

 variance Kurtosis Skewness Range Minimum Maximum Sum CLASS 

1 0.01 0.01 0.01 -1.93 1.45 2.11 0.06 0 11.32 -5.35 5.97 156.6 Healthy 

2 0 0.01 -0.01 -0.77 1.4 1.97 0.45 0.09 12.57 -6.22 6.35 33.81 Healthy 

1 -0.01 0.01 0.01 -0.27 1.49 2.21 0.08 -0.02 12.33 -6.07 6.26 -166.25 25% defect 

2 0.01 0.01 0.29 -1.53 2.16 4.69 0.08 -0.43 16.52 -8.46 8.05 295.78 25% defect 

1 -0.01 0.01 -0.03 0.72 1.26 1.59 0.09 0.07 10.02 -5.37 4.66 -171.26 50% defect 

2 -0.01 0.01 -0.04 -0.44 1.29 1.65 0.21 0.07 9.73 -4.84 4.89 -246.5 50% defect 

1 0.01 0.01 0 -1.59 1.68 2.82 0.29 0.08 19.6 -8.97 10.63 251.58 75% defect 

2 -0.04 0.01 -0.02 0.22 2.03 4.1 0.09 -0.13 18.09 -7.97 10.12 -1003.21 75% defect 

1 0.02 0.01 -0.06 0.34 1.59 2.54 0.69 0.2 15.24 -7.96 7.28 438.94 100% defect 

2 0.02 0.01 -0.03 1.34 1.5 2.25 0.66 0.15 12.41 -6.25 6.17 625.46 100% defect 
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Figure 5.7 Decision tree of statistical feature of gear data set in four stroke IC engine gearbox 
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 Feature selection using decision tree 

All extracted descriptive statistical parameters were used as input to the decision 

tree and significant features were selected out of the extracted features. The decision 

tree is shown in Figure 5.7, the tree structure of different classes has been formed in 

such a way that when F7 is less than or equal to 0.12 and F3 is less than or equal to 0.18 

value it is classified as healthy condition with T1. The gear conditions (healthy, 25% 

defect, 50% defect, 75% defect and 100% defect) are represented as leaves in the tree. 

Among 12 features, except F2 and F12 all other 10 features are selected by decision 

tree as most significant features. These selected features are served as input to the 

classifiers such as SVM, random forest and K-star algorithms. The abbreviation used 

in decision tree are: g1=Healthy gear with no load, g2=Healthy gear with T1 torque, 

g3=Healthy gear with T2 torque, g4= 25% defect gear with no load, g5= 25% defect 

gear with T1 torque, g6= 25% defect gear with T2 torque, g7= 50% defect gear with no 

load, g8=50% defect gear with T1 torque, g9= 50% defect gear with T2 torque, 

g10=75% defect gear with no load, g11= 75% defect gear with T1 torque, g12= 75% 

defect gear race with T2 torque, g13= 100% defect gear with no load, g14= 100% defect 

gear race with T1 torque, g15= 100% defect gear with T2 torque 

 Feature classification 

In the following subsections, results obtained from the classifiers such as, 

random forest, SVM and K-star algorithm will be discussed and also comparative study 

of these classifiers will be highlighted.    

▪  SVM algorithm 

The confusion matrix of the SVM model for statistical features of vibration 

signals are presented in Table 5.18. From the confusion matrix, out of 450 instances 

203 instances were misclassified with classification efficiency of 54.88% which is very 

less for fault diagnosis. Hence, the SVM model with statistical features is not preferable 

for fault diagnosis of gear in IC engine.  
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Table 5.18 Confusion matrix of SVM algorithm for gear data set 

a b c d e f g h i j k l m n o class 

16 0 0 0 10 0 1 2 0 0 0 0 1 0 0 a= g1 

2 20 0 0 3 1 0 4 0 0 0 0 0 0 0 b=g2 

0 1 12 0 2 0 0 2 0 7 0 0 0 6 0 c=g3 

2 6 0 15 3 3 0 1 0 0 0 0 0 0 0 d=g4 

11 5 0 0 7 0 6 1 0 0 0 0 0 0 0 e=g5 

12 8 0 1 7 0 0 2 0 0 0 0 0 0 0 f=g6 

0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 g=g7 

7 0 0 0 10 0 0 10 0 0 0 0 0 3 0 h=g8 

0 0 0 0 0 0 0 0 27 0 0 0 0 0 3 i=g9 

0 0 16 0 0 0 0 2 0 8 0 0 1 3 0 j=g10 

0 0 0 0 0 0 0 0 1 0 29 0 0 0 0 k=g11 

0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 l=g12 

2 0 0 0 2 0 1 11 0 0 0 0 14 0 0 m=g13 

2 0 0 0 7 1 0 7 0 0 0 0 0 13 0 n=g14 

0 0 0 0 0 0 0 0 12 0 2 0 0 0 16 o=g15 

 

▪ RF algorithm 

  The selected statistical features such as F1, F3, F4, F5, F6, F7, F8, F9, F10 and 

F11 were served as an input to the random forest algorithm. The confusion matrix by 

the random forest for statistical features of vibration signals is shown in Table 5.19.  

Table 5.19 Confusion matrix of random forest algorithm for gear data set 

a b c d e f g h i j k l m n o class 

26 0 0 0 2 0 0 1 0 0 0 0 1 0 0 a= g1 

0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 b=g2 

0 0 20 0 0 0 0 1 0 5 0 0 3 1 0 c=g3 

1 1 0 23 1 3 0 0 0 0 0 0 0 1 0 d=g4 

0 1 0 2 13 10 1 2 0 0 0 0 1 0 0 e=g5 

0 0 0 4 7 17 0 1 0 0 0 0 0 1 0 f=g6 

0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 g=g7 

0 0 1 0 0 0 0 28 0 0 0 0 1 0 0 h=g8 

0 0 0 0 0 0 0 0 22 0 0 0 0 0 8 i=g9 

0 0 5 1 0 0 0 0 0 23 0 0 0 1 0 j=g10 

0 0 0 0 0 0 0 0 0 0 27 0 0 0 3 k=g11 

0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 l=g12 

0 0 0 0 0 1 1 0 0 0 0 0 26 2 0 m=g13 

0 0 0 0 0 0 0 4 0 0 0 0 0 26 0 n=g14 

0 0 0 0 0 0 0 0 4 0 0 0 0 0 26 o=g15 
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From the confusion matrix, 83 instances were misclassified out of 450 

instances. The overall classification efficiency is found to be 81.55% and hence the 

obtained classification efficiency can be accepted for fault diagnosis of gearbox.  

▪ K star 

  The confusion matrix by the K star for statistical features of vibration signals is 

as shown in Table 5.20. 

Table 5.20 Confusion matrix of K star algorithm for gear data set 

a b c d e f g h i j k l m n o class 

26 0 0 0 2 0 0 1 0 0 0 0 1 0 0 a= g1 

0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 b=g2 

0 0 20 0 0 0 0 1 0 5 0 0 3 1 0 c=g3 

1 1 0 23 1 3 0 0 0 0 0 0 0 1 0 d=g4 

0 1 0 2 13 10 1 2 0 0 0 0 1 0 0 e=g5 

0 0 0 4 7 17 0 1 0 0 0 0 0 1 0 f=g6 

0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 g=g7 

0 0 1 0 0 0 0 28 0 0 0 0 1 0 0 h=g8 

0 0 0 0 0 0 0 0 22 0 0 0 0 0 8 i=g9 

0 0 5 1 0 0 0 0 0 23 0 0 0 1 0 j=g10 

0 0 0 0 0 0 0 0 0 0 27 0 0 0 3 k=g11 

0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 l=g12 

0 0 0 0 0 1 1 0 0 0 0 0 26 2 0 m=g13 

0 0 0 0 0 0 0 4 0 0 0 0 0 26 0 n=g14 

0 0 0 0 0 0 0 0 4 0 0 0 0 0 26 o=g15 

From the confusion matrix, 121 instances were misclassified out of 450 

instances. The overall classification accuracy is found to be 73.11%, which is lower 

than performance of random forest classifier. Hence, the K-star model with statistical 

features is not preferred for fault diagnosis of gear. 

▪ Summary 

The statistical features were extracted from the acquired vibration signals and 

feature selection was performed using decision tree technique. The performances of the 

selected features in fault classification were presented. The summary of classification 

efficiencies of different classifiers with statistical features is shown in Table 5.21. 
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Table 5.21 Classification accuracy achieved with statistical feature for different 

classifiers for gear data set 

Classifier SVM Random 

forest 

K star 

Classification 

accuracy (%) 
54.88 81.55 73.11 

Table 5.21 shows that the random forest algorithm provides a maximum 

classification efficiency of about 81.55% with statistical features as compared to the 

performances of other classifiers. 

 Fault diagnosis using EMD features 

From the acquired vibration signals relating to fifteen different class of the gear, 

features are decomposed into IMFs using EMD. Table 5.22 represents evaluated energy 

feature vector (two samples per each class) using EMD method. 

Table 5.22 EMD feature extracted from gear vibration signals 

Sample 

No. 

Class E1 E2 E3 E4 E5 E6 E7 E8 

1 Healthy 0.13 0.36 0.52 0.13 0.05 0.03 0.53 0.53 

1 Healthy 0.13 0.45 0.57 0.15 0.05 0.2 0.44 0.44 

2 25% defect 0.52 0.49 0.27 0.45 0.18 0.11 0.3 0.3 

2 25% defect 0.61 0.49 0.32 0.32 0.22 0.17 0.23 0.23 

3 50% defect 0.24 0.22 0.39 0.19 0.06 0.03 0.59 0.59 

3 50% defect 0.28 0.19 0.29 0.18 0.06 0.06 0.62 0.62 

4 75% defect 0.5 0.5 0.31 0.53 0.32 0.12 0.05 0.05 

4 75% defect 0.45 0.49 0.39 0.4 0.15 0.05 0.33 0.33 

5 100% defect 0.32 0.27 0.49 0.3 0.07 0.05 0.5 0.5 

5 100% defect 0.2 0.17 0.33 0.11 0.03 0.05 0.63 0.63 

 Feature selection by decision tree algorithm 

The extracted EMD features are fed to the decision tree for the selection of the 

best features. Figure 5.8 depicts the decision tree for EMD features of vibration signals. 

Here out of eight EMD features (E1-E7) are selected as significant features by decision 

tree. 
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 Figure 5.8 Decision tree of EMD feature of gear data set in four stroke IC engine gearbox 
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 Feature classification 

The analysis of EMD features of vibration signals using classifiers such as 

SVM, random forest and K star models has been carried out. The selected features such 

as E1-E7 for all conditions of gear are used as input to the classifiers. The classifier is 

tested using 10-fold cross validation method. The results obtained from each classifier 

in the form of confusion matrix are reported as follows. 

▪ SVM algorithm 

The seven selected EMD features of vibration signals are given as an input to 

the SVM model. The outcome of the classifier is confusion matrix shown in Table 

5.23. 

Table 5.23 Confusion matrix of SVM algorithm for gear data set 

a b c d e f g h i j k l m n o class 

12 13 3 0 0 0 2 0 0 0 0 0 0 0 0 a= g1 

6 14 5 0 0 0 4 0 0 0 0 0 1 0 0 b=g2 

7 6 17 0 0 0 0 0 0 0 0 0 0 0 0 c=g3 

0 0 0 21 4 0 1 0 0 3 0 0 0 1 0 d=g4 

0 0 0 6 6 12 0 0 0 4 1 0 0 0 1 e=g5 

0 0 0 4 1 24 1 0 0 0 0 0 0 0 0 f=g6 

0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 g=g7 

0 0 0 0 0 0 7 16 6 0 0 0 1 0 0 h=g8 

0 0 0 0 0 1 1 7 20 1 0 0 0 0 0 i=g9 

0 0 0 0 0 0 4 1 1 24 0 0 0 0 0 j=g10 

0 0 0 0 2 4 0 0 0 0 10 14 0 0 0 k=g11 

0 0 0 2 0 0 0 0 0 0 0 28 0 0 0 l=g12 

0 0 0 0 0 0 12 3 0 0 0 0 15 0 0 m=g13 

0 0 0 2 1 1 0 0 1 0 2 0 0 19 4 n=g14 

0 0 0 1 0 6 0 0 1 0 1 0 0 13 8 o=g15 

From the confusion matrix of SVM classifier with EMD features, it is found 

that 186 instances were misclassified and the classification efficiency is about 58.66%. 

