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ABSTRACT

In a Wireless Sensor Network (WSN), the nodes are placed in random positions and con-

nected to each other through networks. The nodes collect data from each other, perform pro-

cessing and the results are sent to a Base Station (BS).

In simple words, Optimization is selecting the best element, with respect to some criterion,

from a given set of alternatives. Most of the research in the field of WSNs have concentrated

on optimizing clustering, energy efficiency, network lifetime, coverage, load balancing, fault

tolerance, quality of service, etc. Multi Objective Optimization deals with optimizing more

than one objective at the same time.

This thesis concentrates on developing nature inspired algorithms for energy efficient clus-

tering and for improving network lifetime in conjunction with Quantum computing. Also, the

aim is to develop an efficient nature inspired algorithm for optimizing target coverage in Ho-

mogeneous as well as Heterogeneous WSN using Quantum Computing.

For achieving the first 2 objectives (Optimizing Energy Efficiency and Improving Network

Lifetime), the nature inspired algorithm, PSO (Particle Swarm Optimization) is used in con-

junction with Quantum computing. For the 3rd objective (Optimizing Target Coverage), an-

other nature inspired algorithm, MOEAD (Multi Objective Evolutionary Algorithm with De-

composition) is used in conjunction with quantum computing.

Keywords: Optimization, WSN, Quantum computing, Nature inspired algorithms.
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CHAPTER 1

Introduction

1.1 Nature Inspired Inventions

Nature has always inspired mankind to invent and continues to do so. Examples are so

many but only 3 have been given to illustrate how nature inspires invention.

The kingfisher ( Hennighausen (2017)), a fish-eating bird, inspired the Japanese Engineer

Eiji Nakatsu. It barely creates a ripple when it darts into water in search of fish. He re-

designed the nose of high-speed train inspired by the beak of kingfisher to look like a

50 foot long steel beak. This reduced the high level noise caused by high-speed trains

and also reduced power use and enabled higher speeds

The bumps on the shell of Namibian beetle ( Hennighausen (2017)) catch water droplets,

which then run down chutes toward its mouth. Inspired by this, Pak Kitae of Seoul Na-

tional University of Technology developed ’Dew Bank Bottle’. Morning dew condenses

on it and conveys it to a bottle, which has a drinking spout.

When insects of the genus Photuris (Fireflies)( Hennighausen (2017)) light fires in their

bellies, the radiance is amplified by their anatomy — sharp, jagged scales, according to

research by scientists from Belgium, France, and Canada. Based on this observation,

the scientists then built and laid a similar structure on a light-emitting diode (LED),

which increased its brightness by 55 percent.

1



1.2 Nature Inspired Algorithms / Nature Inspired Computing

Nature Inspired Algorithms / Nature Inspired Computing refers to a class of meta

heuristic algorithms that imitate or are influenced by some natural phenomena explained

by natural sciences. A common feature shared by all nature-inspired meta heuristic al-

gorithms is that they combine rules and randomness to imitate some natural phenomena.

The nature inspired algorithms can be grouped into 3 broad classes (Siddique and Adeli,

2015) : Physics Based Algorithms (PBA), Chemistry Based Algorithms (CBA) and Bi-

ology Based Algorithms (BBA) as shown in Figure 1.1 :

Figure 1.1 Classes of Nature Inspired Algorithms / NIC

1. Physics-based Algorithms (PBA):

Examples:

• Colliding Bodies Optimization (CBO) - inspired by Newton’s laws of mo-

tion

• Gravitational Search Algorithm (GSA) - inspired by Newton’s gravitational

force

• Harmony Search Algorithm (HSA) - inspired by Acoustics
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• Simulated Annealing (SA) - inspired by Thermodynamics

2. Chemistry-based Algorithms(CBA):

Examples:

• Chemical Reaction Optimization (CRO) algorithm - based on simulation of

molecules’ movements and their resultant chemical reactions

• Artificial Chemical Process Algorithm (ACPA)

• Artificial Chemical Reaction Optimization Algorithm (ACROA)

• Chemical Reaction Algorithm (CRA)

3. Biology-based Algorithms (BBA):

Biology based algorithms can be classified into 3 groups : Evolutionary Algo-

rithms (EA), Bio-inspired Algorithms (BIA) and Swarm Intelligence based Al-

gorithms (SIA) as shown in Figure 1.2 :

Figure 1.2 Classification of Biology based algorithms

(a) Evolutionary Algorithms (EA):

• Evolutionary Programming (EP)

• Evolutionary Strategies (ES)

• Genetic Algorithm (GA)

• Genetic Programming (GP)
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• Differential Evolution (DE)

• Cultural Algorithm (CA)

(b) Bio-inspired Algorithms (BIA):

• Particle Swarm Optimization (PSO)

• Bird Flocking (BF)

• Fish School (FS)

• Biogeography Based Optimization (BBO)

• Artificial Immune Systems (AIS)

• Lindenmayer Systems (LS)

(c) Swarm Intelligence based Algorithms(SIA):

• Ant Colony Optimization (ACO)

• Artificial Bee Colony (ABC)

• Bat Algorithm (BatA)

• Firefly Algorithm (FA)

• Cuckoo Search (CS)

• Bacterial Foraging Optimization Algorithm (BFOA)

1.3 Wireless Sensor Network

1.3.1 Basics of WSN

The basic structure of a node is given in Figure 1.3 (Kuila and Jana, 2017).

As shown in the above figure, a sensor node consists of 4 components:

1. Sensing unit

2. Processing unit

3. Transceiver unit

4. Power supply unit
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Figure 1.3 Basic Components of WSN

Sensing Unit:

The sensing unit usually consists of many sensor units which allow it to gather in-

formation from the physical world. The sensor unit can gather information like light,

temperature, humidity, etc. It consists of 2 subunits- a sensor and an ADC (Analog to

Digital Converter). The sensor observes the phenomenon for which it is designed and

generates analog signals. The ADC converts these analog signals into digital signals.

These digital signals are then sent to the processing unit.

Processing Unit:

This part serves as the sensor node’s ’heart.’ The processor unit may include onboard

memory or be linked to a tiny storage device. This unit is in charge of the procedures

that allow the sensor node to perform sensing activities, run accompanying algorithms,

and communicate with other nodes via wireless communication.

Transceiver unit:

The transceiver units are responsible for communication between any two sensor nodes.

The operations for converting bits to be transferred into radio frequency (RF) waves and

recovering them at the other end are implemented by a transceiver unit. This unit helps

in connecting the WSN to the network.

Power supply unit:

The power unit is one of the most crucial components of a sensor node. The most

common power source is battery power, even though there can be other energy sources

also. Each component in the wireless sensor node is powered by the power unit, and
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the power unit’s limited capacity necessitates energy-efficient operation for each com-

ponent’s functions.

1.3.2 WSN Architecture

A WSN is made up of a large number of small, low-power, and low-cost sensor nodes

that are distributed randomly or manually over an unmanaged target region. Sensor

nodes collect local data on a regular basis, process it, and then transfer it to a remote

base station (BS), also known as a sink, via single-hop or multi-hop communication.

The sink is connected to the internet in order to bring the phenomenon to the attention

of the general public. The detected data is conveyed to the sink in a continuous, event-

driven, query-driven, or hybrid manner, depending on the many applications of the

sensor network. In continuous data communication, all sensor nodes communicate data

to the sink on a regular basis. In some applications, a sensor node only communicates

observed data to the sink if an event occurs, which is known as event-driven. The BS

or sink sends a query to all sensor nodes in the sensing zone via flooding or direct

communication in the query-driven paradigm. The sensor nodes with data matching

the query will then respond to the sink. A hybrid model, which combines continuous,

event-driven, and query-driven data delivery, is used by several applications. There are

2 types of WSN architecture:

1. Flat

2. Hierarchical

Flat Architecture:

Each sensor node in a Flat sensor network is responsible for efficiently performing the

sensing duty. Single-hop or multi-hop communication is used by the sensor nodes to

send the detected data to the sink.

Figure 1.4 (Kuila and Jana, 2017) depicts both Single-hop and Multi-hop commu-

nication. Single-hop communication is used for small area sensor networks and when

sink is located near the region. In Multi-path communication, each sensor node selects

another sensor node as a next-hop relay node for forwarding data to the sink.
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Figure 1.4 Flat wireless sensor network architecture: a) Single-hop communication and
b) Multi-hop communication between sensor nodes and sink

Hierarchical architecture:

Sensor nodes in a Hierarchical network are organised into groups called Clusters. A

Cluster Head (CH) is the leader of each cluster. All sensor nodes detect local data and

transmit it to the corresponding CH. The local data is then aggregated by the CHs before

being sent to the base station (BS) directly or via other CHs.

The working of Cluster-based WSN with Single-hop and Multi-hop are shown in

Figures 1.5 and 1.6 respectively. (Kuila and Jana, 2017)

1.3.3 Design Challenges in WSN

The majority of sensor networks are application-specific, with varying application re-

quirements. This is one of the primary reasons why it is not feasible to address all

design challenges in a single network. Instead, only a portion of these challenges are

considered in the design of an application-specific network based on the application re-

quirements. The following is a list of important challenges which researchers of WSN

have worked on: (Labrador and Wightman, 2009)

• Network Lifetime: Since WSNs run on batteries, it is important that these bat-

teries can last longer to get better network lifetime. When WSNs are deployed on

a large scale or deployed in dangerous applications, the number of times the bat-

teries are changed should be kept to a minimum. Network lifetimes in the order
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Figure 1.5 A cluster-based wireless sensor network architecture with Single-hop com-
munication between CHs and base station. Small dashed arrows show the communica-
tion between sensor nodes and their corresponding CHs, and large arrows for the same
between CHs and CHs or CHs and base station.

Figure 1.6 A cluster-based wireless sensor network architecture with Multi-hop com-
munication between CHs and base station

of many years would be ideal.

• Scalability: Depending on the application, hundreds to thousands of wireless

sensor devices maybe required. As an example, suppose WSNs are used to mon-

itor the India-Pakistan border. The one size fits all approach will not work here.
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Some of the algorithms and protocols which work in small scale networks may

not work in large scale ones. One example is of Routing. Using Dijkstra’s short-

est path algorithm, small-scale networks can easily run well-known proactive or

reactive routing protocols. This approach, however, will not be energy-efficient

for large-scale wireless sensor networks. Instead, location-based routing mecha-

nisms based on local information are better suited.

• Interconnectivity: WSNs must be interconnected in order for data to reach its in-

tended destination for storage, analysis, and possible action. WSNs are connected

to each other using various technologies. To achieve these interconnections and

allow data transfer to and from WSNs, new protocols and mechanisms must be

developed.

• Reliability: The devices used are cheap and more prone to failure. Available

energy plays an important role in the reliability of a node.

• Heterogeneity: The newly developed WSNs may require the development of

algorithms and protocols which never existed before.

• Privacy and security: As is normal in networking, privacy and security are of

concern in WSNs too. Algorithms which are not too complex and need less en-

ergy are in demand.

• Coverage: In simple words, Coverage means that each point in a particular area

will be monitored by a sensor node. Ideally, a large area would need to be covered

using minimum number of nodes.

All the above challenges are influenced by one factor : Energy. The energy avail-

able in the individual nodes has an effect on the lifetime of the network. This is

one of the reasons due to which there are so many research publications on energy

efficiency of WSNs and related protocols.

In our thesis, we have restrained ourselves to the study of the 3 issues :

– Energy Efficiency
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– Network Lifetime

– Coverage

1.3.4 Homogeneous Vs Heterogeneous WSNs

Sensor networks can be classified into 2 types, Homogeneous and Heterogeneous (Kuila

and Jana, 2017) . In Homogeneous networks, the sensor nodes are similar as far as

energy of nodes, memory capacity, etc are concerned. In Heterogeneous networks,

some of the nodes may differ in the above properties.

1.3.5 Static Vs Mobile Sink

Sinks can be Static or Mobile (Kuila and Jana, 2017) . In harsh environments, the sink

maybe static and kept near sensing region. The sensor nodes can report to the static

sink. The disadvantage of Static sinks is that energy of sensor nodes near the sink will

deplete fast due to relaying of sensed data to sink. These nodes will die and sink is

cutoff from the network. This problem is commonly known as the hot-spot or sink-hole

problem. Mobile sinks can help in solving these problems. Even though mobile sinks

prolong network lifetime, there is considerable overhead required to develop routing

protocols for them.

1.3.6 Clustering in WSN

In a Clustered WSN, the nodes are grouped into various Clusters. For each cluster, there

is a leader, the CH (Cluster Head). The job of the nodes is to sense data and send it to

their respective CH. It is the job of the CH to collect all the data and send it to Base

Station (BS), either directly or through other CHs. Cluster based WSNs have some

advantages:

1. Data aggregation at the CH avoids redundant data. Therefore, the network does

not have to transmit high volume of redundant data and this reduces Energy con-

sumption.

2. Only CHs need to have information about the routes of other CHs and this de-

creases routing information required. The Scalability of the network is improved

due to this.
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3. Since the sensor nodes communicate with only CHs and not among themselves,

Communication bandwidth is conserved.

1.3.7 Challenges in Clustered WSNs

1. Cluster Head Selection: Selection of CHs from normal sensor nodes is an

important step and a lot of care has to be taken for this.

2. Cluster formation: Once the CHs are selected, the assigning of normal nodes to

corresponding CHs has to be done efficiently.

3. Load balancing: During the assignment of nodes to CHs, if nodes are not prop-

erly assigned, some CHs maybe Overloaded and some may not have Load. This

has to be avoided. Also, assigning of nodes to CHs located far from them may

lead to more energy consumption and lead to decreased network lifetime.

4. Fault tolerance: Failure of nodes can hamper the network. But, failure of CHs

may be dangerous since the non CHs connected to these failed CHs also become

inaccessible. Clustering algorithms should handle this scenario.

1.4 Bioinspired algorithms and WSN

Bioinspired algorithms have been used to optimize various parameters of a WSN. In

(Martins et al., 2010), the Genetic Algorithm (GA) has been used to optimize connec-

tivity and coverage. In (Mohamed et al., 2020), energy is optimized using the Coyote

Optimization Algorithm (COA). (Bouzid et al., 2020) optimizes coverage and connec-

tivity using GA. Network lifetime and energy are optimized in (Osamy et al., 2020)

using Chicken Swarm Optimization algorithm. In (Balasubramani et al., 2021), the

Grey Wolf Optimization algorithm is used to optimize energy. The work of (Al-Otaibi

et al., 2021) uses Human Brainstorm Optimization algorithm to optimize energy and

lifetime.

1.5 Quantum Computing

In Traditional computing, the operations are done using bits which can be either 0 or 1.

In Quantum computing, the bits, called Qubits, can be either 0 or 1 or both simultane-
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ously and this makes quantum computing very powerful in solving complex problems.

A sample problem will help us to understand the power of quantum computing. Sup-

pose one item has to be found from a list of N items. On a classical computer N/2 items

would have to be checked on the average, and in the worst case all the N items would

need to be checked. Using a quantum algorithm, Grover’s search, the item is found af-

ter checking roughly
√

N of them. This represents a remarkable increase in processing

efficiency and time saved. If one item has to be found in a list of 1 trillion, and each

item takes 1 microsecond to check, in a classical Computer, about 1 week would be

needed and in a quantum computer, only about 1 second would be enough.

At a particular moment in time, a qubit can be in 0 state, 1 state or a superposition of

these 2 states. Its state can be derived from :

|ψ >= α|0 >+β |1 > (1.1)

where α and β are the probability amplitudes of the corresponding states. |α|2 is

the probability that a qubit will be in ’0’ state and |β |2 is the probability that the qubit

will be in ’1’ state.

|α|2 + |β |2 = 1 (1.2)

The state of a qubit changes through quantum gates. We change the state of qubits

by using rotation gates. The Q bit string of m bits is represented as a quantum matrix:

α1| α2| .... |αm

β1| β2| .... |βm

 (1.3)

where

|αi|2 + |βi|2 = 1, i = 1,2, .....,m (1.4)

The state of the quantum bits are updated using the Rotation gate method as below:

αnew

βnew

=

cos(θ) −sin(θ)

sin(θ) cos(θ)


αold

βold

 (1.5)

where θ is the rotation angle of each qubit toward either 0 or 1 depending on the sign,

αnew and βnew denote the updated values and αold and βold denote the values in previous
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iteration.

The value of θ is determined by a certain adjustment strategy in conventional quan-

tum genetic algorithm and the value of θ is generally a constant value around 0.01π

(Wang et al., 2013). A large rotating angle is set early in the evolutionary process to

quickly facilitate the entire interval and find the region with the optimal values. To accu-

rately find the optimal value, the value of rotating angle is reduced while the evolution

is increased.

13



1.6 Research objectives

The following are the objectives fulfilled by our research:

1. Develop an Energy Efficient nature inspired Clustering algorithm using Quantum

computing

2. Develop a nature inspired Clustering algorithm using Quantum Computing to

improve the Network Lifetime

3. Develop an efficient nature inspired algorithm for Target Coverage in Homogeneous

as well as Heterogeneous WSN using Quantum Computing

1.7 Problem Statement

The aim is to develop Nature inspired algorithms which also use the concept of Quantum

computing for the problems of Energy efficient clustering, Improving Network Lifetime

and Target coverage

1.8 Organization of the thesis

The organization of the thesis is as follows.

Chapter 1, provides an introduction about the various topics central to this thesis.

A brief introduction about some of the topics like Nature Inspired inventions, Nature

Inspired Computing, Wireless Sensor Networks and Quantum Computing is also given.

Further, the Research Objectives and Problem statement have been mentioned.

Chapter 2, explains the literature survey done on the Design challenges of WSN

which have been highlighted in the thesis i.e. Energy Efficient Clustering, Improving

Network Lifetime and Target Coverage. Some of the standard schemes are also ex-

plained, which are useful for performance comparison with our proposed schemes in

these areas.
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In Chapter 3, the Energy Efficient scheme for Clustered WSNs using Quantum

Inspired Computing is explained. The scheme is called Quantum-inspired PSO for

Energy Efficient Clustering (QPSOEEC). It is compared with some of the widely pop-

ular approaches for energy efficient clustering, LEACH (Heinzelman et al., 2002) and

PSOECHS (Rao et al., 2017) through simulation. In comparison with the mentioned

schemes, the performance of our proposed scheme is better.

In Chapter 4, the Quantum PSO Algorithm for Clustering in WSNs is explained.

The scheme is called Quantum PSO Clustering algorithm to Improve Network Lifetime

(QPCINL). A term Network Lifetime Factor (NLF) is introduced here. The scheme is

compared with existing algorithms, LEACH (Heinzelman et al., 2002) and PSOECHS

(Rao et al., 2017). In comparison with the mentioned schemes, the performance of our

proposed scheme is better.

In Chapter 5, the Quantum Inspired Multiobjective Optimization in Clustered Ho-

mogeneous WSN is explained. This scheme is called the Quantum inspired Multi Ob-

jective Evolutionary Algorithm based on Decomposition (QMOEAD). The scheme is

compared with LEACH (Heinzelman et al., 2002), SEP (Smaragdakis et al., 2004),

NSGA II (Deb et al., 2002) and MOEA/D (Özdemir et al., 2013) by simulation for Ho-

mogeneous WSNs and our scheme proves to be better than the mentioned schemes.

In Chapter 6, the Quantum Optimizer based on MOEAD for Optimizing Lifetime

and Coverage in WSN is discussed. The scheme is compared with LEACH (Heinzel-

man et al., 2002), SEP (Smaragdakis et al., 2004), NSGA II (Deb et al., 2002) and

MOEA/D (Özdemir et al., 2013) by simulation for Homogeneous as well as Heteroge-

neous WSNs and our scheme proves to be better than the mentioned schemes.

Chapter 7, concludes the thesis with the summary of contributions of research and

future work.
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CHAPTER 2

Literature Survey

2.1 Related work

2.1.1 Nature inspired approaches for clustering

The PSO (Particle Swarm Optimization) was proposed by (Tillett et al., 2002) for the

problem of Clustering. The drawback of this method is that it can cause imbalance in

the energy in the network due to the assignment of non CH nodes to CH nodes based on

the distance. (Guru et al., 2005) discuss cluster formation based on PSO. The drawback

of this work is that it ignores residual energy in the nodes. The PSO-C algorithm (Latiff

et al., 2007) is used for energy aware CH selection. Here, during the formation of

clusters, non CH nodes are assigned to CH nodes which are nearer than other nodes.

It may not be energy efficient. The lifetime of the network also is decreased here. In

(Rao et al., 2017), CH selection is done by using PSO. A weight function is used during

cluster formation. This weight function is the basis on which non-CH nodes are joining

the CH nodes.

2.1.2 Heuristic approaches for clustering

LEACH (Heinzelman et al., 2002) is one of the classic algorithms used in clustering.

Cluster formation happens with one node taking up the role of CH. The work of non-CH

nodes is to send the data to the CH nodes. The CH nodes have to now gather the data and

send it forward to the BS. The drawback here is that a low energy CH maybe selected

which may affect the working. In PEGASIS (Lindsey and Raghavendra, 2002), a node

communicates with only its closest neighbour and the nodes transmit to the BS in turns.

PEGASIS outperforms LEACH in terms of energy efficiency but may not perform so
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well when there are large size networks. In TL-LEACH (Two-Levels hierarchy for

Low-Energy Adaptive Clustering Hierarchy) (Loscri et al., 2005), the local cluster base

stations are rotated randomly. These local base stations are designated as Primary and

Secondary CHs. The drawback of this method is that there maybe extra overhead due to

the Secondary CHs selected. Also, the assignment of non-CH nodes to CHs may cause

energy imbalance. In V-LEACH (Yassein et al., 2009), there is the concept of Vice

CHs. These Vice CHs are supposed to take over when the main CHs die. The drawback

is that extra effort is required in the selection of the Vice CHs. In E-LEACH (Energy

LEACH) (Xiangning and Yulin, 2007), nodes for future rounds are chosen based on the

residual energy present in the nodes. The advantage of this method is it improves the

lifetime of the network.

2.1.3 Quantum Computing based algorithms

In the Quantum PSO (Sun et al., 2004), a single particle moving around in quantum

multidimensional space is studied. In the EB- QPSO (Elitist Breeding Quantum Particle

Swarm Optimization) (Yang et al., 2015), elitist breeding guides the swarm towards

more efficient search. In (Sun et al., 2012), the QPSO is analyzed. A parameter known

as the Contraction Expansion (CE) coefficient influences a particle’s behaviour. That

particular value of the CE coefficient is found which makes sure that the position of the

particle converges. (Pant et al., 2008) developed their own version of QPSO which they

call Q-QPSO . Here, a recombination operator which uses interpolation is used. In the

Quantum PSO (Yin et al., 2010), quantum rotation gates update the quantum bits and

quantum non-gates perform mutation. Their algorithm outperforms GA and traditional

PSO.

2.1.4 Algorithms on Network Lifetime

In (Chen and Zhao, 2005), the network lifetime is found in such a way that there is

no dependence on the network model. In (Rahman and Matin, 2011), the authors have

proposed an efficient algorithm for locating the optimal sink position using PSO. This

helps in saving energy and prolonging network lifetime. In (Yetgin et al., 2015), the

authors have proposed a technique in which 2 stages are used and the network lifetime
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is maximized. In (Dietrich and Dressler, 2009), the authors have given a review on

lifetime and the pros and cons of the different methods related to lifetime.