The classification efficiency of SVM is very less for the fault diagnosis. Thus, SVM 

model with EMD features is not preferred. 
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▪ RF algorithm 

The confusion matrix for vibration signals of the gear is shown in Table 5.24. 

A data set of 450 samples consists of 30 samples from each class. From Table 5.24, out 

of 450 instances, 159 instances were misclassified by random forest algorithm with 

classification accuracy about 64.66% for the given vibration signals. 

Table 5.24 Confusion matrix of random forest algorithm for gear data set 

a b c d e f g h i j k l m n o class 

15 10 5 0 0 0 0 0 0 0 0 0 0 0 0 a= g1 

8 18 2 0 0 0 1 0 0 0 0 0 1 0 0 b=g2 

6 4 20 0 0 0 0 0 0 0 0 0 0 0 0 c=g3 

0 0 0 23 2 0 0 0 0 3 0 1 0 0 1 d=g4 

0 0 0 3 11 9 0 0 0 3 0 0 0 1 3 e=g5 

0 0 0 2 5 21 0 0 2 0 0 0 0 0 0 f=g6 

0 0 0 0 0 0 26 1 0 0 0 0 3 0 0 g=g7 

0 0 0 0 0 0 3 18 6 1 0 0 3 0 0 h=g8 

0 0 0 0 0 0 0 6 18 4 0 0 0 0 2 i=g9 

0 0 0 0 1 0 1 1 3 24 0 0 0 0 0 j=g10 

0 0 0 0 1 2 0 0 0 1 19 7 0 0 0 k=g11 

0 0 0 2 0 0 0 0 0 0 5 23 0 0 0 l=g12 

0 2 0 0 0 0 3 4 0 0 0 0 21 0 0 m=g13 

0 0 0 0 2 0 0 0 1 0 1 0 0 18 8 n=g14 

0 0 0 0 2 1 0 1 3 0 0 0 0 7 16 o=g15 

▪ K star algorithm 

  K star results are presented in the form of confusion matrix as shown in the 

Table 5.25. From the confusion matrix, 178 instances were misclassified out of 450 

instances. The overall classification efficiency is found to be 60.44%, which is lesser 

than random forest classifier. Hence, the K-star model with EMD features for fault 

diagnosis of the gear is not considered. 
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Table 5.25 Confusion matrix of K star algorithm for gear data set 

a b c d e f g h i j k l m n o class 

16 6 5 0 0 0 2 0 0 0 0 0 1 0 0 a= g1 

10 12 7 0 0 0 1 0 0 0 0 0 0 0 0 b=g2 

8 5 16 0 0 0 0 1 0 0 0 0 0 0 0 c=g3 

0 0 0 24 2 1 1 0 0 1 0 1 0 0 0 d=g4 

0 0 0 3 12 8 0 0 1 4 2 0 0 0 0 e=g5 

0 0 0 0 5 22 0 0 1 0 0 2 0 0 0 f=g6 

0 0 0 0 0 0 28 1 0 0 0 0 1 0 0 g=g7 

0 0 0 0 0 0 3 14 9 1 0 0 2 0 1 h=g8 

0 0 0 0 0 2 0 7 17 3 0 0 0 0 1 i=g9 

0 0 0 1 1 0 1 1 4 21 1 0 0 0 0 j=g10 

0 0 0 0 2 2 0 0 0 1 17 8 0 0 0 k=g11 

0 0 0 0 0 1 0 0 0 0 8 20 0 0 1 l=g12 

1 1 0 0 0 0 6 1 0 0 0 0 21 0 0 m=g13 

0 0 0 0 1 1 0 0 1 0 1 0 0 17 9 n=g14 

0 0 0 1 2 0 0 0 2 0 1 1 0 8 15 o=g15 

▪ Summary 

The EMD features were extracted from the acquired vibration signals and 

feature selection was performed using decision tree (J48 algorithm) technique. The 

performances of the selected features in fault classification were presented. The 

summary of classification efficiencies of different classifiers with EMD features is 

shown in Table 5.26. 

Table 5.26 Classification accuracy achieved with EMD feature for different classifiers 

for gear data set 

Classifier SVM Random 

forest 

K star 

Classification 

accuracy (%) 
58.66 64.66 60.44 

Table 5.26 shows that random forest algorithm provides a maximum 

classification efficiency of about 64.66% with EMD features as compared to the 

performances of other classifiers. 
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 Fault diagnosis using DWT features 

From the acquired signals, DWT features were extracted and used as an input 

to the decision tree to select more contributing features from the derived feature vector. 

Eight DWT features (v1, v2, v3…..v8) for each class were extracted from the acquired 

450 samples, out of which two samples from each class are displayed in Table 5.27. 

The steps involved in feature selection and classification are described in the 

subsequent sections.  

Table 5.27 DWT feature extracted from gear vibration signals 

Sample 

No. 

Class v1 v2 v3 v4 v5 v6 v7 v8 

1 Healthy 0.107 0.716 3.46 8.72 4.32 11.6 43.1 48.7 

1 Healthy 0.0999 0.67 3.2 8.97 4.35 9.14 32.9 48.3 

2 25% defect 0.391 1.4 2.68 4 4.86 14.5 48.4 64.5 

2 25% defect 0.757 2.61 3.99 5.93 9.99 32.2 105 248 

3 50% defect 0.263 1.43 3.78 6.47 5.33 23.5 85.6 53 

3 50% defect 0.267 1.39 3.9 6.53 5.42 23.7 88.2 60.9 

4 75% defect 0.508 1.63 2.8 5.34 5.09 20.9 84.5 63.2 

4 75% defect 0.658 2.18 4.04 7.28 7.39 37.3 136 81.4 

5 100% defect 0.273 1.53 4.97 9.06 5.13 16 55.4 55.1 

5 100% defect 0.301 1.74 5.56 10.5 6.03 24.1 77.3 57 

 Feature selection by decision tree 

All extracted wavelet features pertaining to fifteen classes were fed to the 

algorithm and output is the decision tree as depicted in Figure 5.9. The rectangular 

blocks indicate classes (conditions) of the gear. In Figure 5.9, v3 feature is the root node 

of the tree, based on which the tree structure was formed. When v3 value is greater than 

3.14 and v3 is less than or equal to 3.91, it is classified as a healthy gear condition with 

no load, when the v2 value is less than or equal to 0.94 and v3 is less than or equal to 

3.14 it is classified as a healthy with T1gear condition and so on. The six features such 

as v1, v2, v3, v4, v5 and v8 were selected out of eight wavelet features from the decision 

tree. The detailed accuracy of classification is discussed in the following section. 
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Figure 5.9 Decision tree of DWT feature of gear data set in four stroke IC engine gearbox 
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 Classification 

The selected six wavelet features were treated as an input and fed to the 

classifiers such as SVM, random forest and K-star models. The results obtained from 

the models were analysed and discussed below.  

▪ K star algorithm 

  The selected wavelet features such as v1, v2, v3, v4, v5 and v8 were treated as 

an input to the K star algorithm. The confusion matrix by the K star for DWT features 

of vibration signals is shown in Table 5.28.  

Table 5.28 Confusion matrix of K star algorithm for gear data set 

a b c d e f g h i j k l m n o class 

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a= g1 

0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 b=g2 

0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 c=g3 

0 0 0 29 0 0 0 0 0 1 0 0 0 0 0 d=g4 

0 0 0 0 22 8 0 0 0 0 0 0 0 0 0 e=g5 

0 0 0 0 5 25 0 0 0 0 0 0 0 0 0 f=g6 

0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 g=g7 

0 0 0 0 0 0 0 29 1 0 0 0 0 0 0 h=g8 

0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 i=g9 

0 0 0 1 0 0 0 0 0 29 0 0 0 0 0 j=g10 

0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 k=g11 

0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 l=g12 

0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 m=g13 

0 0 0 0 0 0 0 0 0 0 0 0 0 27 3 n=g14 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 o=g15 

From the confusion matrix, only 19 instances were misclassified out of 450 

instances. The overall classification efficiency is found to be 95.77%. Hence, the K-

star model with DWT features can be considered for fault diagnosis of the gear. 

▪ RF algorithm 

  The selected six wavelet features were treated as an input to the random forest 

algorithm. The confusion matrix by the random forest for DWT features of vibration 

signals is shown in Table 5.29.  
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Table 5.29 Confusion matrix of random forest algorithm for gear data set 

a b c d e f g h i j k l m n o class 

29 1 0 0 0 0 0 0 0 0 0 0 0 0 0 a= g1 

0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 b=g2 

0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 c=g3 

0 0 0 28 1 0 0 0 0 0 0 0 0 0 1 d=g4 

0 0 0 0 22 8 0 0 0 0 0 0 0 0 0 e=g5 

0 0 0 1 3 26 0 0 0 0 0 0 0 0 0 f=g6 

0 0 0 0 0 0 29 1 0 0 0 0 0 0 0 g=g7 

0 0 0 0 0 0 0 27 3 0 0 0 0 0 0 h=g8 

0 0 0 0 0 0 0 1 29 0 0 0 0 0 0 i=g9 

0 0 0 1 0 0 0 0 0 29 0 0 0 0 0 j=g10 

0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 k=g11 

0 0 0 0 0 0 0 0 0 0 1 29 0 0 0 l=g12 

0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 m=g13 

0 0 0 0 0 0 0 0 0 0 0 0 0 28 2 n=g14 

0 0 0 0 0 0 0 0 0 0 0 0 0 3 27 o=g15 

From the confusion matrix, only 27 instances were misclassified out of 450 

instances. The overall classification efficiency is found to be 94% and the obtained 

classification efficiency can be accepted for fault diagnosis, but it is lower than the 

classification efficiency (95.77%) of the K star classifier. Thus, the combination of the 

random forest algorithm and DWT features for fault diagnosis of the gear is not 

preferable. 

▪ SVM algorithm 

  The SVM classifier is used to classify the different conditions of the gear using 

selected DWT features of vibration signals. The confusion matrix is the outcome of the 

model representing the number of instances classified into classes as shown in Table 

5.30. From the confusion matrix, 72 instances out of 450 instances were misclassified 

and the classification efficiency is found to be 84%. Although the classification 

efficiency is considerably good, but it is lower than K star and random forest 

algorithms. Hence, SVM with DWT features for fault diagnosis of gear is not 

preferable. 
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Table 5.30 Confusion matrix of SVM algorithm for gear data set 

a b c d e f g h i j k l m n o class 

29 0 1 0 0 0 0 0 0 0 0 0 0 0 0 a= g1 

0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 b=g2 

1 0 29 0 0 0 0 0 0 0 0 0 0 0 0 c=g3 

0 0 0 17 9 2 0 0 0 2 0 0 0 0 0 d=g4 

0 0 0 0 18 12 0 0 0 0 0 0 0 0 0 e=g5 

0 0 0 0 8 22 0 0 0 0 0 0 0 0 0 f=g6 

0 0 0 0 0 0 21 9 0 0 0 0 0 0 0 g=g7 

0 0 0 0 0 0 0 26 4 0 0 0 0 0 0 h=g8 

0 0 0 0 0 0 0 2 28 0 0 0 0 0 0 i=g9 

0 0 0 0 0 0 3 0 0 27 0 0 0 0 0 j=g10 

0 0 0 0 0 0 0 0 0 0 29 1 0 0 0 k=g11 

0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 l=g12 

2 0 3 0 0 0 0 0 0 0 0 0 25 0 0 m=g13 

0 0 0 0 0 0 0 0 0 0 0 0 0 25 5 n=g14 

0 0 0 0 0 0 0 0 0 0 0 0 0 8 22 o=g15 

▪ Summary 

The DWT features were extracted from the acquired vibration signals and 

feature selection was performed using decision tree technique. The performances of the 

selected features in fault classification were presented. The summary of classification 

efficiencies of different classifiers with DWT features is shown in Table 5.31. 