2.1.5 Coverage

Table 2.1 Coverage

Paper Parameter
optimized

Evolutionary WSN Type

(Tian and Geor-
ganas, 2002)

Coverage,
lifetime

No Heterogeneous

(Zhang et al.,
2005)

Coverage,
lifetime

No Heterogeneous

(Soro and
Heinzelman,
2009)

Coverage No Heterogeneous

(Lin et al.,
2009)

Coverage,
lifetime

No Heterogeneous

(Thomas et al.,
2021)

Coverage,
connectivity

No Homogeneous

(Deepa and
Venkataraman,
2021)

Coverage Yes Homogeneous

Table 2.1 lists the salient features of papers on Coverage. The details about the

parameter(s) optimized, whether they are based on Evolutionary algorithms and the

type of WSN (Homogeneous / Heterogeneous) are mentioned in this table.
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2.1.6 Energy Efficiency and Lifetime

Table 2.2 Energy Efficiency and Lifetime

Paper Parameter
optimized

Evolutionary WSN Type

(Heinzelman et al.,
2002)

Lifetime No Homogeneous

(Smaragdakis et al.,
2004)

Lifetime No Heterogeneous

(Cardei and Du,
2005)

Lifetime No Homogeneous

(Khalil and Bara’a,
2011)

Lifetime, energy Yes Heterogeneous

(Bara’a and Khalil,
2012)

Lifetime, energy Yes Heterogeneous

(Abidi and Ezze-
dine, 2020)

Lifetime, energy No Heterogeneous

(Alaei and Yazdan-
panah, 2019)

Lifetime, energy No Homogeneous

(Li et al., 2019b) Lifetime, energy Yes Homogeneous
(Daneshvar et al.,
2019)

Lifetime, energy Yes Homogeneous

(John and Ro-
drigues, 2019)

Energy Yes Homogeneous

(Singh and Na-
garaju, 2020)

Lifetime, energy No Heterogeneous

(Hung et al., 2020) Lifetime, energy Yes Heterogeneous
(Lata et al., 2020) Lifetime, energy No Heterogeneous
(Krishnan et al.,
2021)

Lifetime, energy No Both

The salient features of papers on Energy efficiency and network lifetime are listed

in Table 2.2. The details about the parameter(s) optimized, whether they are based

on Evolutionary algorithms and the type of WSN (Homogeneous/Heterogeneous) are

mentioned in this table.

2.1.7 Energy Efficiency and Coverage

Table 2.3 lists the salient features of papers on Energy Efficiency and Coverage.
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Table 2.3 Energy Efficiency and Coverage

Paper Parameter
optimized

Evolutionary WSN Type

(Ye et al., 2003) Energy, coverage,
lifetime

No Heterogeneous

(Martins et al., 2007) Energy, Cover-
age, Connectivity

No Heterogeneous

(Özdemir et al.,
2013)

Energy, Coverage Yes Both

(Chowdhury and De,
2021)

Energy, Coverage Yes Homogeneous

2.1.8 Nature Inspired Algorithms for WSN Optimization

Table 2.4 Nature Inspired Algorithms for WSN Optimization

Paper Parameter
optimized

Based on WSN Type

(Martins et al., 2010) Connectivity,
coverage

Genetic
Algorithm

Heterogeneous

(Mohamed et al.,
2020)

Energy Coyote
Optimization
Algorithm

Heterogeneous

(Bouzid et al., 2020) Coverage, con-
nectivity

GA Heterogeneous

(Osamy et al., 2020) Lifetime, Energy Chicken Swarm
Optimization

Homogeneous

(Balasubramani
et al., 2021)

Energy Grey Wolf
Optimization

Homogeneous

(Al-Otaibi et al.,
2021)

Energy, Lifetime Human
Brainstorm
optimization

Heterogeneous

Table 2.4 lists the salient features of papers on Nature Inspired Algorithms for WSN

Optimization.

2.1.9 Quantum based Nature Inspired algorithms for WSN Optimization

Table 2.5 lists the salient features of papers on Quantum based Nature Inspired algo-

rithms for WSN Optimization.
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Table 2.5 Quantum based Nature Inspired algorithms for WSN Optimization

Paper Parameter
optimized

Based on WSN Type

(Li and Huo, 2016) Energy, Lifetime Quantum, GA Homogeneous
(Kanchan and Push-
paraj, 2018)

Energy Quantum, PSO Homogeneous

(Li et al., 2019a) Energy, Lifetime Quantum, ACO Heterogeneous
(Kanchan et al.,
2021)

Lifetime, Cover-
age

Quantum,
MOEAD

Homogeneous

(Zhang et al., 2021) Location sensing Quantum, PSO Heterogeneous

2.1.10 Multi Objective Optimization (MOO)

In optimization, the aim is to come up with the best / most favorable solution for a

problem, given a set of criteria. The decision maker is the one taking this decision.

In MOO (Coello et al., 2007), the optimization results in a solution which consists of

objective functions acceptable by the decision maker. The solution must also satisfy

some constraints which are specific to that problem. In single objective optimization,

maximizing or minimizing a single objective function is the aim.

The Multi Objective Problem (MOP) can be defined as :

Minimize/Maximize F(x) =( f1(x), f2(x), . . . , fn(x))

sub ject to xεΩ

(2.1)

where x represents the decision variable, F:Ω→ Rn is used to represent the n objective

functions, Ω is used for representing Search Space and Rn for representing Objective

Space. Global optimization deals with search for one solution whereas in MOP’s, we

are satisfied with a solution which is good enough.

2.1.11 Multi Objective Evolutionary Algorithms (MOEA)

In multi-objective optimization, the aim is to come up with solutions which are a trade-

off between the various objectives which we want to optimize. In MOO, Dominance

determines how good a solution is.
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In general, x1 is said to dominate x2 if

• x1 is no worse than x2 in all objectives

• x1 is strictly better than x2 in at least one objective

Given a set of solutions, the Non-Dominated solution set is a set of all the solutions that

are not dominated by any member of the solution set.

Several MOEA variations have been explored by researchers. In NSGA (Srinivas

and Deb, 1994), a non-dominated solution is that set of solutions where many solutions

are there but none of them dominate the others. (Deb et al., 2002) is a better ver-

sion of NSGA and it achieves better convergence. The MOEA/D in (Özdemir et al.,

2013) performs optimization of network lifetime and coverage of a WSN. It outper-

forms LEACH (Heinzelman et al., 2002), SEP (Smaragdakis et al., 2004) and NSGA

II (Deb et al., 2002). In the multiobjective optimization method in (Pan et al., 2021),

the authors propose a binary crossover method based on rotation which improves the

performance of multiobjective evolutionary algorithms. The MOEA/D (Zhang and Li,

2007) splits the multiobjective problem into a number of subproblems. These subprob-

lems are optimized simultaneously. A population which consists of solutions is evolved.

In each generation, the population consists of the best solution which has been found

for a subproblem.
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CHAPTER 3

Energy Efficient scheme for Clustered WSNs
using Quantum Inspired Computing

3.1 Introduction

In this chapter, the Quantum inspired PSO for Energy Efficient Clustering (QPSOEEC)

is presented which is inspired by Nature. This algorithm tries to take advantage of the

best features of PSO and Quantum Computing.

3.2 Preliminaries

3.2.1 PSO Introduction

Particle Swarm Optimization (PSO) was proposed by Kennedy and Eberhart in 1995

(Kennedy and Eberhart, 1995). The main idea of PSO is that in a swarm consisting of

birds, the birds can share their discovery about food and this helps the entire group of

birds to maximize their chances of getting food. A bird in the swarm can be compared

to a particle. N represents the total number of particles in the swarm. A particle P is

defined by a Position Vector and a Velocity Vector. A Position Vector denoted by X

= (x1,x2, .....,xD) represents the solution and the Velocity Vector represented by V =

(v1,v2, ....,vD) performs exploration of search space. Here, the dimension of the search

space is D. It is the same for all particles. A fitness function is used to evaluate each

particle. The PSO aims to find an optimal position of the particle which yields the best

fitness. The first step is Initialization in which each particle is assigned with a position

and velocity. During every iteration, Pbesti which is personal best value of the particle

and Gbest which is the global best value of the whole swarm are calculated. Finally, it
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should attain the global solution which is the best. X , the position of the particle and V ,

the velocity of the particle are updated using :

Vi,d(t +1) = ωVi,d(t)+C1r(XPbest,d −Xi,d)+C2R(XGbest −Xi,d) (3.1)

Xi,d(t +1) = Xi,d(t)+Vi,d(t +1) (3.2)

Here, ω is the Inertia weight with values between 0 and 1.

C1, C2 are Acceleration coefficients with 0≤C1 and C2 ≤ 2

r , R are two random numbers uniformly distributed in the interval (0,1)

d is the Dimension component which has value between 1 and D

i is the number of the particle

This updation continues till a value of Gbest which is acceptable is generated. Pbesti and

Gbest are calculated as follows :

Pbesti = Pi, i f [Fitness(Pi)< Fitness(Pbesti)]

= Pbesti,otherwise
(3.3)

Gbest = Pi, i f [Fitness(Pi)< Fitness(Gbest)]

= Gbest ,otherwise
(3.4)

3.2.2 PSO Encoding for CH Selection problem of WSN

The aim of PSO is to find the optimal position of the particle. In case of the CH se-

lection problem, it is the optimal position of the Cluster Heads (CH). Assume that

Pi = [Xi,1(t),Xi,2(t), ....,Xi,D(t)] represents the ith particle of the generation. Here, we

have to keep in mind that 1≤ i≤N where N represents the number of particles and also

1 ≤ d ≤ D where D is the number of dimensions and in the encoding, it is the number

of Cluster Heads.

Xi,d(t) = (xi,d(t),yi,d(t)) represents the coordinates of the sensors which are going to be

selected as CH. Therefore, we can represent the ith particle as

Pi = [(xi1(t),yi1(t)),(xi2(t),yi2(t), ...,(xid(t),yid(t))] (3.5)
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Figure 3.1 shows the particle representation for PSO. In the figure, CH refers to the

index for the CH’s, s indicates the index for the Sensors and o indicates the coordinates

of the sensors which are generated in random.

Figure 3.1 Particle representation for PSO

In the scenario shown , s7 is selected as CH1, s11 is selected as CH2 and so on. The

coordinates for the sensor nodes are assigned randomly (number between 0 to 100).

For example, s1 is assigned the coordinates (9.6,13.6), s11 is assigned the coordinates

(5.6,15.1) and so on.

Let us assume there are 10 particles (D=10) and the velocities of these particles are

0. For the first iteration, every particle is itself the Personal best Pbesti . Let us assume

that the 3rd particle is the Global Best, Gbest . Assume that (8.0,58.2) is the first dimen-

sion of P3. P1 is the input particle. Assuming r = 0.5 and R = 0.7 and ω = 0.7, C1=C2=2,

we can calculate the velocity of P1 in the first dimension using (3.1) as shown below:

V1,1 (t+1) = 0.7 * 0 + 2 * 0.5 * (9.6-9.6) + 2 * 0.7 * (8.0-9.6) = -2.2

x1,1 (t+1) = 9.6-2.2 = 7.4

The calculations shown above illustrate how velocity updation along the X-axis of X1,1

(t) is done. Similarly, the velocity updation along Y-axis is done as follows:

V1,1 (t+1) = 0.7 * 0 + 2 * 0.5 * (13.6-13.6) + 2 * 0.7 * (58.2-13.6) = 62.5

y1,1 (t+1) = 13.6 + 62.5 = 76.1
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This is how the first dimension of P1 i.e. X1,1 (t) = (9.6,13.6) is updated to a new

position X1,1 (t+1) = (7.4,76.1). The other dimensions of P1 are updated similarly.

3.2.3 QPSO Introduction

According to Clerc and Kennedy (Clerc and Kennedy, 2002), the PSO converges if ev-

ery particle converges to a local attractor pi :

pt
i,d = ψ

t
d ∗Pbest

t
i,d +(1−ψ

t
d)∗Gbest

t
d (3.6)

where ψ t
d = C1r / (C1r+C2R)

In Quantum PSO (QPSO) (Sun et al., 2004), every particle is a spinless entity mov-

ing in quantum space. A particle appears at the position xt
i where t is the iteration

number depending on a probability density function (Liu et al., 2006). The way a par-

ticle flies is determined according to the Monte Carlo method:

X t+1
i,d = pt

i,d +α|xt
i,d−mbest

t
d|ln(1/ut

i,d), i f (randv≥ 0.5)

= pt
i,d−α|xt

i,d−mbest
t
d|ln(1/ut

i,d), i f (randv < 0.5)
(3.7)

Here

α = Contraction - Expansion (CE) coefficient

ut
i,d and randv are random numbers distributed randomly in the range [0,1]

mbest = Mean Best

mbest is calculated as follows :

mbest
t
d = (1/N)

N

∑
i=1

Pbest
t
i,d (3.8)

where N = Swarm Size

The CE coefficient is found by (Sun et al., 2012) using the formula :

α = α1 +((T − t)(α0−α1)/T ) (3.9)

where

α0 = Initial value of α

α1 = Final value of α
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T = Number of maximum possible iterations

t = Current iteration number

The QPSO has an advantage over the PSO in that in QPSO only a position vector

is required as compared to PSO where position vector as well as velocity vector are

required.

3.2.4 The Energy model used

The Energy required by a node for transmission of a data packet which is l-bit long is :

ETransmit = lEelec + lε f sd2, i f d < d0

= lEelec + lεmpd4, i f d ≥ d0

(3.10)

where

l = No of bits in the data packet

Eelec = The energy dissipated / bit for running the transmitter / receiver circuit

ε f s = Amplification energy (using free space method)

εmp = Amplification energy (using multipath model)

d = Propagation distance

d0 = Threshold distance

The Energy required for receiving data which is l-bit long is :

EReceive = lEelec (3.11)

The total energy expended for transmission and receiving data is :

ETotal = ETransmit +EReceive (3.12)

3.2.5 The Network model

The sensors are stationary but they are randomly deployed. A node can be a Sensor or a

Cluster Head (CH). Data is sent to CH or BS by the node. The convention is that there

will be more sensors than CH’s. The transmission power required by CH or BS also

will be different and the distance to which the data is sent plays a role in this. Usually,
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the nodes are Homogeneous.

3.3 The QPSOEEC (Quantum inspired PSO for Energy Efficient
Clustering) Algorithm

The Quantum inspired PSO for Energy Efficient Clustering (QPSOEEC) is inspired

by Nature and takes advantage of features of PSO and Quantum computing. A sin-

gle parameter, the position vector, is required during the updation of position by our

algorithm. The steps of the QPSOEEC algorithm are listed below:

1. Updating the position

2. Selecting the CH

3. Forming the clusters

4. Calculating the total energy consumed

QPSO (Yang et al., 2015) is used for the position updation phase and PSO-ECHS (Rao

et al., 2017) is used for the CH selection. During CH selection, the sensors send details

about their location and their residual energy to the base station. A node becomes a

CH node only if it has a particular value of Threshold energy. At the base station, the

algorithm for selection of CH is run. This is followed by cluster formation. Here, a

weight function is developed with distance, energy and node degree as the deciding

factors (Rao et al., 2017). The CH with the maximum weight value is joined by the

sensor node.

3.3.1 Calculation of the Fitness

The method used by (Rao et al., 2017) is used for calculating the fitness function, f1.

The fitness function depends on two factors: the average of the distance between the

clusters and the average of the distance between the BS and the CH. Minimizing f1 is

our objective.

f1 =
m

∑
j=1

(1/l j)
l j

∑
i=1

(dist(si,CH j +dist(CH j,BS)) (3.13)

where

m = number of cluster heads
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l j = number of sensors in cluster j

dist(si,CH j) = Distance between sensor si and its selected cluster head CH j

dist(CH j,BS) = Distance between Cluster Head CH j and the BS

f2 is found by taking the reciprocal of the sum of energies of all the CH’s. Minimiz-

ing f2 is our objective.

f2 =
1

m
∑
j=1

ECH j

(3.14)

where

ECH j is the energy of Cluster head CH j

Fitness = α f1 +(1−α) f2,0 < α < 1 (3.15)

Minimization of the fitness is our objective.

3.3.2 Updating of the position

QPSO (Yang et al., 2015) is used for updating the position. (3.7) is used for position

updation of the particle.

3.3.3 Selecting the CH

The method used in PSO-ECHS (Rao et al. (2017)) is used for selecting the CH. Energy

efficiency decides which are the CH’s selected from a group of sensor nodes. The fitness

function minimizes the total energy consumption.

3.3.4 Forming the clusters

A weight function (Rao et al. (2017)) is used for forming the clusters. A weight func-

tion CHweight is used by sensors to join the cluster head :

CHweight(si,CH j) = L ∗Energy f actor (3.16)
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where

Energy f actor =
Eresidual(CH j)

dist(si,CH j)∗dist(CH j,BS)∗deg(CH j)
(3.17)

Here

L has the value 1

Eresidual(CH j) is the residual energy of the CH, CH j

dist(si,CH j) is the distance between Sensor si and CH j

dist(CH j,BS) is the distance between CH j and BS

deg(CH j) = Degree of node CH j

The sensor nodes use (3.16) in order to calculate CHweight when clusters are formed

and they join the cluster head which has maximum value for the weight.

In Table 3.1, the energies consumed for LEACH, PSOECHS and QPSOEEC are

tabulated with 300 sensors, 15 CH’s and the BS being located at the position (100,100).

When QPSOEEC is used, the energy consumed is less as compared to LEACH and

PSOECHS. The QPSOEEC proved to be better than LEACH and PSOECHS even when

number of sensors ranged from 400 to 700 and number of CH’s ranged from 30 to 50.

The graphs which illustrate this are depicted later. The QPSOEEC algorithm is shown

below (Algorithm 1).
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Table 3.1 Comparing the Energies Consumed - LEACH, PSOECHS, QPSOEEC - No
of Sensors = 300, CH’s = 15, BS position (100, 100)

Rounds Energy Consumption Energy Consumption Energy Consumption
LEACH PSOECHS QPSOEEC

0 0 0 0
200 423.05 21.03 6.93
400 505.86 40.77 11.76
600 508.68 58.96 15.32
800 541.05 78.51 21.53

1000 544.79 96.95 28.35
1200 563.71 113.12 31.26
1400 571.39 131.37 36.46
1600 584 146.16 42.02
1800 585 169.7 44.86
2000 587.4 189.53 52.12
2200 589.28 209.83 58.67
2400 592.3 227.95 61.82
2600 595 246.95 66.77
2800 595.3 266.57 73.07
3000 598.21 286.81 76.01
3200 598.85 303.54 80.31
3400 599.8 310.75 85.3
3600 600 316.79 86.39
3800 600 321.58 91.48
4000 600 329.03 94.84
4200 600 335.02 97.56
4400 600 341.28 100.74
4600 600 347.23 104.83
4800 600 353.41 108.15
5000 600 359.5 111.4
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Input: Collection of sensor nodes S = [s1, s2, ...., ssen], N which is the size of
the swarm, the dimensions of the particle D

Output: Optimized position of CHs with energy consumption also minimized
begin

Randomly initialize the particles
Initialize TELEACH, TEPSOECHS and TEQPSOEEC to 0
(These are the Total Energies using LEACH, PSOECHS and QPSOEEC)
Store the randomly generated particle values in a file
Using 3.15, find the fitness
Calculate ELEACH, the Energy for LEACH
Calculate EPSOECHS, the Energy for PSOECHS
Calculate EQPSOEEC, the Energy for QPSOEEC
for i = 0 to number of Rounds do

Get the values for the particle from the file
Use same particle values from file for calculation of ELEACH,
EPSOECHS and EQPSOEEC

Position updation through QPSO
3.15 is used for fitness calculation
TELEACH = TELEACH + ELEACH
TEPSOECHS = TEPSOECHS + EPSOECHS
TEQPSOEEC = TEQPSOEEC + EQPSOEEC
Find the personal best, Pbest and the global best, Gbest
Use Pbest and Gbest for CH selection
Cluster formation

end
Compare the Total energies TELEACH, TEPSOECHS and TEQPSOEEC
Stop

end
Algorithm 1: Quantum Inspired PSO for Energy Efficient Clustering
(QPSOEEC)

3.4 Performance Evaluation

3.4.1 Simulation Environment

The algorithm is coded using C (Dev C++) and the plots are done using MATLAB

(R2015a). The varying number of sensor nodes ranged from 300 to 700 and varying

CH’s ranged from 15 to 50. The initial energy of the node is 2J. The sensing field is

of 200x200 m2 (Table 3.2). Initially, the BS was stationed at (100,100), (200,200) and

(300,300) with 300 Sensors and 15 CH’s. Later, the sensors were varied as 400, 500

and 700. The number of CH’s were varied as 35, 40, 50.
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Table 3.2 Network Parameters

Parameters Value
Area 200x200 m2

Base Station (100,100), (200,200), (300,300)
No of Sensors 300 - 700
No of CH’s 15 - 50
Eelec 50 nJ/bit
ε f s 10 pJ/bit/m2

εmp 0.0013 pJ/bit/m4

Packet length 4000 bits
Message size 500 bits

Table 3.3 PSO Parameters

Parameters Value
No of particles 30
C1 2.0
C2 2.0
α 0.3
ω 0.7
D 15 - 50
No of iterations 100

Table 3.3 shows the parameters of PSO (Rao et al., 2017).

3.4.2 Performance Metric used

Energy Consumption has been used as the performance metric. The algorithm is al-

lowed to run for many rounds (we have done for 5000) and the total energy consumed

is found. It is observed that as number of rounds increases, the energy consumption

also increases. A comparison of LEACH, PSO-ECHS and QPSOEEC are done with

respect to the total energy consumed with number of sensors varying between 300 to

700 and CH’s varying between 15 to 50. The total energy consumed using QPSOEEC

is 89% better than LEACH and 71% better than PSOECHS. QPSOEEC proved to be

superior compared to LEACH and PSO-ECHS even when BS position was changed to

(200,200) and later to (300,300).
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Figure 3.2 , Figure 3.3 and Figure 3.4 show the scenarios where keeping the number

of sensors as 300 and number of CH’s as 15, the base station position is varied as

(100,100), (200,200) and (300,300).

Figure 3.5, Figure 3.6 and Figure 3.7 show the scenarios where with 300 sensors and

30 CH’s, base station position is varied as (100,100), (200,200) and (300,300). Figure

3.8, Figure 3.9 and Figure 3.10 show the scenarios where there are 400 sensors and 40

CH’s with base station position varying as (100,100), (200,200) and (300,300). Figure

3.11, Figure 3.12 and Figure 3.13 show the scenarios where there are 500 sensors and 50

CH’s with base station position varying as (100,100), (200,200) and (300,300). Finally,

Figure 3.14, Figure 3.15 and Figure 3.16 show the scenarios when there are 700 sensors

and 35 CH’s and base station position is varied as (100,100), (200,200) and (300,300).
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Figure 3.2 Sensors = 300, CH’s = 15, BS position (100,100)

Figure 3.3 Sensors = 300, CH’s = 15, BS position (200,200)
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Figure 3.4 Sensors = 300, CH’s = 15, BS position (300,300)

Figure 3.5 Sensors = 300, CH’s = 30, BS position (100,100)
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Figure 3.6 Sensors = 300, CH’s = 30, BS position (200,200)

Figure 3.7 Sensors = 300, CH’s = 30, BS position (300,300)
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Figure 3.8 Sensors = 400, CH’s = 40, BS position (100,100)

Figure 3.9 Sensors = 400, CH’s = 40, BS position (200,200)
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Figure 3.10 Sensors = 400, CH’s = 40, BS position (300,300)

Figure 3.11 Sensors = 500, CH’s = 50, BS position (100,100)
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Figure 3.12 Sensors = 500, CH’s = 50, BS position (200,200)

Figure 3.13 Sensors = 500, CH’s = 50, BS position (300,300)
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Figure 3.14 Sensors = 700, CH’s = 35, BS position (100,100)

Figure 3.15 Sensors = 700, CH’s = 35, BS position (200,200)
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Figure 3.16 Sensors = 700, CH’s = 35, BS position (300,300)

3.4.3 Summary

In this chapter, the QPSOEEC algorithm is explained. The results are analysed for the

proposed algorithm QPSOEEC by comparing with existing methods LEACH (Heinzel-

man et al., 2002) and PSOECHS (Rao et al., 2017). It is established that the results

are consistent with the literature. The values of Total Energy consumption using QP-

SOEEC are 89% better than LEACH and 71% better than PSOECHS.