Table 5.31 Classification accuracy achieved with DWT feature for different classifiers 

for gear data set 

Classifier SVM Random 

forest 

K star 

Classification 

accuracy (%) 
84 94 95.77 

Table 5.31 depicts that K star algorithm has provided a maximum classification 

efficiency of about 95.77% with DWT features as compared to the performances of 

other classifiers. 

 Overall conclusion from gear vibration signals analysis based on machine 

learning approach 

The comparison of performances of classifiers and different features extraction 

methods which are used in the study of fault diagnosis of the gear using vibration 

signals is shown in Table 5.32. 
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Table 5.32 Comparison of classification accuracy for various feature extraction and 

classifiers 

Feature 

type 

Selection 

of 

feature  

Classification 

algorithm 

Instances 

classified 

correctly  

Misclassified 

instances 

Accuracy of 

classification 

(%) 

Statistical Decision 

tree 

K star 329 121 73.11 

Random 

forest 

367 83 81.55 

SVM 247 203 54.88 

EMD K star 272 178 60.44 

Random 

forest 

291 159 64.66 

SVM 264 186 58.66 

DWT K star 431 19 95.77 

Random 

forest 

423 27 94 

SVM 378 72 84 

From Table 5.32, it can be observed that the K star model has resulted in a 

maximum classification accuracy of about 95.77% with DWT features as compared to 

other classifiers with any feature’s extraction techniques listed. Also, the combination 

of random forest model with DWT feature technique has provided a good classification 

accuracy of about 94%, which is nearer to the highest classification accuracy 95.77% 

(obtained by the K star model with the DWT features). However, the performance (94% 

classification accuracy) by the random forest model with DWT features can also be 

considered for fault diagnosis, but this combination takes more time to compute the 

performance when compared to the combination of the K star classifier and DWT 

features. Hence, the K star technique can be chosen as the best classifier with DWT 

features method and this can be suggested for fault diagnosis of the gear vibration 

signals. 
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5.5 FAULT DIANGOSIS OF BALL BEARING IN TWO STROKE IC ENGINE  

The present study deals with feature extraction using statistical, EMD and DWT 

methods. Then feature selection using decision tree method and classification is 

performed using artificial intelligent techniques such as SVM, RF algorithm and K star 

models. Each step is explained by analysing the experimental results which can be 

referred in the forthcoming sections. 

 Fault diagnosis using statistical features 

The information obtained from the acquired time domain data are called time-

domain features. Descriptive statistical method is used for computing time domain 

features. Table 5.33 shows the extracted statistical features from the vibration signals 

for two samples of each condition of the bearing. 

 Feature selection using decision tree 

In this analysis, 30 samples of vibration signals are acquired for healthy and 

different faulty conditions of the bearing. Statistical features are extracted for each 

sample of data. The extracted feature vector is given as input to the decision tree for 

selecting significant features. Figure 5.10 represents the output of the technique in tree 

form i.e., decision tree made by J48 algorithm and it gives three best performing 

features for classification such as standard error, skewness and kurtosis which are 

arranged in the order of rank. The classes (conditions) of bearing such as healthy and 

faulty are indicated by rectangle blocks. Figure 5.10 describes the tree like structure 

with various classes of bearing conditions identified in such a way that standard error 

value is less than or equal to 0.00669 and with standard error greater than 0.004858 is 

classified as IR defect. Standard error greater than 0.00669 with skewness value less 

than or equal to -0.324914 is classified as IR and OR defect while, skewness greater 

than -0.324914 with kurtosis greater than 5.386099 is classified as ball fault and so on. 

The ball bearing conditions (healthy, inner race defect, outer race defect, combined 

defects, ball defect) are represented as leaves in the tree.   
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Table 5.33 Statistical feature extracted from bearing vibration signals 

Sample  

number F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Class 

1 0.0008 0.0046 -0.0100 -0.754 0.736 0.542 3.080 0.049 10.53 -4.99 5.53 21.71 Healthy 

2 0.0005 0.0047 -0.0021 -0.118 0.749 0.561 2.568 0.011 10.25 -5.08 5.17 13.30 Healthy 

1 0.0103 0.0057 0.0052 -0.325 0.918 0.843 4.286 0.079 13.64 -6.40 7.24 264.12 IR fault 

2 0.0093 0.0059 0.0111 -0.045 0.944 0.892 3.853 0.099 15.67 -7.28 8.39 239.02 IR fault 

1 0.0077 0.0072 0.0130 -1.060 1.146 1.312 3.921 0.021 18.77 -9.96 8.80 196.57 OR fault 

2 0.0072 0.0074 0.0092 0.236 1.179 1.389 5.104 0.109 22.23 -10.74 11.48 183.69 OR fault 

1 0.0065 0.0067 0.0027 -0.075 1.076 1.158 30.699 -0.541 25.61 -13.17 12.44 167.68 IR & OR Fault 

2 0.0059 0.0068 0.0025 0.240 1.083 1.174 31.164 -0.505 25.76 -13.20 12.56 151.49 IR & OR Fault 

1 0.0064 0.0070 0.0085 0.681 1.127 1.270 9.116 0.196 21.05 -10.39 10.66 163.55 Ball fault 

2 0.0060 0.0073 -0.0072 -0.624 1.167 1.361 8.080 0.184 22.71 -11.42 11.29 153.27 Ball fault 
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Figure 5.10 Decision tree for statistical feature of vibration signal from a two-stroke engine 
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 Feature classification 

In the following subsections, results obtained from the classifiers such as, RF, 

SVM and K star algorithm will be discussed and also comparative study of these 

classifiers will be highlighted.    

▪ K star algorithm 

The selected statistical features of vibration signals were given an input to the 

K star algorithm. The identified classification of the bearing conditions is presented in 

the Table 5.34. Here, only three instances were misclassified and K star algorithm 

provided classification efficiency of about 98% for the given vibration signals. 

Table 5.34 Confusion matrix of K star algorithm for bearing data set 

a b c d e class 

30 0 0 0 0 a = Healthy 

0 30 0 0 0 b= IR defect 

0 0 29 0 1 c= OR defect 

0 0 0 30 0 d= IROR defect 

0 0 2 0 28 e= Ball defect 

▪ RF algorithm 

  The selected statistical features such as standard error, kurtosis and skewness 

were treated an input to the random forest algorithm.  

Table 5.35 Confusion matrix of random forest algorithm for bearing data set 

a b c d e class 

30 0 0 0 0 a = Healthy 

0 29 1 0 0 b= IR defect 

0 0 30 0 0 c= OR defect 

0 0 0 30 0 d= IROR defect 

0 0 1 1 28 e= Ball defect 

  The confusion matrix by the random forest for statistical features of vibration 

signals is shown in Table 5.35. From the confusion matrix, only 3 instances were 

misclassified out of 150 instances. The overall classification efficiency is found to be 

98%, which is same as obtained by K star algorithm. Thus, the combination of random 

forest with statistical feature can be used for fault diagnosis of bearing.   
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▪ SVM algorithm 

The confusion matrix of the SVM model for statistical features of vibration 

signals are presented in Table 5.36. From the confusion matrix, out of 150 instances 

only 6 instances were misclassified with classification efficiency of 96% which is 

acceptable for fault diagnosis. However, it is less than the performance of K star and 

random forest (98%). Hence, the SVM model with statistical features is not preferable 

for fault diagnosis of bearing.  

Table 5.36 Confusion matrix of SVM algorithm for bearing data set 

a b c d e class 

30 0 0 0 0 a = Healthy 

0 30 0 0 0 b= IR defect 

0 0 30 0 0 c= OR defect 

0 0 0 30 0 d= IROR defect 

0 0 6 0 24 e= Ball defect 

▪ Summary 

The statistical features were extracted from the acquired vibration signals and 

feature selection was performed using decision tree (J48 algorithm) technique. The 

performances of the selected features in fault classification were presented. The 

summary of classification efficiencies of different classifiers with statistical features is 

shown in Table 5.37. 

Table 5.37 Statistical feature classification accuracy with different classifiers for 

bearing data set 

Classifier SVM Random 

forest 

K star 

Classification 

accuracy (%) 
96 98 98 

Table 5.37 depicts that random forest and K star algorithms provide a maximum 

classification efficiency of about 98% with statistical features as compared to the 

performances of other classifiers. 
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 Fault diagnosis using EMD features 

From the acquired vibration signals relating to five different classes of the 

bearing faults, signals are decomposed into IMFs using EMD. Table 5.38 depicts 

evaluated energy feature vector (two samples per each class) using EMD method. 

Table 5.38 EMD feature extracted from bearing vibration signals 

Sample 

No. 

Class E1 E2 E3 E4 E5 E6 E7 E8 

1 Healthy 0.84 0.41 0.24 0.15 0.17 0.07 0.06 0.06 

1 Healthy 0.74 0.49 0.35 0.21 0.20 0.11 0.04 0.04 

2 IR defect 0.87 0.35 0.25 0.16 0.14 0.07 0.02 0.02 

2 IR defect 0.34 0.13 0.08 0.07 0.05 0.14 0.65 0.65 

3 OR defect 0.83 0.49 0.21 0.14 0.10 0.07 0.02 0.02 

3 OR defect 0.88 0.35 0.24 0.16 0.12 0.07 0.06 0.06 

4 IROR defect 0.49 0.67 0.51 0.11 0.11 0.07 0.07 0.07 

4 IROR defect 0.45 0.83 0.16 0.11 0.17 0.10 0.11 0.11 

5 Ball defect 0.77 0.44 0.35 0.20 0.17 0.12 0.06 0.06 

5 Ball defect 0.70 0.47 0.27 0.34 0.23 0.12 0.12 0.12 

 Feature selection by decision tree algorithm 

All EMD features are fed to the decision tree (J48 algorithm) for the selection 

of the best features. Figure 5.11 depicts the decision tree for EMD features of vibration 

signals. Here, out of eight EMD features, 7 features (E1-E7) are selected as significant 

features by decision tree technique. 
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Figure 5.11 Decision tree of EMD feature of bearing data set in two stroke IC engine gearbox
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 Feature classification 

The analysis of EMD features of vibration signals using classifiers such as 

SVM, random forest and K-star models has been carried out. The selected features such 

as E1-E7 of all conditions of a gear are used as input to the classifiers. The classifier is 

tested using 10-fold cross validation method. The results obtained from each classifier 

in the form of confusion matrix are reported as follows. 

▪ SVM algorithm 

The seven selected EMD features of vibration signals are given as an input to 

the SVM model. The outcome of the classifier is confusion matrix shown in Table 

5.39. 

Table 5.39 Confusion matrix of SVM algorithm for bearing data set 

a b c d e class 

10 2 16 0 2 a = Healthy 

9 2 10 0 9 b= IR defect 

3 1 24 0 2 c= OR defect 

0 1 0 28 1 d= IROR defect 

7 2 4 0 17 e= Ball defect 

From the confusion matrix of SVM classifier with EMD features, it is found 

that 69 instances were misclassified and the classification efficiency is about 54%. The 

classification efficiency of SVM is very low for the fault diagnosis. Thus, SVM model 

with EMD features are not preferred. 