Quantum versions of other nature inspired algorithms like Artificial Bee Colony opti-

mization and Genetic Algorithm when compared with QPSOEEC, LEACH and PSOECHS

might yield better results.
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CHAPTER 4

Quantum PSO Algorithm for Clustering in
WSNs

4.0.1 Introduction

Network Lifetime is a measure of how long the network remains active from the time it

is deployed to the time it stops. The network may stop working the moment its first node

dies or it may stop when the energies in a given percentage of nodes get depleted or it

may stop the moment its last node is dead. In this chapter, Quantum PSO Clustering

algorithm to Improve Network Lifetime (QPCINL) is presented. Here, positions are

updated with the help of Quantum PSO and CH Selection is done with the help of

PSOECHS (Rao et al., 2017). The Network Lifetime Factor (NLF) is also found. The

NLF values of proposed algorithm are compared with those for LEACH (Heinzelman

et al., 2002) and PSOECHS (Rao et al., 2017). The following are the contributions of

the chapter :

• Position Updates using Quantum PSO and CH Selection using PSO

• Cluster formation using a weight function.

• The number of nodes and CH’s are varied to find the Network Lifetime Factor

(NLF)

• The efficiency of our proposed algorithm over existing algorithms is verified by

simulation.
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4.0.2 Network Lifetime

In our work, Network Lifetime is defined as the time from the moment the node is

deployed until the first node in the network depletes its energy. The lifetime of a single

node is defined by (Rao et al., 2017) and (Rahman and Matin, 2011) using the following

equation:

L =
Einitial

Etotal
(4.1)

where

Einitial = The energy present initially in a node

Etotal = The energy required by a node in order to transmit and receive data

Einitial is initialized to 2J for all the nodes and Etotal is calculated as in Equation 3.12

The term Network Lifetime Factor (NLF) is introduced in our work which is defined

by the following equation :

NLF =
ENWinitial

ENWtotal
(4.2)

where

ENWinitial = Total initial energies of nodes in the Network

ENWtotal = Total final energies of nodes in the Network

The algorithm with better NLF proves its superiority over the other algorithms.

4.1 The Quantum PSO Clustering algorithm to Improve Network
Lifetime (QPCINL)

The Quantum PSO Clustering algorithm to Improve Network Lifetime (QPCINL) has

three steps:

1. Position Updating

2. CH Selection

3. Formation of Clusters

The QPSO (Yang et al., 2015) is used for the position updation and PSO-ECHS (Rao

et al., 2017) is used the CH Selection.
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4.1.1 Deriving the Fitness Function

The fitness function is derived in the same way as in 3.3.1 using Eq 3.13, Eq 3.14 and

Eq 3.15.

4.1.2 Position Update

Position Update is done as in 3.3.2 using QPSO (Sun et al., 2004).

4.1.3 Cluster Head Selection

Cluster Head Selection is done as in 3.3.3 using the method adopted by (Rao et al.,

2017).

4.1.4 Cluster Formation

Clusters are formed using the weight function as in 3.3.4 (Rao et al., 2017).

In Table 4.1, the network lifetimes for LEACH, PSOECHS and QPCINL are tab-

ulated with 300 sensors, 15 CH’s and the BS being located at the position (100,100).

At the end of round 1000, the network lifetime of LEACH is 1.090, that of PSOECHS

is 6.610 and for QPCINL it is 23.880. As can be seen, the network lifetime is more

for QPCINL as compared to LEACH and PSOECHS. The same kind of behavior is

observed when number of rounds is increased to 2000,3000,4000 and 5000.

In Table 4.2, the network lifetimes for LEACH, PSOECHS and QPCINL are tabu-

lated with 400 sensors, 40 CH’s and the BS being located at the position (100,100).
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Table 4.1 Comparing the Network lifetimes - LEACH, PSOECHS, QPCINL - No of
Sensors = 300, CH’s = 15, BS position (100, 100)

Rounds Network lifetime Network lifetime Network lifetime
LEACH PSOECHS QPCINL

0 0.000 0.000 0.000
200 1.330 28.040 89.760
400 1.170 15.960 52.920
600 1.140 10.510 39.630
800 1.110 7.960 29.290

1000 1.090 6.610 23.880
1200 1.090 5.570 19.630
1400 1.060 4.740 17.470
1600 1.050 4.140 15.190
1800 1.040 3.670 13.530
2000 1.020 3.330 12.160
2200 1.010 3.000 11.110
2400 1.010 2.750 9.880
2600 1.008 2.550 9.450
2800 1.000 2.360 8.620
3000 1.000 2.200 8.110
3200 1.000 2.080 7.850
3400 1.000 2.030 7.690
3600 1.000 2.000 7.220
3800 1.000 1.950 6.860
4000 1.000 1.910 6.620
4200 1.000 1.880 6.610
4400 1.000 1.850 6.270
4600 1.000 1.810 6.000
4800 1.000 1.780 5.821
5000 1.000 1.750 5.710
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In Table 4.3, the network lifetimes for LEACH, PSOECHS and QPCINL are tabu-

lated with 500 sensors, 50 CH’s and the BS being located at the position (100,100).

In Table 4.4, the network lifetimes for LEACH, PSOECHS and QPCINL are tabu-

lated with 700 sensors, 35 CH’s and the BS being located at the position (100,100).

The following explains the algorithm :

Input: Sensor Nodes S = [s1, s2, ...., ssen], Size of Swarm N, No of dimensions
of particle D

Output: Network Lifetime Factor (NLF)
begin

Initialize the particles randomly
Calculate fitness using 3.15
for i = 0 to No. of Rounds do

Update Position using QPSO
Calculate fitness using 3.15
Find Personal Best, Pbest and Global best, Gbest
Use Pbest and Gbest for CH selection
Form Clusters

end
Calculate Network Lifetime Factor (NLF) at the end of predefined No of
Rounds

Stop
end

Algorithm 2: Quantum PSO Clustering Algorithm to Improve Network Life-
time (QPCINL)

4.2 Performance Evaluation

4.2.1 Simulation Environment

The algorithm is coded using C (Dev C++) and the plots are done using MATLAB

(R2015a). The varying number of sensor nodes ranged from 300 to 700 and varying

CH’s ranged from 15 to 50. The initial energy of the node is 2J. The sensing field is

of 200x200 m2 (Table 4.5). Initially, the BS was stationed at (100,100), (200,200) and

(300,300) with 300 Sensors and 15 CH’s. Later, the sensors were varied as 400, 500

and 700. The number of CH’s were varied as 35, 40, 50.
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Table 4.2 Comparing the Network lifetimes - LEACH, PSOECHS, QPCINL - No of
Sensors = 400, CH’s = 40, BS position (100, 100)

Rounds Network lifetime Network lifetime Network lifetime
LEACH PSOECHS QPCINL

0 0.000 0.000 0.000
200 1.367 28.388 70.383
400 1.212 15.100 39.871
600 1.141 10.371 28.289
800 1.100 7.912 21.776

1000 1.085 6.363 18.084
1200 1.038 5.283 14.899
1400 1.027 4.517 13.257
1600 1.018 3.944 11.742
1800 1.015 3.501 10.288
2000 1.012 3.135 9.336
2200 1.010 2.837 8.627
2400 1.009 2.591 7.878
2600 1.006 2.384 7.311
2800 1.005 2.208 6.836
3000 1.004 2.056 6.415
3200 1.003 1.945 5.932
3400 1.000 1.907 5.845
3600 1.000 1.872 5.534
3800 1.000 1.840 5.329
4000 1.000 1.804 5.064
4200 1.000 1.772 4.888
4400 1.000 1.741 4.773
4600 1.000 1.717 4.577
4800 1.000 1.712 4.420
5000 1.000 1.707 4.285
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Table 4.3 Comparing the Network lifetimes - LEACH, PSOECHS, QPCINL - No of
Sensors = 500, CH’s = 50, BS position (100, 100)

Rounds Network lifetime Network lifetime Network lifetime
LEACH PSOECHS QPCINL

0 0.000 0.000 0.000
200 1.421 30.256 92.971
400 1.192 15.345 48.610
600 1.109 10.330 28.882
800 1.095 7.884 22.113

1000 1.086 6.279 18.082
1200 1.060 5.308 15.583
1400 1.053 4.495 13.455
1600 1.048 3.918 11.911
1800 1.036 3.464 10.653
2000 1.035 3.088 9.476
2200 1.019 2.800 8.662
2400 1.012 2.577 8.128
2600 1.011 2.373 7.350
2800 1.008 2.186 6.703
3000 1.004 2.076 6.295
3200 1.000 2.002 5.845
3400 1.000 1.995 5.609
3600 1.000 1.988 5.390
3800 1.000 1.981 5.189
4000 1.000 1.977 5.002
4200 1.000 1.968 4.831
4400 1.000 1.967 4.746
4600 1.000 1.955 4.553
4800 1.000 1.948 4.373
5000 1.000 1.945 4.271
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Table 4.4 Comparing the Network lifetimes - LEACH, PSOECHS, QPCINL - No of
Sensors = 700, CH’s = 35, BS position (100, 100)

Rounds Network lifetime Network lifetime Network lifetime
LEACH PSOECHS QPCINL

0 0.000 0.000 0.000
200 1.365 31.093 116.105
400 1.199 16.771 59.113
600 1.124 11.302 42.154
800 1.117 8.383 31.360

1000 1.097 7.506 23.634
1200 1.051 5.490 20.964
1400 1.031 4.652 17.492
1600 1.030 4.048 15.632
1800 1.027 3.584 13.949
2000 1.025 3.226 12.811
2200 1.021 2.914 11.541
2400 1.010 2.742 10.650
2600 1.005 2.599 9.872
2800 1.004 2.463 8.839
3000 1.003 2.346 8.198
3200 1.001 2.270 7.820
3400 1.000 2.262 7.299
3600 1.000 2.257 7.098
3800 1.000 2.249 6.717
4000 1.000 2.245 6.374
4200 1.000 2.241 6.109
4400 1.000 2.238 5.964
4600 1.000 2.232 5.681
4800 1.000 2.227 5.443
5000 1.000 2.223 5.252
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Table 4.5 Network Parameters

Parameters Value
Area 200x200 m2

Base Station (100,100), (200,200), (300,300)
Number of Sensors 300 - 700
Number of CH’s 15 - 50
Eelec 50 nJ/bit
ε f s 10 pJ/bit/m2

εmp 0.0013 pJ/bit/m4

Packet length 4000 bits
Message size 500 bits

Table 4.6 PSO Parameters

Parameters Value
No of particles 30
C1 2.0
C2 2.0
α 0.3
ω 0.7
D 15 - 50
No of iterations 100

Table 4.6 shows the PSO parameters used by (Rao et al., 2017).

4.2.2 Performance Metric used

Network lifetime factor (NLF), a term introduced by us in this work is used as the

performance metric. The algorithm is allowed to run for many rounds (we have done

for 5000) and the NLF is found. It is observed that as the number of rounds increases,

the value of NLF decreases. A comparison of LEACH, PSO-ECHS and QPCINL are

done with respect to NLF values with number of sensors varying between 300 to 700

and CH’s varying between 15 to 50. QPCINL proved to be superior to LEACH and

PSOECHS. The NLF values for QPCINL are 3 times more than those for PSOECHS.

Figure 4.1 shows the scenario where with 300 sensors and 15 CH’s, the base station is

at (100,100). Figure 4.2 shows the scenario where with 400 sensors and 40 CH’s, the

base station is positioned at (100,100). Figure 4.3 shows the scenario where with 500
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sensors and 50 CH’s, the base station is stationed at (100,100). Figure 4.4 shows the

scenario where with 700 sensors and 35 CH’s, the base station is stationed at (100,100).

Figure 4.1 Sensors = 300, CH’s = 15, BS position (100,100)

Figure 4.2 Sensors = 400, CH’s = 40, BS position (100,100)
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Figure 4.3 Sensors = 500, CH’s = 50, BS position (100,100)

Figure 4.4 Sensors = 700, CH’s = 35, BS position (100,100)

4.2.3 Summary

In this chapter, the Quantum PSO Clustering algorithm to Improve Network Lifetime

(QPCINL) algorithm is explained. The detailed analysis of the Network Lifetime Factor

(NLF) with increasing number of rounds is presented for various scenarios of LEACH

(Heinzelman et al., 2002) and (Rao et al., 2017). The improvement factors achieved in

the proposed algorithm are analyzed in detail. The NLF values obtained using QPCINL

are approximately 3 times more than that of PSO-ECHS and QPCINL outperforms

LEACH. The NLF values for other nature inspired algorithms like GA, ACO, ABC can

be compared with QPCINL and it is possible that they may improve upon the QPCINL.
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CHAPTER 5

Quantum Inspired Multi-objective
Optimization in Clustered Homogeneous WSN

5.1 Introduction

Clustering is one of the most effective methods for achieving energy efficiency in a

WSN. Here, a CH (Cluster Head) is in charge of collecting data from other nodes

which are then sent to the BS (Base Station). The network maybe required to moni-

tor a large area and supply information about the area monitored by it. In such a case,

the particular area is said to be "covered" by the sensors. The term "Target" is used to

denote those nodes which are being covered. A node can cover a particular number of

targets. Covering a large number of targets is one of the objectives of our research. The

energy consumed in the network needs to be optimized which is another objective of

our research. The optimization of energy consumed results in improved lifetime of the

network.

Only a few researchers have considered performing routing through clusters and

coverage simultaneously. Through multi-objective optimization, these 2 objectives can

be achieved at the same time. One of the most referenced works on multi-objective op-

timization is found in (Coello et al., 2007). Multi-objective problems allow k objective

functions to be optimized simultaneously. The term "optimization" is used to refer to

minimization of the functions or maximization of the functions or combination of min-

imization and maximization. In order to deal with WSN design issues, MOEAs (Multi

Objective Evolutionary Algorithms) have been used successfully on many occasions.
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Some of the parameters of WSN which are used often as the multiple objectives to be

optimized are lifetime, coverage, connectivity, energy, etc (Marks, 2010). The Evo-

lutionary Multi Objective Crowding Algorithm (EMOCA) (Rajagopalan et al., 2005)

takes a balanced approach towards dominance and diversity with respect to population.

In the Hybrid MOEA (Martins et al., 2010), lifetime and coverage are the multiple

objectives simultaneously optimized.

Optimizing WSNs using quantum computing is a recent development. A quantum

adaptation of ABC (Artificial Bee Colony) algorithm optimizes the energy in WSN

(Sandeli et al., 2018). A quantum version of ACO (Ant Colony Optimization) optimizes

coverage in (Wang and Wang, 2017). A quantum version of PSO (Particle Swarm

Optimization) optimizes energy in Clustered WSNs (Kanchan and Pushparaj, 2018).

The quantum PSO optimizes coverage in (Huang et al., 2012).

Exploring the possibility of combining quantum computing with MOEA/D for WSNs

with coverage and lifetime as the multiple objectives has not been done so far. This

chapter deals with optimizing coverage and lifetime of a WSN using Quantum Inspired

MOEA/D.

The following are the contributions of this chapter :

• The WSN is represented using quantum bits.

• The QMOEAD algorithm is developed with the aim of conserving energy and

improving coverage. The lifetime of the network is also improved.

• The QMOEAD is compared with LEACH (Heinzelman et al., 2002), SEP (Smarag-

dakis et al., 2004), NSGA II (Deb et al., 2002) and MOEAD (Özdemir et al.,

2013).

5.2 Multi - Objective Optimization (MOO)

The aim of MOO (Multi - Objective Optimization) (Coello et al., 2007) is to come up

with some solution which consists of objective functions. This is a solution which is

acceptable to the decision maker. In case of Single Objective optimization, the focus is
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on maximizing / minimizing the objective function whereas here the focus is on coming

up with an acceptable solution.

Multi - Objective Problems (MOP) are denoted by :

Minimize/Maximize F(x) =( f1(x), f2(x), . . . , fn(x))

sub ject to xεΩ

(5.1)

where x refers to decision variable, F:Ω→ Rn denotes objective functions which are n

in number, Ω denotes the Search Space and Rn denotes the Objective Space.

As far as MOP’s are concerned, a fairly good enough solution is enough whereas in

global optimization, a single solution is needed. Pareto optimum refers to such a solu-

tion. The NSGA (Non-Dominated Sorting Genetic Algorithm) (Srinivas and Deb, 1994)

uses the concept of multiobjective optimization. It introduces a term "non-dominated"

solution which refer to the set of solutions that are not dominated by any member of the

solution set.

In the NSGA, the population is ranked based on the non domination of individ-

ual. An improved version of the NSGA is the NSGA II (Deb et al., 2002). In the

MOEAD (Multi Objective Evolution Algorithm based on Decomposition), the mul-

tiobjective problem is divided into small problems which are then in turn optimized

simultaneously. In (Özdemir et al., 2013), the MOEAD is used to optimize the mul-

tiple objectives - lifetime and coverage of a WSN. The algorithm yields better results

compared to LEACH, SEP and NSGA II.

5.3 Quantum Computing based algorithms for WSN

Energy consumption is optimized by the Quantum ABC (Artificial Bee Colony algo-

rithm) (Sandeli et al., 2018). It performs better than LEACH and ABC. Quantum bits /

qubits form the population in this algorithm. The PSO (Particle Swarm Optimization) in

conjunction with quantum computing is used to achieve energy efficiency for the clus-

tered wireless sensor networks (Kanchan and Pushparaj, 2018). It yields better results
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than LEACH and PSOECHS. Quantum computing in conjunction with WSN is used in

precision agriculture as illustrated by Quadrivalent Quantum Inspired GSA (QQIGSA)

(Mirhosseini et al., 2017). It proved to be better than the BPSO (Binary PSO) and BGA

(Binary Genetic Algorithm).

5.4 Quantum Computing based Multi Objective Evolutionary Al-

gorithm with Decomposition (QMOEAD)

Energy consumption is minimized and coverage is increased by the QMOEAD for

WSNs which use cluster based routing. The multiple objectives for the QMOEAD

are lifetime and coverage. The MOEA/D (Özdemir et al., 2013) is used in this work in

conjunction with quantum computing. A square field is used for monitoring. The Base

Station (BS) has the coordinates (xBS,yBS). There is a set of m sensor nodes (s1,s2,. . . ,sm)

and the set ((xs1,ys1,rs1,Es1),. . . ,(xsm,ysm,rsm,Esm)) denote the locations (x,y). For the

nodes, the radii of coverage is rs and the initial energies are represented by Es. The l

targets are represented by set (d1,. . . ,dl) where the locations are ((xd1,yd1),. . . ,(xdl ,ydl)).

Efficient coverage is achieved when every target is covered by at least one sensor at the

same time optimizing the lifetime. The aim is to optimize the coverage and lifetime.

The MOEA/D for the routing protocol is defined as

MOEA/D = (I,Φ,Γ,ψ, l,N,EP,φ) (5.2)

where I is the individual space. An individual consists of a bit string of size m, which

denotes how many nodes are there in the WSN. The bits of each gene can be any of the

following : −1 in case of a dead node, 0 in case of inactive node, 1 for a non-CH node

and 2 for a CH node.

The population of N individual solutions represented by IP = (I1,. . . ,IN) is :

∀i ∈ (1, . . . ,N)and ∀ j ∈ (1, . . . ,m), (5.3)
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Ii, j =



-1 if E(s j=0)

0 if E(s j>0) with s j Inactive

1 if E(s j>0) with s j= Non CH

2 if E(s j>0) with s j= CH

(5.4)

Only homogeneous networks are considered in this work. During the rounds of the

protocol, dynamic number of CH’s are formed. A random population is formed in the

initial stages. Some assumptions are :

• The probability of an alive node becoming active or inactive is equal

• According to (Smaragdakis et al., 2004), an active advanced node becomes a CH

with a probability :

padv/(1-padv*(r mod 1/padv))

An active normal node becomes CH with the probability:

pnrm/(1-pnrm*(r mod 1/pnrm))

Here,

padv = ((Popt*(1+α))/(1+α*Advanced nodes percentage))

pnrm=((Popt)/(1+α*Advanced nodes percentage))

The optimal election probability used as in LEACH (Heinzelman et al., 2002) is :

Popt=Kopt / m

where m= Number of nodes in the network

Kopt = Optimal number of clusters given by

Kopt=
√ m

2π

2
0.765

Φ : I→ R2 is used to denote that the objective function vector consisting of E, the

energy consumed and NC, the number of Uncovered targets, has to be minimized. The

transmission, reception and aggregating ion of signals requires energy and E represents

these energies (Khalil and Bara’a, 2011).
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The total energy for activation of sensor is

E(I) = (
nc

∑
i=1

∑
s∈ci

ET Xs,CHi
+ERX +EDA)

+(
nc

∑
i=1

ET XCHi,BS)+TotAE
(5.5)

Here, nc denotes number of active cluster heads

s ∈ ci denotes active non-cluster heads linked to the ith active cluster head

ET Xn1,n2 is the energy for transmitting data from one node n1 to another node n2

ERX is energy required for data reception

EDA is energy required for data aggregation

(Smaragdakis et al., 2004) contains the detailed explanation of these terms :

ET Xn1,n2 =


Eelec× l + ε f s× l×d(s1,s2)

2 if d<d0

Eelec× l + εmp× l×d(s1,s2)
4 if d ≥ d0

(5.6)

ERX = Eelec× l (5.7)

The total activation energy, TotAE, for cluster head and non-cluster heads which get

activated during a round is :

TotAE =
nc

∑
i=1

AE×ai

+ ∑
s∈ci

AE×as

(5.8)

where

ai =


1 if sensori gets activated during the current round

0 Otherwise
(5.9)
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AE is the activation energy of each node

The objective function, NC, minimizes the number of uncovered targets :

NC(I) =
m

∑
i=1

Uncovered(targeti) (5.10)

Here,

Uncov(ti) =


0 if ∃ s ∈ SensorActive,d(s, ti) ≤ rs

1 Otherwise
(5.11)

d(s, ti) denotes the distance between sensor node s and target ti

The usual operators used in the GA - crossover, mutation, selection - are part of the

set Γ :

Γ = (cΘc,mΘm,sΘs | cΘc ,mΘm,sΘs : IN → IN) (5.12)

The routing solutions are modified by crossover and mutation operators.

pc is a fraction of the pairs of parents of the population chosen for recombination.

For every pair of the parents, two points of crossover r1 and r2 are selected randomly

from the set (1,.....,m− 1). The parents I1 and I2 are exchanged at the bit positions

between these points. Each new string of bits is also mutated with a probability of pm.

During mutation, 0 is converted into 1 or 2, 1 is converted into 0 or 2 and 2 is converted

into 0 or 1. The −1s are not converted. The generation updation is denoted by :

ψ : EP→ EP
′

This is how the current EP (External Population) is updated through the removal

and / or addition of dominated and / or non-dominated solutions, also applying Γ to the

current IN .

The criteria for terminating the MOEA/D is :

l : IN →{true, f alse}

The next round of routing begins by using

ϕ : EP→ I∗
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Here a solution I∗ is selected from the EP. The selected solution is the one which

needs minimum energy for achieving coverage. It then decodes it into a clustered solu-

tion ∀i ∈ {1,m},

si =



Dead if I∗i =-1

Inactive if I∗i =0

Non CH if I∗i =1

CH if I∗i =2

(5.13)

This is the way implementation of MOEA/D is done for a WSN represented in the form

of bits.