▪ RF algorithm 

The confusion matrix for vibration signals of the ball bearing is shown in Table 

5.40. A data set of 150 samples consists of 30 samples from each class.  

Table 5.40 Confusion matrix of random forest algorithm for bearing data set 

a b c d e class 

15 5 7 0 3 a = Healthy 

6 12 4 0 8 b= IR defect 

8 2 19 0 1 c= OR defect 

0 1 0 28 1 d= IROR defect 

7 6 2 1 14 e= Ball defect 
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From Table 5.40, out of 150 instances, 62 instances were misclassified by 

random forest algorithm with classification accuracy about 58.66% for the given 

vibration signals. 

▪ K star algorithm 

  The K-star results are presented in the form of confusion matrix as shown in the 

Table 5.41. From the confusion matrix, 88 instances were misclassified out of 150 

instances. The overall classification efficiency is found to be 41.33%, which is lower 

than SVM and random forest classifier. Hence, the K-star model with EMD features 

for fault diagnosis of the bearing is not considered. 

Table 5.41 Confusion matrix of K star algorithm for bearing data set 

a b c d e class 

6 8 13 0 3 a = Healthy 

6 8 9 0 7 b= IR defect 

9 6 14 0 1 c= OR defect 

1 0 0 24 5 d= IROR defect 

7 10 3 0 10 e= Ball defect 

▪ Summary 

The EMD features were extracted from the acquired vibration signals and 

feature selection was performed using decision tree (J48 algorithm) technique. The 

performances of the selected features in fault classification were presented.  

The summary of classification efficiencies of different classifiers with EMD 

features is as shown in Table 5.42. 

Table 5.42 EMD feature classification accuracy with different classifiers 

Classifier SVM Random 

forest 

K star 

Classification 

accuracy (%) 
54 58.66 41.33 

Table 5.42 shows that the random forest algorithm provided a maximum 

classification efficiency of about 58.66% with EMD features as compared to the 

performances of other classifiers. 
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 Fault diagnosis using DWT features 

From the recorded signals DWT features were extracted and used as an input to 

the decision tree to select more contributing features for classification. Eight DWT 

features (v1, v2, v3…..v8) for each class were extracted from the acquired 150 samples, 

out of which two sample from each class are displayed in Table 5.43.  

Table 5.43 DWT feature extracted from gear vibration signals 

Sample 

No. 

Class v1 v2 v3 v4 v5 v6 v7 v8 

1 Healthy 0.153 0.695 1.18 1.08 1.49 0.781 0.864 0.849 

1 Healthy 0.159 0.713 1.31 1.14 1.84 0.684 0.818 0.511 

2 IR defect 0.267 1.12 1.9 1.6 2.01 0.818 1.02 1.04 

2 IR defect 0.274 1.2 1.97 1.77 1.95 0.884 1.09 1.53 

3 OR defect 0.35 1.75 3.54 2.1 2.79 0.997 1.21 1.09 

3 OR defect 0.363 1.78 3.79 2.27 3.37 1.24 1.25 1.14 

4 IROR defect 0.752 1.72 1.48 1.27 1.93 0.697 0.854 0.612 

4 IROR defect 0.736 1.78 1.49 1.5 1.89 0.66 0.813 0.586 

5 Ball defect 0.366 1.5 3.23 2.67 3.22 1.43 1.27 0.712 

5 Ball defect 0.368 1.71 3.36 2.66 3.75 1.46 1.41 1.23 

 Feature selection by decision tree 

Decision tree technique (J48 algorithm) was used for feature selection. All the 

extracted wavelet features pertaining to five classes were fed to the algorithm and 

corresponding output is decision tree as depicted in Figure 5.12. The rectangular blocks 

indicate classes (condition) of the bearing. In Figure 5.12, v3 feature is a root node of 

the tree, based on which the tree structure was formed. When v3 value is less than or 

equal to 2.46 and v4 is less than or equal to 1.24, it is classified as a healthy bearing 

condition, while the v4 value is greater than 1.24 and v2 is less than or equal to 1.63, it 

is classified as IR defect condition and so on. The three features such as v2, v3 and v4 

were selected out of eight wavelet features from the decision tree. The detailed accuracy 

of classification is discussed in the following section. 
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Figure 5.12 Decision tree of DWT feature of bearing data set in two stroke IC engine 

gearbox 

 Feature classification 

The selected three (v2, v3, v4) wavelet features were given as an input to the 

classifiers such as SVM, random forest and K-star models. The results obtained from 

the models were analysed and discussed below.  

▪ K star algorithm 

  The selected wavelet features such as v2, v3 and v4 were treated as an input to 

the K star algorithm. The confusion matrix by the K star for DWT features of vibration 

signals is shown in Table 5.44. 

Table 5.44 Confusion matrix of K star algorithm for bearing data set 

a b c d e class 

30 0 0 0 0 a = Healthy 

0 30 0 0 0 b= IR defect 

0 0 30 0 0 c= OR defect 

0 0 0 30 0 d= IROR defect 

0 0 1 0 29 e= Ball defect 

  

From the confusion matrix, only 1 instance was misclassified out of 150 

instances. The overall classification efficiency is found to be 99.33%, which shows 
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better performance of K star classifier. Hence, the K-star model with DWT features can 

be considered for fault diagnosis of the bearing. 

▪ RF algorithm 

  The selected wavelet features were treated as an input to the random forest 

algorithm. The confusion matrix by the random forest for DWT features of vibration 

signals is shown in Table 5.45.  

Table 5.45 Confusion matrix of random forest algorithm for bearing data set 

a b c d e class 

30 0 0 0 0 a = Healthy 

0 30 0 0 0 b= IR defect 

0 0 29 0 1 c= OR defect 

0 0 0 30 0 d= IROR defect 

0 1 0 0 29 e= Ball defect 

From the confusion matrix, only 2 instances were misclassified out of 150 

instances. The classification efficiency of 98.66% is obtained and it can be accepted for 

fault diagnosis, but it is lower than the classification efficiency (99.33%) of the K star 

classifier. Thus, the combination of the random forest algorithm and DWT features for 

fault diagnosis of the bearing is not preferable. 

▪ SVM algorithm 

  The SVM classifier is used to classify the different conditions of the gear using 

selected DWT features of vibration signals. From the confusion matrix in Table 5.46, 

4 instances out of 150 instances were misclassified and the classification efficiency is 

found to be 97.33%. As the classification efficiency is considerably good it can be used 

for fault diagnosis. However, it is lesser than K star and random forest algorithms. 

Hence, SVM with DWT features for fault diagnosis of gear is not preferable. 

Table 5.46 Confusion matrix of SVM algorithm for bearing data set 

a b c d e class 

30 0 0 0 0 a = Healthy 

0 30 0 0 0 b= IR defect 

0 0 30 0 0 c= OR defect 

0 0 0 30 0 d= IROR defect 

0 0 4 0 26 e= Ball defect 
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▪ Summary 

The DWT features were extracted from the acquired vibration signals and 

feature selection was performed using decision tree (J48 algorithm) technique. The 

performances of the selected features in fault classification were presented.  

The summary of classification efficiencies of different classifiers with DWT 

features is shown in Table 5.47. 

Table 5.47 DWT feature classification accuracy with different classifiers 

Classifier SVM Random 

forest 

K star 

Classification 

accuracy (%) 
97.77 98.66 99.33 

Table 5.47 depicts that the K star algorithm has provided a maximum 

classification efficiency of about 99.33% with DWT features as compared to the 

performances of other classifiers. 

 Overall conclusion from bearing vibration signals analysis based on machine 

learning approach in two stroke IC engine 

The comparison of performances of classifiers and different feature extraction 

methods which are used in the study of fault diagnosis of the bearing using vibration 

signals is shown in Table 5.48. 
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Table 5.48 Comparison of classification accuracy for various feature extraction and 

classifiers 

Feature 

type 

Selection 

of 

feature  

Classification 

algorithm 

Instances 

classified 

correctly  

Misclassified 

instances 

Accuracy of 

classification 

(%) 

Statistical Decision 

tree 

K star 147 3 98 

Random 

forest 

147 3 98 

SVM 144 6 96 

EMD K star 62 88 41.33 

Random 

forest 

88 62 58.66 

SVM 81 69 54 

DWT K star 149 1 99.33 

Random 

forest 

148 2 98.66 

SVM 146 4 97.33 

From Table 5.48, one can say that the K star model has resulted in a maximum 

classification accuracy of about 99.33% with DWT features as compared to other 

classifiers in combination with any feature extraction techniques listed in the table. 

Also, the combination of random forest model with DWT feature technique has 

provided a good classification accuracy of about 98.66%, which is nearer to the highest 

classification accuracy of 99.33% (obtained by the K star model with the DWT 

features). Hence, the performance (98.66% classification accuracy) by the random 

forest model with DWT features can also be considered for fault diagnosis, but this 

combination takes more time to compute the performance when compared to the 

combination of the K star as classifier and DWT features. Therefore, the K star model 

can be chosen as the best classifier with DWT features method and can be suggested 

for fault diagnosis of the bearing vibration signals. 
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5.6 SUMMARY 

This chapter presents fault diagnosis of gearbox elements such as bearing and 

gear using machine learning approach based on vibration signals. This methodology 

involves collecting vibration signal samples for different classes or conditions of 

gearbox in four stroke and two stroke IC engine. From the acquired signals, features 

were extracted using statistical, EMD and DWT methods. J48 algorithm (decision tree) 

was used for significant feature selection. Artificial intelligent techniques such as SVM, 

K-star and random forest algorithm classifiers have been used to classify the different 

fault conditions. Fault diagnosis was carried out on four stroke engine data sets and two 

stroke engine data sets, separately. The detailed classification accuracy with different 

features and classifiers are shown in Table 5.16, Table 5.32 and Table 5.48. 

Classification accuracy was found to be reasonably good with DWT features and K star 

algorithm, for both bearing and gear data set in four stroke IC engine compared to other 

combinations of feature extraction and classifier techniques. In case of two stroke 

engine gearbox, statistical and DWT features performed better with all the classifiers. 

However, DWT feature with K star and random forest performed equally well in 

classifying the conditions of the bearing. Based on the results obtained, the proposed 

methodology with machine learning techniques can be recommended for practical 

applications and development of online fault diagnosis systems for IC engine gearbox 

condition monitoring. 
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CHAPTER 6 

 FAULT DIAGNOSIS OF IC ENGINE GEARBOX USING DEEP 

LEARNING TECHNIQUES 

6.1 INTRODUCTION 

DL is a branch of artificial intelligence used for understanding and learning 

about unstructured data with least intervention of the user. DL methods are used more 

frequently in image processing, video processing and to handle more complex data sets. 

The above-mentioned applications advance the use of deep learning methods for 

solving problems in real time. DL is an effective data feature extraction method for 

nonlinear large data since it can overcome the problem that shallow learning cannot 

extract. Although it has been successfully used in the field of speech recognition and 

image processing, the study of deep learning-based fault diagnosis is currently in its 

initial stages. This chapter describes the investigation of vibration signals of the gearbox 

of an IC engine based on deep learning methods used for fault diagnosis. 

6.2 DEEP LEARNING METHODS 

The rapid growth of internet technologies and the internet of things (IoT) has 

led to a significant increase in the amount of data collected compared to previous 

generations. Data that is increasing at an exponential rate provides more information 

for machine fault diagnosis, making it easier to provide accurate diagnosis results are 

obtained in a shorter time period. Unfortunately, fault diagnosis based on traditional 

machine learning theories has not been proven to be effective in large-scale data 

environments. It is necessary to develop some advanced DL methods in order to avoid 

this problem. Currently, DL methods are popular techniques and are used for feature 

extraction and classification. In the following sub section, DL methods and the 

proposed architecture are presented in detail. 
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 Convolutional neural network (CNN) 

 CNN is a type of feed-forward neural network (NN) with convolution 

calculation and a deep structure (Yu et al. 2021). Initially, it was proposed for image 

processing by LeCun. CNNs are being used for detection, segmentation and pattern 

recognition in images and speech signals (Abdel-Hamid et al. 2013; Cireşan et al. 