We represent the WSN state by creating a qubit population. A qubit may be in ’0’

state, ’1’ state or a superposition of these 2 states. Its state can be derived from :

|ψ >= α|0 >+β |1 > (5.14)

where α and β represent the probability amplitudes of the corresponding states.

|α|2 is the probability of the qubit being in ’0’ state and |β |2 is the probability of the

qubit being in ’1’ state.

|α|2 + |β |2 = 1 (5.15)

The state of a quantum bit is changed by the quantum gates. Rotation gates are used

in our work for changing the qubit states. The Q bit string of m bits is represented as a

quantum matrix :

α1| α2| .... |αm

β1| β2| .... |βm

 (5.16)

where

|αi|2 + |βi|2 = 1, i = 1,2, .....,m (5.17)
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We have used a rotation gate for changing the state of qubit:

U(∆θi) =

cos(∆θi) −sin(∆θi)

sin(∆θi) cos(∆θi)

 (5.18)

where ∆θi, i=1,2,3,....,m is rotation angle of each qubit toward either 0 or 1 and it de-

pends on the sign.

The Quantum Optimizer based on MOEAD for optimizing lifetime and coverage in

WSNs is given in the Algorithm 3 below:
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Input: MOP (minimizing energy consumption and increasing coverage)
The number of subproblems considered in MOEA/D, N
A Uniform spread of N weight vectors: λ 1,. . .,λ N

The number of the weight vectors in the neighborhood of each weight vector, T
The maximum number of generations, genmax
Output: EP (External Population)
begin

Step 0 : Setup
EP is set to Φ

gen is initialized to 0
Step 1 : Initialization
The internal population (IP) which consists of quantum bits is randomly
generated IP=(x1,. . .,xN) and FV i is set to F(xi)

z=(z1,. . .,zn)T is initialized through a method which depends on the problem
The Euclidean distance between two weight vectors is calculated and the T
closest weight vectors to every weight vector are found
∀i = 1, . . . ,N, B(i) is set to (i1, . . . , iT ) where λ i1, . . . ,λ iT are the T closest
weight vectors to λ i

Step 2: Update: For i=1,....,N
Quantum updation: 2 indices k, l are randomly selected from B(i) and a
new solution y is generated from xk and xl through quantum rotation gates

z is updated, ∀ j = 1, . . . ,n, if z j < f j(y) and z j is set to f j(y)
The neighbouring solutions are updated: For each index j ∈ B(i), if
gte(y | λ j,z)≤ gte(x j | y j,z∗), set x j to y and FV j = F(y j)
EP Updation: All vectors which are dominated by F(y) are removed from
EP. If no vector present in EP dominates F(y), F(y) is added to EP

Step 3 : Stopping criteria
If gen = genmax, the loop is stopped and EP is given as output
Otherwise gen is incremented by 1 and control is transferred to Step 2

end
Algorithm 3: Quantum Optimizer based on MOEAD for optimizing lifetime and
coverage in WSNs
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5.5 Experimental Results

QMOEAD is compared with LEACH (Heinzelman et al., 2002), SEP (Smaragdakis

et al., 2004), NSGAII (Deb et al., 2002) and MOEA/D (Özdemir et al., 2013). The

parameters compared are number of nodes alive and number of targets covered. The

simulation is done using MATLAB R2019a. The experimental setup consisted of 10

WSNs, with each WSN having 100 sensors and 50 targets and the area of interest being

100 × 100 m2. The nodes are assumed be homogeneous.

The radio model and evolutionary components used are given in Table 5.1 and Table

5.2 respectively:

Table 5.1 Radio model

Term Value
Eelec, energy dissipated per bit 20 nJ/bit
E0, initial energy of node 0.1 J
ε f s, Free Space energy 10 pJ/bit/m2

εmp, Multipath energy 0.0013 pJ/bit/m4

EDA, energy for data aggregation 5 nJ/bit/report
Sensing radius 10 m
Activation Energy 5.0 nJ
l, Message size 4000 bits

Table 5.2 Evolutionary components

Term Value
pc, crossover probability 0.6
pm, mutation probability 0.03
N, Population size 20
genmax, number of generations 20
EDA, energy for data aggregation 5 nJ/bit/report
T , neighbourhood size 4

The results when the nodes alive are compared after a number of rounds is shown
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Table 5.3 Number of Alive Nodes Vs Rounds

Rounds Alive
Nodes

Alive
Nodes

Alive
Nodes

Alive
Nodes

Alive
Nodes

LEACH SEP NSGAII MOEAD QMOEAD
25 100 100 100 100 100
50 100 100 100 100 100
75 96.6 96.2 99.6 100 100
100 8.8 8.4 97.4 100 100
125 4 6.6 80.3 100 100
150 0 0 75.66 98.78 100
175 0 0 23.56 87.89 100
200 0 0 0.7 34.89 99.76
225 0 0 0 8.78 90.34
250 0 0 0 1.56 68.46
275 0 0 0 0 54.35
300 0 0 0 0 23.86
325 0 0 0 0 1.77
350 0 0 0 0 0.35
375 0 0 0 0 0

in Table 5.3. As can be seen from the table, in case of QMOEAD, only after round 375

the number of nodes alive will become 0. For the other algorithms evaluated, it reaches

the value 0 earlier.

The results when targets covered are compared after a number of rounds is shown

in Table 5.4. The table illustrates that in case of QMOEAD, only after round 350 the

number of targets covered will become 0. For the other algorithms evaluated, it reaches

the value 0 earlier.

The graphical results of comparison of number of nodes alive with number of rounds

for LEACH, SEP, NSGA II, MOEAD and QMOEAD are shown in Figure 5.1. The

usage of QMOEAD makes the number of alive nodes reach the value 0 after more

rounds. The graphical results of comparison of number of targets covered with number

of rounds for LEACH, SEP, NSGA II, MOEAD and QMOEAD are shown in Figure

5.2. Through the usage of QMOEAD, the number of targets covered reaches the value

0 after more rounds. Since LEACH and SEP activate all the alive nodes during their
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Table 5.4 Target Coverage Vs Rounds

Rounds Targets
covered

Targets
covered

Targets
covered

Targets
covered

Targets
covered

LEACH SEP NSGAII MOEAD QMOEAD
25 50 50 50 50 50
50 50 50 50 50 50
75 50 50 50 50 50
100 25 27.4 50 50 50
125 10 13 49.5 50 50
150 0 0 40.12 49.8 50
175 0 0 37.78 49.56 50
200 0 0 0.67 38.67 49.9
225 0 0 0 14.44 40.67
250 0 0 0 2.45 35.98
275 0 0 0 0 23.56
300 0 0 0 0 12.87
325 0 0 0 0 2.56
350 0 0 0 0 0
375 0 0 0 0 0

rounds, their performance is inferior in comparison to the other algorithms. The NSGA

II and MOEAD activate only a percentage of alive nodes and therefore perform better.

The QMOEAD, due to the nature of qubits, adds more diversity.
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Figure 5.1 Nodes Alive Vs No of Rounds - LEACH, SEP, NSGA II, MOEAD,
QMOEAD

5.6 Summary

In this chapter, the Quantum computing based Multi Objective Evolutionary Algorithm

with Decomposition (QMOEAD) is presented. The number of nodes alive and num-

ber of targets covered for QMOEAD after a large number of rounds are compared with

LEACH (Heinzelman et al., 2002), SEP (Smaragdakis et al., 2004), NSGA II (Deb

et al., 2002) and MOEAD (Özdemir et al., 2013). Even as the number of rounds in-

creases, the nodes remain alive for a longer time in case of QMOEAD. Also, even

as the number of targets covered decreases with increasing rounds, QMOEAD covers

more targets in comparison with the other mentioned algorithms. The performance of

QMOEAD is therefore better than LEACH, SEP, NSGA II and MOEAD. A limitation

of the proposed algorithm is that it works only for Homogeneous WSNs. Real life

WSNs may be Heterogeneous and may require more robust algorithms. The Quantum

Optimizer discussed in the next chapter works for both Homogeneous and Heteroge-

neous WSNs.
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Figure 5.2 No of Covered Targets Vs No of Rounds - LEACH, SEP, NSGA II, MOEAD,
QMOEAD
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CHAPTER 6

Quantum Optimizer based on MOEAD for
Optimizing Lifetime and Coverage in WSN

6.1 Introduction

There are various WSN parameters which researchers have been trying to optimize like

energy efficiency, coverage, network lifetime, cluster head selection, quality of service,

load balancing, etc. In this chapter, we have worked on simultaneously optimizing two

parameters: Coverage and Network Lifetime.

Energy efficient routing has been one of the areas in which lot of research is going on

(Heinzelman et al., 2002) , (Smaragdakis et al., 2004), (Cardei and Du, 2005), (Kr-

ishnan et al., 2021). Clustering is used extensively for accomplishing energy efficient

routing. Clustering is a technique in which nodes are divided into Clusters which are

groups of nodes. For every cluster, there is a node which is in charge and it is the Clus-

ter Head (CH). The nodes within a cluster sense the data and send the data to the CH of

that cluster. It is the job of the CH to aggregate the data and send it to the base station.

Coverage is another WSN parameter on which lot of research has been done (Tian and

Georganas, 2002), (Deepa and Venkataraman, 2021). In coverage, our aim is to cover

as much area as possible using as less nodes as possible.

Optimizing the Energy consumption along with Coverage is an area less explored but

there are significant works on this topic (Ye et al., 2003), (Chowdhury and De, 2021).

Quantum computing has been used to optimize WSNs (Li and Huo, 2016), (Zhang et al.,

2021).
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There are very few efforts at using Quantum computing along with MOEAD for opti-

mizing WSNs (Kanchan et al., 2021). This paper optimizes Homogeneous WSNs using

MOEAD in conjunction with Quantum Computing.

In this chapter, Quantum computing along with MOEAD is used for optimizing lifetime

and coverage of WSNs - both homogeneous and heterogeneous. For the heterogeneous

WSNs, we vary not only the energies of the nodes but also the sensing radius. The re-

sults are compared with LEACH (Heinzelman et al., 2002), SEP (Smaragdakis et al.,

2004), NSGA II (Deb et al., 2002) and MOEAD (Özdemir et al., 2013). The superiority

of our method is shown by the results.

6.2 The Quantum Optimizer for Homogeneous and Heterogeneous

WSNs - Experimental Results

We use the algorithm as used in Algorithm 3 in Section 5.4; the major difference is that

we have considered Homogeneous as well as Heterogeneous WSNs.

We investigate the performance of Quantum Optimizer against LEACH (Heinzelman

et al., 2002), SEP (Smaragdakis et al., 2004), NSGA-II (Deb et al., 2002) and MOEA/D

(Özdemir et al., 2013).

The protocols are evaluated with respect to number of nodes alive and number of targets

covered. The simulation is done using MATLAB R2019b. 6 scenarios are simulated.

In each scenario, there are 10 WSNs with 100 sensors and 50 targets uniformly

distributed in an area 100×100 m2 and the base station is located at the center.

Scenario 1 consists of WSN Group 1 where all nodes are Homogeneous and have

uniform sensing radius of 10m.

In Scenario 2 (Heterogeneous nodes), the WSN Group 1 consists of normal nodes

as well as nodes with extra energy which are called advanced nodes (10 % of the nodes

are advanced in our simulation ). The normal nodes have sensing radius of 10m and

advanced nodes have 1.5 times the sensing radius.

In Scenario 3 (Heterogeneous nodes), the WSN Group 1 consists of normal nodes as

74



well as 20 % advanced nodes. The normal nodes have sensing radius of 10m and ad-

vanced nodes have 2 times the sensing radius.

Scenario 4 consists of WSN Group 2 where all nodes are Homogeneous and have

uniform sensing radius of 20m.

In Scenario 5 (Heterogeneous nodes), the WSN Group 2 consists of normal nodes as

well as 10 % advanced nodes. The normal nodes have sensing radius of 20m and ad-

vanced nodes have 1.5 times the sensing radius.

In Scenario 6 (Heterogeneous nodes), the WSN Group 2 consists of normal nodes as

well as 20 % advanced nodes. The normal nodes have sensing radius of 20m and ad-

vanced nodes have 2 times the sensing radius.

The radio model used and evolutionary components used are the same as in Table

5.1 and Table 5.2.

6.2.1 Scenario 1

In Scenario 1, all nodes of WSN Group 1 are Homogeneous and have uniform sensing

radius of 10m. We refer to the Quantum Optimizer as QMOEAD when Homogeneous

WSN is considered.