2012; Turaga et al. 2010). CNN model comprises of hidden layers and each layer 

extracts feature from the input signal using a filter of different kernel size with shared 

weights. The convolution layer of CNN extracts characteristic features from a one-

dimensional (1D) input signal and maps it to the next layer as shown in Figure 6.1.  

 

Figure 6.1 Illustration of 1D convolutional neural network 

 

Shared weights give remarkable advantages and it reduces the computational 

burden in multiplex non-linear operations. The first layer of CNN is described by 

equation (6.1). 

𝑦𝑗
𝑙+1(𝑗) =  𝑘𝑖

𝑙 × 𝑥𝑙(𝑗) + 𝑏𝑖
𝑙                              (6.1) 

where, 𝑏 and 𝑘 are the bias and weight for the 𝑖-th filter and 𝑙-th layer 

respectively, 𝑥 denotes the 𝑗-th input to 𝑙-th layer and 𝑦 denotes output of convolution 
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layer. In convolution layer, Leaky-Relu activation function is used. A multiple number 

of filters with different kernel size are used to generate multiple features in convolution 

layer. The feature maps are given to the pooling layer, which extracts the dominant 

feature. The max-pooling layer is used to collect the largest statistic to get local features 

and reduce the parameters, defined by equation (6.2). 

𝑃𝑖
𝑙+1(𝑗) =  max

(𝑗−1)𝑊+1≤𝑡≤𝑗𝑊
{𝑞𝑖

𝑙(𝑡)}                                   (6.2) 

where 𝑃𝑖
𝑙+1 is the result of pooling layer at 𝑖-th channel of (𝑙 + 1) layer and q 

is 𝑡-th neuron in the 𝑖-th channel and size of pooling kernel is defined as 𝑊. 

 Residual Learning 

The Residual learning technique provides an easy way to do neural network 

training that is substantially deeper. The non-linear layer is composed of many stacked 

convolutional layers, batch normalization (BN) and followed by an activation layer that 

fits into any complex non-linear function. As the neural network layer increases, 

accuracy increases. However, there are limitations to the number of layers that improve 

accuracy. Having much deeper neural networks may not be able to learn some simple 

functions. As the number of hidden layers increases, accuracy may start to saturate at a 

certain point and eventually degrade, leading to a gradient descent problem. The 

residual learning block was introduced to train networks and ease reformulation of NN 

layers in terms of residual function with input layer and to avoid gradient descent 

problems(He et al. 2016a; 2016b; Peng et al. 2019). The details of residual learning are 

illustrated in Figure 6.2. The residual block has four significant features; (i) introducing 

identity skip connection, which allows flowing data directly; (ii) providing deeper 

network with skip connection; (iii) increasing skip connection, which does not affect 

much network complexity; (iv) no effect on performance with removal of layer. 
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Figure 6.2 Single residual building block 

Let 𝑋 be the input time series data of [𝑥1, 𝑥2, 𝑥3, ………………… . . 𝑥𝑁], where 

𝑁 is the length of input data sequence, residual block can be denoted by equation (6.3). 

𝑦 =  𝜑(𝐹(𝑋) + 𝑋)                        (6.3) 

where 𝑦 , 𝜑 are the output of residual learning and activation functions 

respectively. The operation 𝐹(𝑋) + 𝑋 is calculated using identity skip connection and 

element-wise addition. The dimension of 𝐹(𝑋) and 𝑋 must be same. Due to skip 

connection (𝑋), complexity can be easily reduced, hence residual learning is a very 

attractive learning technique. In residual block, two weighted layers are used; weighted 

layer 1 and weighted layer 2. The output of the first weighted layer is given to a non-

linear activation function 𝜑 before passing to weighted layer 2. 

 Dropout 

Dropout is a kind of regularization technique used to avoid overfitting (Sun et 

al. 2016). Regularization is a type of modification taken in NNs (or any learning 

algorithm) to reduce generalization error, but not training error. In DL, dropout and L2 

regularization techniques are adopted for reducing the error.  

During dropout at every iteration, a few nodes are randomly selected, which are 

terminated along with incoming and outgoing node connections. After applying 
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dropout, there is less gap between training and testing accuracy, thus providing 

excellent performance of neural networks. In proposed network, dropout layer is used 

with 0.5 probabilities, which avoids taking same feature vector of vibration signal. 

Probability of 0.5 implies, 50 percent neurons are selected during forward propagation 

and remaining 50 percent neuron are set to zero in each training epoch. However, 

dropout is turned off during testing process and hidden neurons of NNs are considered 

during testing process. In this way, NNs increase the robustness of network model, 

while improving the feature extracting capability of deep neural network. 

 Softmax Classifier 

Fully connected (FC) layer and classifier layer are generally implemented on 

the top of NNs layer for classification tasks as shown in Figure 6.1 (Lei et al., 2016). 

The information extracted from a number of hidden layers of the network is taken as 

input to softmax classifier followed by backpropagation optimization. The softmax 

classifier is employed to diagnose GB fault and is used just before the output layer. The 

softmax function divides output of neurons into a distribution of probability over each 

fault of GB. In classifier layer, softmax calculates probability with respect to 𝑗𝑡ℎ neuron 

and is defined as, 

𝑞(𝑧𝑗) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑗) =
𝑒
𝑧𝑗

∑ 𝑒𝑧𝑘𝑁
𝑘=1

                      (6.4) 

where 𝑧 is the output from 𝑗𝑡ℎ neuron and 𝑁 is the number of gear box faults. 

 Long short-term memory 

Long short-term memory (LSTM) is an improved version of recurrent neural 

network (RNN), which can collect entire history of the input data (Yu et al. 2019). 

LSTM has the same cell architecture as traditional RNN; it also contains constructive 

systems with gating units to control the flow of information, as shown in Figure 6.3. 

RNN works well when dealing with short-term dependencies. However, RNN has some 

shortcomings, like gradient descent and gradient explosion. To solve the problem, 

LSTM model is used with three gates; Input gate, Output gate and Forget gate. 
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Figure 6.3 Internal structure of LSTM model 

The input vibration signals are in the form of time-series data. LSTM networks 

are a kind of RNN that uses special units in addition to standard units. LSTM units 

include a 'memory cell' architecture that can maintain information in memory for a long 

period of time. Three gates are used to control when information is entered into the 

memory, when it is output and when it is forgotten. This architecture lets learn long-

term dependencies and LSTM can add or remove information to cells regulated by three 

gates, thus providing better classification accuracy. 

The input gate decides whether an input 𝑥𝑡 and output of the previous layer ℎ𝑡−1 

is given to the current cell state or not, which means the important information is added 

to the cell state and that are not important or redundant are removed. The forget gate is 

responsible for deleting information from the cell state that is not required for LSTM, 

which has less importance or to understand the things and are removed by a sigmoid 

function. Forget gate is related to the hidden cell state and current input state. The next 

gate is the output gate. It is responsible for generating the output based on the previous 

cell state and it controls the weight of output cell. The final output of LSTM depends 

upon previous output information and current information. Therefore, LSTM overcomes 

the gradient descent problem. 

The mathematical expression of input gate, forget gate and output gate are 

given in following equations (6.5) to (6.7) respectively, 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑉𝑖ℎ𝑡−1 + 𝑏𝑖)                                       (6.5) 
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𝑓𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑉𝑖ℎ𝑡−1 + 𝑏𝑓)                                     (6.6) 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑉𝑜ℎ𝑡−1 + 𝑏𝑜)                                    (6.7) 

where 𝑊 and 𝑉 are the weights of input and hidden state respectively, 

𝑏𝑖, 𝑏𝑓 , 𝑏𝑜 are the biases for input, forget and output gate respectively. The 𝑡 denotes 

the updating step of input gate, 𝑖, output gate, 𝑜 and forget gate, 𝑓, hidden state, ℎ and 

cell state, 𝑐. The expression for cell state and hidden state are expressed in equation 

(6.8) and (6.9). 

𝑐𝑡 = 𝑓𝑡⨀ 𝑐𝑡−1 + 𝑖𝑡 ⊙  tanh (𝑊𝑐𝑥𝑡 + 𝑉𝑐ℎ𝑡−1 + 𝑏𝑐)            (6.8) 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh (𝑐𝑡)                                         (6.9) 

 Adam optimizer 

Adam is a first-order gradient descent optimization algorithm based on 

adaptive learning designed to train neural networks (Kingma and Ba 2015). Adam 

optimizer is more efficient than other optimizers like stochastic gradient descent 

(SGD), AdaGrad and RMSprop, etc. and Adam is used in this study to train deep 

neural networks to get the minimum value of cost function (Duchi et al. 2012). 

Different optimization algorithms are suitable for networks and finding the 

appropriate algorithm requires theoretical analysis and a trial and error-based 

approach in multiple cases. Adam optimizers are a combination of RMSprop and 

momentum with necessary modifications and it directly operates on the first-order 

moment of gradient descent. Hence Adam is better than other optimizer 

algorithms(Goodfellow et al. 2017). 

6.3 DATA SET  

Two datasets are used from experimental setup, one is bearing condition dataset 

and other is gear condition dataset of the gearbox. The performance of deep learning 

model is evaluated on both datasets. Here, a total of 11 trials are investigated to 

minimize randomness of accuracy. To reduce number of neural network parameters, 

sensor signals are down-sampled before giving to the model, by selecting a single data 

point out of two data points. Hence, out of 2000 data points only 1000 data points are 

considered per sample for bearing and gear datasets as shown in Figure 6.4 and Figure 

6.5 respectively.  
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After applying down-sampling, vibration data reflects the attributes and 

properties of input sensor data. The amount of input datasets is reduced. After observing 

acceleration characteristics, it is very difficult to identify gearbox faults. Hence, in this 

analysis, an intelligent fault diagnosis method is proposed to diagnose the gearbox fault. 

Input datasets are divided into training and testing datasets (70% for training 

and 30% for testing of total input data), before giving to deep learning model. Table 6.1 

provides datasets of bearing of an IC engine gearbox and Table 6.2 provides datasets 

of 2nd gear of IC engine gearbox. 

Table 6.1 Details of the bearing datasets of IC engine gearbox  

Gearbox defect Label Load 

type 

No. of 

samples 

Data 

length 

Sensor Position 

Inner (IR) defect 0   No 

load 

380 2000 On Gear box 

casing 

Inner race defect 1 Load1 380 2000 

Inner race defect 2 Load2 380 2000 

Outer race (OR) 

defect 

3 No load 380 2000 

Outer race defect 4 Load1 380 2000 

Outer race defect 5 Load2 380 2000 

IR and OR defect 6 No load 380 2000 

IR and OR defect 7 Load1 380 2000 

IR and OR defect 8  Load2 380 2000 

Healthy state 9 No load 380 2000 

Healthy state 10 Load1 380 2000 

Healthy state 12 Load2 380 2000 
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 Figure 6.4 (a) Vibration signal before applying down-sampling and (b) after applying down-sampling of bearing data 
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Figure 6.5 (a) Vibration signal before applying down-sampling and (b) after applying down-sampling of gear data 
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Table 6.2 Details of gear datasets of IC engine gearbox  

Gearbox defect Label Load 

type 

No. of 

samples 

Data 

length 

Sensor Position 

25% gear defect 0   No load 380 2000 On Gear box casing 

25% gear defect 1 Load1 380 2000 

25% gear defect 2 Load2 380 2000 

50% gear defect 3   No load 380 2000 

50% gear defect 4 Load1 380 2000 

50% gear defect 5 Load2 380 2000 

75% gear defect 6   No load 380 2000 

75% gear defect 7 Load1 380 2000 

75% gear defect 8 Load2 380 2000 

100% gear defect 9   No load 380 2000 

100% gear defect 10 Load1 380 2000 

100% gear defect 11 Load2 380 2000 

Healthy state 12   No load 380 2000 

Healthy state 13 Load1 380 2000 

Healthy state 14 Load2 380 2000 

6.4 FAULT DIAGNSOIS USING CNN AND RESIDUAL LEARNING 

 Fault diagnosis architecture of model-I using CNN and residual learning 

The methodology followed in the fault diagnosis is given in Figure 6.6 and is 

described below in detail. Raw vibration signal from gearbox of an IC engine is 

considered without any signal processing techniques. To start learning process, training 

datasets are given as an input to the architecture. Features are extracted from the input 

signals using multiple layers of deep neural networks. The extracted feature maps or 

vectors are given to the softmax classifier for fault classification. The categorical cross-

entropy function is considered as a multi-class loss function; to check systems 

performance in terms of predicting correct outcome. The loss function converts learning 

problem into an optimization problem and tries to minimize this loss function. The 

proposed model adopts a categorical cross-entropy loss function for multi-class 

classification and is defined by equation (6.10). 

𝐿(𝑊) = −
1

𝑁
∑  [𝑦𝑖 log(�̂�𝑖)
𝑁
𝑖=1 ]         (6.10) 
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Figure 6.6 Proposed fault detection framework based on deep learning
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where 𝑊 is model parameter, 𝑦𝑖 and �̂�𝑖 are true label and predicted label 

respectively. Owing to loss function, it is easy to minimize errors.  

Back propagation (BP) algorithm is useful for updating weight of NNs layer. 

Stochastic gradient descent (SGD) optimizer (Mnih et al. 2015; Schmidhuber 2015) 

with 0.01 learning rate is adopted to train the network for 1100 epochs and batch size 

of 128. In SGD, at every epoch, data samples are randomly split into many mini-

batches. In general, one or two residual blocks are adopted to check model performance. 

Every convolutional layer in the proposed model has the same configuration (i.e., 10 

filters with 10 filter length). The LeakyRelu activation function is adopted, which does 

not suffer from vanishing gradient problems during training process. When training is 

finished, test data sets are fed into the proposed model and testing accuracy of fault 

diagnosis is observed. In this study, an automatic feature extraction and fault detection 

technique for gearbox of an IC engine is proposed. Proposed model does not require 

any kind of pre-processing technique like data normalization (Min-max or z-score 

normalization). The present study allows the user to take only 1D vibration signal as an 

input and deep learning extracts high level features.  

The fault diagnosis of machinery elements based on their vibration data can be 

divided into two main parts: feature extraction and classification. Vibration signals of 

elements contain considerable information related to their condition. The proposed 

model architecture is displayed in Figure 6.7(a). CNNs and residual learning blocks are 

used for high level features extraction and softmax classifier is used for classification. 

In proposed fault diagnosis framework, collected 1D vibration signal is down 

sampled before giving to the framework, to increase calculation speed and model 

performance. For proposed model, there is no need of expertise in the field of signal 

processing or fault diagnosis. The 1D convolutional layer is the first layer of model, 

with 𝐹𝑁 filter kernels window size of length 𝐹𝐿. Convolutional layer with different filter 

of same size (each filter having 10 number of filters of size 10) extracts feature maps 

from vibration signal. The extracted features are fed into the next layer stacked residual 

building block for extracting high level features.  
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Two weighted layers (convolutional layers) are used inside each residual block 

and its illustration is shown in Figure 6.7(b). The weighted layer comprises of one 

convolutional layer, one batch normalization (BN) and nonlinear activation function. 

In general, Relu and LeakyRelu activation is used as a non-linear activation function in 

the neural networks to avoid gradient descent problem. 

 

(a) 

 

(b) 

Figure 6.7 (a) Proposed Fault diagnosis model (b) Illustration of residual building 

block 

BN also known as batch norm is used to make neural network faster and 

increase training process. BN trains the neural networks in deep, allows user to take 

high learning rate and does not require initialization, which helps to eliminate use of 

dropout (Ioffe and Szegedy 2015). By using BN, one can achieve same accuracy with 
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a smaller number of training steps. In architecture, two BN layers is used in each 

residual block. After each convolutional layer (with zero padding to get same dimension 

feature map) BN is used just before nonlinear activation function. LeakyRelu activation 

function is employed, which does not suffer from gradient vanishing problem, during 

training process. 

Pooling layers are normally adopted to extract dominant feature from previous 

layer feature vectors which reduces the number of parameters and there-by increases 

training process. The quality of pooling layer depends on input datasets and fault 

diagnosis problem. These layers keep significant features from feature map. Max 

pooling or average pooling is considered in deep learning techniques. In this model, 

average pooling is adopted in between two residual learning blocks. A total of three 

residual building blocks are considered. Stacked residual block provides depth of 

feature extraction. The output of 3rd residual block is given to flatten layer and then to 

fully connected (FC) and softmax classifier to classify the condition of gearbox. Before 

giving input to flatten layer, dropout layer (probability of 0.5) is used to avoid 

overfitting of the model. 

 Bearing fault diagnosis using CNN and residual learning 

The vibration signals of ball bearing used in this analysis is collected from GB 

experiment setup with four different conditions; healthy, IR defect, OR defect and 

combined faults at IR and OR under three loading conditions i.e., no load, load1 (9.6 

Nm) and load2 (13.3 Nm) are considered for the analysis. In this analysis, there are 12 

different classes of bearing data, labelled as 0 to 11, are given in Table 6.1. The model 

performance with different conditions of bearing under three different loading 

conditions are measured. Each set of raw data collected contains 25,600 data points in 

a single iteration and 30 iterations have been considered for each class. 

Analysis is carried out with respect to different sizes of data points of each 

condition. Vibration signals are divided into samples with four cases: (1) 100 data 

points per sample; (2) 250 data points per sample; (3) 500 data points per sample; (4) 

1,000 data points per sample, as shown in Figure 6.8.  
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Figure 6.8 Accuracy with respect to number of vibrations 

For each bearing, 380 samples are collected from accelerometer sensor and for 

each load condition, data is segmented into (380, 1000) shape. Input data is split into 

training and testing samples, 70% for training and 30% for testing. The training samples 

are fed into proposed model for feature extraction. After training, testing samples are 

input to the model for diagnosing bearing faults. 

 Model design 

Several parameters of CNN and residual learning including; convolutional 

layers, activation function, pooling layers, dropout layer, residual block, flatten layer 

and FC layer are investigated. In the FC layer, 120 neurons are used for classification 

and stochastic gradient descent (SGD) optimizer with 0.01 learning rate is adopted to 

train the network for 1100 epochs with batch size of 128. 

 Results 

Figure 6.9 shows the training and testing accuracy for 11 trials. It exhibits 

training accuracy of nearly 100% (more than 99.87%) and testing accuracy of up to 

93%.  Maximum classification accuracy achieved is 93.79%.   
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Figure 6.9 Accuracy Vs number of trials 

The performance parameters like; recall, precision, F1-score and accuracy are 

employed for verification of the model. These are calculated by equations (6.11) to 

(6.14),  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
      (6.11) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (6.12) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (6.13) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
    (6.14) 

where, 𝑇𝑃,  𝐹𝑃, 𝑇𝑁 and 𝐹𝑁 denotes the number of true positive, false positive, 

true negative and false negative respectively. These parameters are calculated through 

a confusion matrix that describes the classifier performance from the test data points. 

Further details of the evaluation of classifier parameters are given by Arslan et al. 

(2020). The performance parameters are calculated from confusion matrix as shown in 

Figure 6.10. 
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Figure 6.10 Confusion matrix of classification for the proposed model 

Table 6.3 represents performance parameters with respect to bearing fault label. 

Lower accuracy is reason for misclassification of labels 3 to 4 and 6 to 7. 

Table 6.3 Performance parameters obtained from bearing dataset 

Fault label Precision (%) Recall (%) F1-score (%) Accuracy (%) 

0 99.08 100 99.54 99.93 

1 100 100 100 100 

2 100 100 100 100 

3 81.08 79.65 80.36 96.78 

4 80.83 82.20 81.51 96.78 

5 100 98.28 99.13 99.85 

6 86.67 95.12 90.70 98.25 

7 88.78 83.69 86.14 97.95 

8 100 97.22 98.59 99.78 

9 96.58 95.76 96.17 99.34 

10 96.30 94.55 95.41 99.27 

11 99.17 100 99.58 99.93 
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This may be reason for some similarities between faulty signals. The 

classification becomes more difficult when there is noise in fault signals. Figure 6.11 

shows variation of performance parameters with respect to number of residual blocks. 

 

Figure 6.11 Performance matrix vs number of labels 

            The training and testing accuracy increase, as the number of epochs increase, as 

shown in Figure 6.12 and it becomes constant after 1000 epochs, as shown in Figure 

6.13. The maximum accuracy achieved by the proposed model is 93.79%. 

 

Figure 6.12 Training and testing accuracy over number of epochs for bearing fault 

datasets 
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Figure 6.13 Accuracy after 900 epochs 

 Gear fault diagnosis using CNN and residual learning 

In the 2nd study, gear with healthy and progressive tooth defect conditions are 

chosen for analysis. There are 15 different classes of gear labelled as 0 to 14, which is 

given in Table 6.2. The model performance is evaluated with different conditions of 

gear and under different loading conditions. Raw data of each trial contains 25,600 data 

points and 30 iteration data for each class have been used. 

Similar to bearing diagnosis, investigations have been done with respect to 

different set of data points. Vibration signals are divided into samples and each data 

sample contains 1000 data points. All classes of gear datasets include 380 samples for 

analysis that are collected through accelerometer sensor. Input data is split into 70% for 

training samples and 30% for testing samples. The training samples are fed into 

proposed model for feature extraction after training and testing samples are given as 

input for fault diagnosis of gear fault. 
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 Model design 

Similar to bearing datasets, same number of layers are used for gear datasets of 

an IC engine gearbox. In FC layer, 150 neurons are used for classification and stochastic 

SGD optimizer with 0.01 learning rate is adopted to train the network for 1100 epochs 

with batch size of 128. 

 Results 

Figure 6.14 shows the training and testing accuracy of 11 trials. In Figure 6.15, 

it can be observed that the training accuracy is near to 100% (more than 99.87%) and 

testing accuracy is up to 92%.  

 

Figure 6.14 Accuracy of 11 trials for gear data set 

A maximum of 92.57% classification accuracy is achieved.  The performance 

parameters like: precision, F1-score, recall and accuracy are employed for verification 

of the model and is calculated from confusion matrix. 
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Figure 6.15 Accuracy after 900 epochs 

The confusion matrix for gear data is shown in Figure 6.16. The accuracy, 

precision, recall and F1-score for case study II is given in Table 6.4. The lower accuracy 

is the reason for misclassification of labels 5 to 6 and 7 to 8 and it may also be the 

reason for similarities between faulty signal and noise. 
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Figure 6.16 Confusion matrix for case study II 

The training and testing accuracy increase as number of epochs increase, as 

shown in Figure 6.14 and it becomes constant after 1000 epochs as given in Figure 6.17. 

The maximum accuracy achieved by proposed model is 92.57%. 
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      Table 6.4 Performance parameters of obtained for case study II 

Fault label Precision (%) Recall (%) F1-score (%) Accuracy (%) 

0 97.30 97.30 97.30 99.65 

1 99.01 95.24 97.09 99.65 

2 98.47 98.47 98.47 99.77 

3 94.74 92.78 93.75 99.30 

4 100 98.28 99.13 99.88 

5 87.39 92.04 89.66 98.60 

6 94.95 84.68 89.52 98.71 

7 71.19 73.68 72.41 96.26 

8 76.15 77.34 76.74 96.49 

9 91.30 99.21 95.09 99.24 

10 95.00 93.14 94.06 99.30 

11 100 92.79 96.26 99.53 

12 96.58 100 98.26 99.77 

13 97.50 100 98.73 99.82 

14 99.12 99.12 99.12 99.88 

 

 

Figure 6.17 Training and testing accuracy over number of epochs 
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6.5 DEEP LEARNING MODEL USING CNN AND STACKED LSTM 

In this part, the fault diagnostic model results on the experimental setup of an IC 

engine GB are discussed. Two datasets are observed from the experimental setup, one 

is bearing datasets and the other is gear datasets of the GB. Different performance 

parameters are evaluated on both datasets. The effect of different parameter selection 

on results is investigated, including filter length, number of filters and input size. Here, 

11 trials of fault diagnosis model are considered to minimize randomness in the 

accuracy. All the experiments are performed on LENOVO PC with Intel Core i7 CPU, 

8-GB RAM, Google Colab GPU and MATLAB R2018a. 

 Fault diagnosis architecture of model-II using CNN and LSTM 

This model proposes multi-scale deep residual learning with a stacked long 

short-term memory (MDRL-SLSTM) fault classification model. The framework of 

proposed methodology is shown in Figure 6.18. This model comprises of feature 

extractors and feature classifiers, which takes raw vibration data as input into the 

deep learning model without any pre-processing techniques, like normalization. Two 

conditions of the gearbox are considered; healthy and defective state. The training 

and testing data is prepared from sampled signal and fed to deep learning model. 

Proposed model extracts feature automatically using CNN with residual learning and 

given to stacked LSTM for fault classification. 

The categorical cross entropy loss function is adopted for minimizing error 

function using back propagation (BP) algorithm. BP algorithms are responsible for 

updating weights of neural networks layer. Categorical cross entropy loss function is 

used for multi-class classification as given equation (6.1). By using this loss function, 

it is easy to minimize error. BP algorithm is useful for updating the weights of NNs 

layer. Adam optimizer with a 0.0006 learning rate is adopted to train the network for 

1000 epochs and a batch size of 128. After maximum epochs (i.e., finish training), 

testing samples are fed to fault diagnostic model for classification. 
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Figure 6.18 Proposed fault diagnosis flow chart based on deep learning model 
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This study proposes MDRL-SLSTM fault diagnosis model and allows 

vibration signal to be fed as input directly without any pre-processing like 

normalization, which nullifies the need of expertise on fault diagnosis and signal 

processing. The proposed deep learning model is inspired by the existing CNN-

LSTM model with critical modification. Fault diagnosis model contains a feature 

extractor and classifier, as shown in Figure 6.19(a). Proposed architecture takes input 

raw vibration signal into feature extractor, which extracts high-level features using 

CNN with residual learning blocks based on vibration characteristics. The extracted 

feature is fed to stacked LSTM model for fault diagnostics-based on input feature. 

The raw vibration data is considered as input to the feature extractor module, which 

is comprised of two similar CNN with residual learning block 

(CNN_1_with_Residual_Block and CNN_2_with_Residual_Block) having the 

same dimensions. Each one having 1-D CNN and two residual block, illustration of 

residual block is given in Figure 6.19(b). The convolution block 10CONV1, 10 

include 1-D convolution, BN followed by LeakyRelu activation function. 

The 1-D convolution layer is the first layer with 𝐹𝑁 (10)  filter kernel of 

window size 𝐹𝐿 (10) and convolution 10CONV2, 10 contains one convolution layer 

followed by BN. The BN is responsible for accelerating training process to achieve 

good accuracy and performance in a deep learning model. The LekyRelu activation 

function is adopted in proposed model to avoid gradient descent and diffusion 

problem. It is an extended function of Relu activation function with some more 

benefits. Residual block is designed with two weighted layers, each contains one 

convolution layer and BN layer. The output of residual block is given to pooling 

layer. Max pooling layer is used for extracting dominant features from previous 

feature vectors. The quality of pooling layer depends upon fault diagnosis problem 

and input datasets. Four residual blocks are used in feature extractor module with the 

same configuration. Feature vector from CNN_1_with_Residual_Block and 

CNN_2_with_Residual_Block are fused by element-wise product. These blocks 

provide several advantages like automatic feature extraction for different vibration 

signals and reduction in high dimension input data.
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(a) 

 

(b) 

Figure 6.19 (a) The architecture of proposed MDRL-SLSTM model (b) Illustration of 

residual learning building block 
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The feature fusion layer's output is fed to feature extractor module, which 

contains three LSTM layer and one dense layer, each LSTM having different units. 

As shown in Figure 6.19(a), LSTM 1 provides hidden state to LSTM 2 and LSTM 2 

output fed to LSTM 3. In the final state, output of 3rd LSTM layer is given to the 

dense layer for classification. Hence output of next layer is affected by output of 

previous layer. Dense layer contains softmax function which converts outputs into 

the probability distribution with different state of fault. The softmax function is 

defined by equation (6.15). 

𝑞(𝑧𝑗) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑗) =
𝑒
𝑧𝑗

∑ 𝑒𝑧𝑘10
𝑘=1

         (6.15) 

where,  𝑧𝑗 denotes output from 𝑗𝑡ℎ neuron. 

The proposed model can also perform well even with limited training datasets. 

Deep learning methods generally suffer from the heavy computational load. However, 

some deep learning tasks can be finished within few minutes, moreover, they can be 

run online as well as offline, hence the computational load of the proposed model is 

acceptable. Proposed deep learning framework has many advantages, such as: (i) 

compact model which takes raw vibration data as input; (ii) No preprocessing operation 

is required; (iii) Final trained deep learning model can be used to identify different fault 

conditions, etc. 

 Bearing fault diagnosis using multi-scale deep residual learning with a 

stacked long short-term memory (MDRL-SLSTM) 

The case study I is done on bearing datasets of IC engine GB experimental 

setup. There are four-fault conditions considered; healthy, IR defect, OR defect and 

combined faults at IR and OR under three loading conditions i.e., no-load, load 1 and 

load 2 are considered for the analysis. In this study total of 12 different classes are 

considered for ball bearing, labelled as 0 to 11 as mentioned in Table 6.1.  
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Figure 6.20 Accuracy of 11 trial 

The raw data collected through the sensor contains a signal of 30 second 

duration and split into 30 samples with sampling rate of 25.6 kHz. Each condition 

includes 380 data samples (total 4,560 samples), each sample having 1000 data points. 

Input data is divided into 70% for training the model and 30% for testing. Therefore, 

3192 data samples for training and 1368 samples for testing are used. The results of 

accuracy for 11 trials are shown in Figure 6.20. The proposed model gives training 

accuracy of more than 99% (near to 100%) and maximum validation accuracy up to 

94.08%. Adam optimizer with 0.0006 learning is adopted to train the network for 1000 

epochs with 128 batch sizes. 

The performance parameters are calculated using the confusion matrix shown 

in Figure 6.21. It describes the classifier performance on the test data points. 

Performance parameters for each fault label are given in Table 6.5, lower accuracies 

are due to the misclassification in labels 3 to 4. Misclassification is due to some 

similarity between fault signals or presence of noise in vibration signal. Hence, if there 

is a noise in the faulty signal, classification becomes difficult. 
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Figure 6.21 Confusion matrix for bearing classification  

Training and validation accuracy increases as the number of epochs increases 

and becomes constant after some epochs, hence, less variation in training and validation 

accuracy.  
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Figure 6.22 Accuracy after 900 epochs 

Figure 6.22 shows the graph between accuracy and epochs. Both accuracies are 

constants after 900 epochs, as shown in Figure 6.23. 

 

Figure 6.23 Accuracy vs epochs 
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Table 6.5 Performance parameters for case study I 

Fault label Precision (%) Recall (%) F1-score (%) Accuracy (%) 

0 100 100 100 100 

1 100 100 100 100 

2 100 100 100 100 

3 77.59 73.77 75.63 95.76 

4 71.05 76.42 73.64 95.76 

5 97.32 99.09 98.20 99.71 

6 91.13 100 95.36 99.20 

7 96.15 90.09 93.02 98.90 

8 100 93.04 96.40 99.42 

9 95.76 97.41 96.58 99.42 

10 95.76 95.76 95.76 99.27 

11 100 98.21 99.10 99.85 

The maximum accuracy achieved by the proposed deep learning-based 

architecture is 94.08 %. Training and validation loss decreases as number of epochs 

increases and it is shown in Figure 6.24. 

 

Figure 6.24 Loss vs epochs for bearing dataset 
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 Gear fault diagnosis using multi-scale deep residual learning with a stacked 

long short-term memory (MDRL-SLSTM) 

In case study II, healthy and progressive tooth defect conditions of gear data of 

GB are chosen for analysis. To make defect, tooth height is reduced by 1 mm for each 

condition and named as 25% defect, 50% defect, 75% defect and 100% defect, under 

three load conditions; no-load, load 1 and load 2 conditions. A total of 15 different 

classes of gear data are considered, labelled as 0, 1, 2 ...14, the details of which are 

given in Table 6.2. The model performance is evaluated for different conditions of gear 

and under different loading conditions. Each trial's raw data contains 25,600 data points 

and 30 iteration data for each class has been used. Similar to the bearing data (in case 

study I), investigations have been done with gear data.  For each fault, 380 data samples 

are taken and each sample contains 1000 data points. 70% of the input data, 3990 

samples, is used for training and the remaining 30%, 1710 samples, is used for testing. 

Based on vibration characteristics of gear data, proposed model automatically 

extracts deep features from the data, with no requirement of manual interference. These 

features are given to the classifier for fault classification. Adam optimizer with 0.0006 

learning rate is adopted for training the model for 1000 epochs with 128 batch size. 

 

Figure 6.25 Accuracy vs number of trials 
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Figure 6.25 shows the accuracy in terms of number of trials. Results show that 

maximum training accuracy achieves more than 99% (near to 100%) and maximum 

validation accuracy is 94.33%. 

Table 6.6 Performance parameters for case study II 

Fault label Precision (%) Recall (%) F1-score (%) Accuracy (%) 

0 99.19 98.39 98.79 99.82 

1 99.14 94.26 96.64 99.53 

2 95.24 100 97.56 99.65 

3 83.94 95.83 89.49 98.42 

4 91.87 100 95.76 99.42 

5 79.10 94.64 86.13 98.01 

6 94.44 74.56 833.33 98.01 

7 91.67 56.90 70.21 96.73 

8 77.21 95.45 85.37 97.89 

9 91.89 93.58 92.73 99.06 

10 92.79 99.04 95.81 99.47 

11 99.07 96.36 97.70 99.71 

12 100 99.01 99.50 99.94 

13 100 93.28 96.52 99.53 

14 100 97.41 98.69 99.82 
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Figure 6.26 Confusion matrix for gear classification 

Performance parameters are also tabulated, like precision, F1-score, Accuracy 

and Recall are given in Table 6.6. Lower accuracy is the reason for misclassification in 

labels 4, 6, 8 and 9. The confusion matrix is used for calculating the performance 

parameters, as shown in Figure 6.26. 

 

Figure 6.27 Training and validation accuracy over number of epochs 
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The training and validation accuracy increases with epochs and becomes 

constant after 900 epochs, as shown in Figure 6.27, hence, there are variations in the 

accuracy.  

 

Figure 6.28 Accuracy after 900 epochs 

In Figure 6.28, the bar graph shows, that after 900 epochs and it indicates 

constant accuracy after 900 epochs. Training and validation loss decreases as number 

of epochs increases and it is shown in Figure 6.29. 
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Figure 6.29 Loss vs epochs for gear dataset 

 

6.6 SUMMARY 

This chapter gives the detailed applications of deep learning techniques in fault 

diagnosis of bearing and gear. CNN with residual learning is used for extracting 

features from the vibration signals of the gearbox. Softmax and LSTM methods were 

used for classification of faults based on the extracted features. The results obtained 

from both model-I and model-II proves efficiency of deep learning model for automatic 

feature extraction and classification of gearbox elements.  Thus, the proposed 

methodology with deep learning techniques can be recommended for practical 

applications and development of on-line fault diagnosis systems for IC engine gearbox 

condition monitoring using vibration analysis. 
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CHAPTER 7 

 SUMMARY AND CONCLUSIONS 

7.1 SUMMARY 

Experiments were conducted on two stroke and four stroke IC engine gearbox. 

Vibration signals were acquired for healthy and faulty conditions of the gearbox. Fault 

diagnosis was performed using signal processing, ML and DL techniques. In the 

following sections brief summary of two stroke and four stroke engine analysis is 

discussed. 

 Fault diagnosis of ball bearing in two stroke IC engine gearbox 

Fault investigation of ball bearing is one of the significant research areas in 

condition monitoring of IC engine gearbox. In this study, signal processing techniques 

such as time domain analysis, spectrum analysis and CWT analysis were used for fault 

diagnosis of ball bearing using vibration signals.  

 Experiments were conducted on output shaft ball bearing with healthy and 

faulty conditions of the gearbox. Vibration signals of IC engine were acquired and used 

to identify the faulty conditions in the ball bearing. Machine learning techniques were 

also employed for online condition monitoring of IC engine gearbox. Statistical, EMD 

and DWT features were extracted from the recorded vibration signals. Decision tree 

was used for selecting most contributing features for classification. Artificial intelligent 

models such as SVM, random forest algorithm and K star models were used as 

classifiers for classifying the conditions of the bearing. 

 Fault diagnosis of ball bearing in four stroke IC engine gearbox 

This study is about monitoring ball bearing used in the four stroke IC engine 

gearbox using condition monitoring techniques. Experiments were conducted on four 

stroke IC engine gearbox which was connected to Eddy current dynamometer for 

applying external load. Vibration signals were acquired from the gearbox with triaxial 

accelerometer. Ball bearing with healthy and induced faulty (outer race fault, inner race 
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fault, inner and outer race fault) conditions were used in the analysis. Fault diagnosis 

of the ball bearing were carried out using machine learning and deep learning 

techniques. For all the conditions of bearing, statistical, EMD and DWT features were 

extracted from the vibration signals. Decision tree technique (J48 algorithm) was used 

in the analysis for selecting significant features from the feature vector. From the 

chosen features, ball-bearing conditions were classified using SVM, random forest 

algorithm and K star algorithm. Results obtained from the different classifiers were 

compared and a best classification algorithm with a decision tree were suggested for 

condition monitoring of the rotating components. Also, deep learning methods such as 

CNN with residual learning, softmax function and LSTM were used for fault diagnosis 

of the bearing. 

 Fault diagnosis of gear in four stroke IC engine gearbox 

The purpose of the study was to diagnose faults in second driving gear in 

gearbox of an IC engine using vibration signals with signal processing, machine 

learning and deep learning techniques. Experiments were conducted on real-time 

running condition of IC engine gearbox while considering combustion. Vibration 

signals from the gearbox were acquired for healthy and induced faulty conditions of the 

gear. In the study, 25% tooth fault, 50% tooth fault, 75% tooth fault and 100% tooth 

fault were chosen as the condition of the driver gear. The acquired signals were 

processed and analysed using signal processing and machine learning techniques. 

Spectrum, cepstrum, short-time Fourier transform (STFT) and wavelet analysis were 

performed. Spectrum, cepstrum and CWT provided better information about gear fault 

conditions using time–frequency characteristics. The obtained results show the 

variation in the amplitude of the crankshaft rotational frequency (CRF) and gear mesh 

frequency (GMF) for different conditions of the gearbox with various load conditions. 

Machine learning techniques were also employed in developing the fault diagnosis 

system using statistical, EMD and DWT features. The performance of deep learning 

techniques was discussed in implementing automatic feature extraction from the raw 

vibration signals and classification is performed using softmax and LSTM methods. K-

star algorithm with J48 decision tree provides better classification accuracy of about 
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96% in identifying gearbox conditions for DWT features. The proposed approach can 

be used effectively for fault diagnosis of IC engine gearbox. 

7.2 CONCLUSIONS 

Following were the conclusions drawn from the study on fault diagnosis of two 

stroke and four stroke IC engine gearbox using vibration analysis through signal 

processing, ML and DL techniques. 

 Ball bearing fault diagnosis in two stroke IC engine 

Following were the conclusions drawn from the study on fault diagnosis of 

bearing in two stroke IC engine gearbox using signal processing and ML techniques. 

• Results have shown that the spectrum analysis and CWT analysis were very 

effective in identifying the conditions of ball bearing. CWT plots have provided 

the information about ball bearing condition in the range of frequency band 500–

1500 Hz with the variation of amplitude corresponding to different fault conditions. 

Hence, it is suggested to use CWT technique in the applications of fault detection 

of ball bearing in IC engine. 

• From this investigation of bearing fault, SVM algorithm provided a classification 

accuracy of about 96% with statistical features and 97.33% with DWT features.  

• K star and random forest algorithms were able to attain classification accuracy of 

about 98% with statistical features.  

• K star achieved classification accuracy of 99.33% in association with DWT 

features and decision tree algorithm. This is highest among all other combinations 

of features and classifiers. 

• Experimental results show that data mining techniques like decision tree combined 

with random forest algorithm and K star model for classifying faults in machinery 

gives good classification accuracy. Based on the results, K star and random forest 

algorithm can be suggested for the diagnosis of faults in two stroke IC engine ball 

bearing using DWT features. 
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 Ball bearing fault diagnosis in four stroke IC engine 

Following were the conclusions drawn from the study on fault diagnosis of 

bearing in four stroke IC engine gearbox using ML and DL techniques. 

• The fault classification accuracy was evaluated using statistical, EMD, DWT 

feature extraction techniques with classifiers such as SVM, random forest and K 

star for bearing. It was found that K star classifier with DWT feature yielded better 

accuracy than rest of the classifiers with classification accuracy 91.94 % in case of 

bearing diagnosis. Use of DWT features with all three classifiers resulted in better 

classification accuracy. Hence, it is recommended for classification instead of 

statistical features and EMD features.  

• CNN with residual learning is able to get acceptable diagnostic performance with 

limited vibration data for training the model. Proposed model achieved 93.79% 

diagnostic accuracy for bearing of an IC engine gearbox. 

• CNN with multi-scale deep residual learning with a stacked long short-term 

memory (MDRL-SLSTM) model was proposed for fault classification. It resulted 

in diagnostic performance with 1-D vibration data of GB and classification 

accuracy of 94.08% is achieved on bearing datasets.  

 Gear fault diagnosis in four stroke IC engine 

Following were the conclusions drawn from the study on fault diagnosis of gear 

conditions in four stroke IC engine gearbox using signal processing, ML and DL 

techniques. 

• Time domain analysis shows dynamic variation in amplitude with change in gear 

(Healthy, 50% defect and 100% defect) and loading conditions, which can be 

noticed with increased value of RMS during the analysis. 

• Spectrum plots depict harmonics of CRF and GMF with increase in amplitude for 

different conditions of the gearbox faults. 

• Cepstrum plots provided quefrency of GMF and also gave information regarding 

amplitude variation with respect to different conditions of the gearbox. 
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• STFT provided better frequency information, but did not give clear evidence about 

time variation with respect to frequency. The gear mesh frequency band of 1000 

Hz - 1300 Hz can be seen in STFT plots for different conditions of gear.  

• CWT spectrograms gave time–frequency information with respect to amplitude 

variation for different conditions of the gearbox. In the spectrogram, harmonics 

were clearly visible in the frequency band of 800 Hz - 1500 Hz. 

• The fault classification accuracy was evaluated using statistical, EMD, DWT 

feature extraction techniques with classifiers such as SVM, random forest and K 

star for bearing.  

• K star model has resulted in a maximum classification accuracy of about 95.77% 

with DWT features as compared to other classifiers with any feature’s extraction 

techniques listed.  

• The combination of random forest model with DWT feature technique has 

provided a good classification accuracy of about 94%, which is nearer to the 

highest classification accuracy 95.77% (obtained by the K star model with the 

DWT features).  

• CNN with residual learning was able to get acceptable diagnostic performance with 

limited vibration data for training the model. Proposed model achieved 92.57% 

accuracy for gear data set of an IC engine gearbox. 

• CNN using multi-scale deep residual learning with a stacked long short-term 

memory (MDRL-SLSTM) model was proposed for fault classification. Proposed 

model achieved good diagnostic performance with 1-D vibration data of GB and 

classification accuracy of 94.33% was attained on driving gear data.  

7.3 CONTRIBUTIONS 

This main contribution of the present study are; 

• Bearing and driver gear of four stroke IC engine and also, bearing of two stroke 

IC engine were diagnosed for their frequent failure modes through vibration 

signal by employing signal processing, machine learning and deep learning. 

• An attempt has been made to explore the new machine learning algorithms such 

as K-star algorithm, random forest to classify various gearbox conditions. 
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• It is vital in ML to select algorithm which results in good classification accuracy. 

Hence a comparative study of ML techniques was carried out.  

• To overcome the problem associated with ML, deep learning was employed 

where, the manual feature extraction and need of preprocessing raw data was 

eliminated. 

• Automatic feature extraction methods using convolutional neural network and 

residual learning are explored to analyze raw vibration signals from the gearbox 

to classify the health conditions of bearing and gear. 

7.4 SCOPE OF FUTURE WORK 

• Hardware based monitoring system can be designed and implemented for 

multiple gearboxes located at remote locations. 

• Real time condition monitoring of gearbox using other signals such as sound, 

acoustic emission, temperature, combustion pressure etc. can be considered for 

diagnosing the conditions. 

• IC engine components like piston, crankshaft, cylinder liner and other elements 

can be monitored using machine learning and deep learning techniques. 
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APPENDIX I 

1. Four Stroke IC Engine   

Make: Bajaj Discover 125 ST 

 

 

 

 

 

 

 

 

 

 

Engine parameter Particulars 

Type of engine DTS-I, 4-stroke, natural air cooled 

Number of cylinders 1 

Torque 10.8 Nm @ 5500 rpm 

Displacement 124.6 cc 

Power 11 bhp @8000 rpm 

Number of gears Five speed constant mesh gearbox 

Final drive ratio 3.214:1 
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2. Eddy Current Dynamometer 

Make: SAJ India Pvt Ltd, Pune 

 

 

 

 

 

 

 

 

 

 

Dynamometer Parameter Particulars 

Model ED 1 

RPM 1500-3000 

Torque 7.5 KW 

Type Eddy current 

Serial Number 234/166 

Year of Manufacture 2012-13 
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3. Two Stroke IC Engine  

Make: Kawasaki KB-100/100RTZ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Engine Parameter Particulars 

Type Two stroke, air cooled 

Number of cylinders 1 

Bore 49.5 mm 

Stroke 51.8mm 

Volume 99.69cm3 

Compression ratio 11:1 

Max net power 10.10 HP at 7500 RPM 

Max net torque 1.09 kgf.m at 7000 RPM 

Transmission 4 Speed gearbox 

Final drive ratio 3.385:1 
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4. DC Motor 

Make: Khalsa Foundry and Workshop, Kanpur 

 

Parameter Specification 

Rated Power 3 hp 

Rated Voltage 230 V DC 

Max Current 12 A 

Max speed 1440 rpm 

 

 

5. Dimmerstat 

Make : Ravistat 

 

 

 Parameter Specification 

Rated Input voltage 230 V AC 

Output Voltage range 0 – 260 V AC 

Max Load 12.21 kVA 

Max Current 15 A   
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6. Tri axial Accelerometer 

Make: YMC Piezotronics China 

 

 

 

 

 

7. Data Acquisition System 

Make: National Instruments 

Model NI 9234 

Voltage ±5 V, AC/DC analog input 

Sampling rate 51.2 kS/s/ch 

Channel 4 channel module 

Temperature range -40 to 70 ˚C 

 

Model YMC145A100 

Sensitivity X 97.9 mV/g 

Sensitivity Y 95.65 mV/g 

Sensitivity Z 104.6 mV/g 

Measuring range ±50 

Temperature range -41 to 121 ˚C 

Case Material Stainless steel 

Size 25.4  25.4 14 mm 
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