Table 6.1 Number of Alive Nodes Vs Rounds - Scenario 1

Rounds LEACH SEP NSGAII MOEAD QMOEAD
25 100 100 100 100 100
50 100 100 100 100 100
100 8 4 99 99 100
150 0 0 77 82 100
200 0 0 12 34 100
250 0 0 0 4 89
300 0 0 0 0 75
350 0 0 0 0 23
400 0 0 0 0 0
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The number of nodes alive after a number of rounds for Scenario 1 is shown in

Table 6.1.

Table 6.2 Target Coverage Vs Rounds - Scenario 1

Rounds LEACH SEP NSGAII MOEAD QMOEAD
50 50 50 50 50 50
100 20 18 50 50 50
150 0 0 50 48 50
200 0 0 19 33 50
250 0 0 0 3 48
300 0 0 0 0 38
350 0 0 0 0 12
400 0 0 0 0 0

The number of targets covered after a number of rounds for Scenario 1 is shown in

Table 6.2.

6.2.2 Scenario 2

In Scenario 2 (Heterogeneous nodes), the WSN Group 1 consists of normal nodes as

well as nodes with extra energy which are called advanced nodes (10 % of the nodes

are advanced in our simulation ). We refer to the Quantum Optimizer as QOHW

when Heterogeneous WSN is considered.The normal nodes have sensing radius of 10m

and advanced nodes have 1.5 times the sensing radius.

The number of nodes alive after a number of rounds for Scenario 2 is shown in

Table 6.3.

The number of targets covered after a number of rounds for Scenario 2 is shown in

Table 6.4.
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Table 6.3 Number of Alive Nodes Vs Rounds - Scenario 2

Rounds LEACH SEP NSGAII MOEAD QOHW
50 100 100 100 100 100
100 17 20 100 100 100
150 0 0 80 91 100
200 0 0 33 64 100
250 0 0 10 12 100
300 0 0 4 5 100
350 0 0 3 2 100
400 0 0 0 1 98
450 0 0 0 0 86
500 0 0 0 0 65
550 0 0 0 0 20
600 0 0 0 0 0

Table 6.4 Target Coverage Vs Rounds - Scenario 2

Rounds LEACH SEP NSGAII MOEAD QOHW
50 50 50 50 50 50
100 48 50 50 50 50
150 0 0 49 50 50
200 0 0 44 50 50
250 0 0 29 33 50
300 0 0 8 13 48
350 0 0 5 10 40
400 0 0 0 6 36
450 0 0 0 4 24
500 0 0 0 0 13
550 0 0 0 0 5
600 0 0 0 0 0
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6.2.3 Scenario 3

In Scenario 3 (Heterogeneous nodes), the WSN Group 1 consists of normal as well as

advanced nodes (20 % of the nodes are advanced ). The normal nodes have sensing

radius of 10m and advanced nodes have 2 times the sensing radius.

Table 6.5 Number of Alive Nodes Vs Rounds - Scenario 3

Rounds LEACH SEP NSGAII MOEAD QOHW
50 100 100 100 100 100
100 21 38 99 100 100
150 7 0 55 92 100
200 0 0 44 74 100
250 0 0 17 19 100
300 0 0 12 10 100
350 0 0 6 6 100
400 0 0 2 3 100
450 0 0 0 1 100
500 0 0 0 0 90
550 0 0 0 0 79
600 0 0 0 0 45
650 0 0 0 0 23
700 0 0 0 0 0

The number of nodes alive after a number of rounds for Scenario 3 is shown in

Table 6.5.

The number of targets covered after a number of rounds for Scenario 3 is shown in

Table 6.6.

6.2.4 Scenario 4

In Scenario 4, all nodes of WSN Group 2 are Homogeneous and have uniform sensing

radius of 20m. We refer to the Quantum Optimizer as QMOEAD when Homogeneous

WSN is considered.
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Table 6.6 Target Coverage Vs Rounds - Scenario 3

Rounds LEACH SEP NSGAII MOEAD QOHW
50 50 50 50 50 50
100 50 50 50 50 50
150 33 0 48 50 50
200 0 0 46 50 50
250 0 0 34 39 50
300 0 0 28 33 50
350 0 0 19 27 50
400 0 0 8 16 50
450 0 0 0 0 50
500 0 0 0 0 48
550 0 0 0 0 34
600 0 0 0 0 25
650 0 0 0 0 10
700 0 0 0 0 0

Table 6.7 Number of Alive Nodes Vs Rounds - Scenario 4

Rounds LEACH SEP NSGAII MOEAD QMOEAD
50 50 50 50 50 50
100 34 27 50 50 50
150 0 0 50 50 50
200 0 0 50 50 50
250 0 0 15 47 50
300 0 0 0 0 50
350 0 0 0 0 38
400 0 0 0 0 23
450 0 0 0 0 12
500 0 0 0 0 0
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The number of nodes alive after a number of rounds for Scenario 4 is shown in Ta-

ble 6.7.

Table 6.8 Target Coverage Vs Rounds - Scenario 4

Rounds LEACH SEP NSGAII MOEAD QMOEAD
50 50 50 50 50 50
100 34 27 50 50 50
150 0 0 50 50 50
200 0 0 50 50 50
250 0 0 15 47 50
300 0 0 0 0 50
350 0 0 0 0 38
400 0 0 0 0 23
450 0 0 0 0 12
500 0 0 0 0 0

The number of targets covered after a number of rounds for Scenario 4 is shown in

Table 6.8.

6.2.5 Scenario 5

In Scenario 5 (Heterogeneous nodes), the WSN Group 2 consists of normal as well

as advanced nodes (10 % of the nodes are advanced ). We refer to the Quantum

Optimizer as QOHW when Heterogeneous WSN is considered.The normal nodes have

sensing radius of 20m and advanced nodes have 1.5 times the sensing radius.

The number of nodes alive after a number of rounds for Scenario 5 is shown in

Table 6.9.

The number of targets covered after a number of rounds for Scenario 5 is shown in

Table 6.10.
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Table 6.9 Number of Alive Nodes Vs Rounds - Scenario 5

Rounds LEACH SEP NSGAII MOEAD QOHW
50 100 100 100 100 100
100 13 23 100 100 100
150 0 0 85 93 100
200 0 0 38 65 100
250 0 0 13 24 100
300 0 0 9 14 100
350 0 0 0 8 100
400 0 0 0 2 100
450 0 0 0 1 100
500 0 0 0 0 100
550 0 0 0 0 86
600 0 0 0 0 45
650 0 0 0 0 0

Table 6.10 Target Coverage Vs Rounds - Scenario 5

Rounds LEACH SEP NSGAII MOEAD QOHW
50 50 50 50 50 50
100 50 50 50 50 50
150 0 0 50 50 50
200 0 0 50 50 50
250 0 0 50 50 50
300 0 0 47 49 50
350 0 0 0 47 50
400 0 0 0 44 50
450 0 0 0 35 50
500 0 0 0 0 50
550 0 0 0 0 38
600 0 0 0 0 14
650 0 0 0 0 0
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6.2.6 Scenario 6

In Scenario 5 (Heterogeneous nodes), the WSN Group 2 consists of normal as well as

advanced nodes (20 % of the nodes are advanced ). The normal nodes have sensing

radius of 20m and advanced nodes have 2 times the sensing radius.

Table 6.11 Number of Alive Nodes Vs Rounds - Scenario 6

Rounds LEACH SEP NSGAII MOEAD QOHW
50 100 100 100 100 100
100 23 38 99 100 100
150 9 0 89 98 100
200 0 0 49 69 100
250 0 0 38 40 100
300 0 0 25 30 100
350 0 0 17 20 100
400 0 0 14 16 100
450 0 0 10 10 100
500 0 0 8 6 100
550 0 0 3 4 96
600 0 0 0 3 76
650 0 0 0 0 45
700 0 0 0 0 24
750 0 0 0 0 0

The number of nodes alive after a number of rounds for Scenario 6 is shown in

Table 6.11.

The number of targets covered after a number of rounds for Scenario 6 is shown in

Table 6.12.
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Table 6.12 Target Coverage Vs Rounds - Scenario 6

Rounds LEACH SEP NSGAII MOEAD QOHW
50 50 50 50 50 50
100 50 50 50 50 50
150 50 0 50 50 50
200 0 0 50 50 50
250 0 0 50 50 50
300 0 0 50 50 50
350 0 0 50 50 50
400 0 0 48 50 50
450 0 0 44 50 50
500 0 0 42 49 50
550 0 0 36 40 48
600 0 0 0 38 38
650 0 0 0 0 23
700 0 0 0 0 13
750 0 0 0 0 0

6.3 Graphical Results

Figure 6.1 No of Nodes Alive Vs No of Rounds - LEACH, SEP, NSGA II, MOEAD,
QMOEAD - Scenario 1
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Figure 6.2 No of Covered Targets Vs No of Rounds - LEACH, SEP, NSGA II, MOEAD,
QMOEAD - Scenario 1

Figure 6.1 and 6.2 show the graph obtained for Homogeneous WSN Group 1.
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Figure 6.3 No of Nodes Alive Vs No of Rounds - LEACH, SEP, NSGA II, MOEAD,
QOHW - Scenario 2

Figure 6.4 No of Covered Targets Vs No of Rounds - LEACH, SEP, NSGA II, MOEAD,
QOHW - Scenario 2
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Figure 6.3 and 6.4 show the graph obtained for Heterogeneous WSN Group 1 with

10 % Advanced Nodes.

Figure 6.5 No of Nodes Alive Vs No of Rounds - LEACH, SEP, NSGA II, MOEAD,
QOHW - Scenario 3

Figure 6.5 and 6.6 show the graph obtained for Heterogeneous WSN Group 1 with

20 % Advanced Nodes.
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Figure 6.6 No of Covered Targets Vs No of Rounds - LEACH, SEP, NSGA II, MOEAD,
QOHW - Scenario 3

Figure 6.7 No of Nodes Alive Vs No of Rounds - LEACH, SEP, NSGA II, MOEAD,
QMOEAD - Scenario 4

Figure 6.7 and 6.8 show the graph obtained for Homogeneous WSN Group 2.
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Figure 6.8 No of Covered Targets Vs No of Rounds - LEACH, SEP, NSGA II, MOEAD,
QMOEAD - Scenario 4

Figure 6.9 No of Nodes Alive Vs No of Rounds - LEACH, SEP, NSGA II, MOEAD,
QOHW - Scenario 5

Figure 6.9 and 6.10 show the graph obtained for Heterogeneous WSN Group 2 with

10 % Advanced Nodes.
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Figure 6.10 No of Covered Targets Vs No of Rounds - LEACH, SEP, NSGA II,
MOEAD, QOHW - Scenario 5

Figure 6.11 No of Nodes Alive Vs No of Rounds - LEACH, SEP, NSGA II, MOEAD,
QOHW - Scenario 6

Figure 6.11 and 6.12 show the graph obtained for Heterogeneous WSN Group 2

with 20 % Advanced Nodes.
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Figure 6.12 No of Covered Targets Vs No of Rounds - LEACH, SEP, NSGA II,
MOEAD, QOHW - Scenario 6

6.4 Summary

The proposed Quantum Optimizer considers network lifetime and coverage as multiple

objectives and optimizes them. The working of the Quantum Optimizer is compared

with LEACH (Heinzelman et al., 2002), SEP (Smaragdakis et al., 2004), NSGA II

(Deb et al., 2002) and MOEA/D (Özdemir et al., 2013) for 6 different scenarios and

the results show that the Quantum Optimizer outperforms LEACH, SEP, NSGA and

MOEA/D. Due to the activation of all alive nodes during the rounds of execution, per-

formance of LEACH and SEP is inferior. Since in NSGA II and MOEA/D, only a

percentage of alive nodes are activated during the rounds, they perform better. In case

of the Quantum Optimizer, the diversity is because of quantum bits. As future work,

some more WSN parameters like interconnectivity, reliability, etc along with the exist-

ing multiple objectives can be considered for improvement.
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CHAPTER 7

Conclusion and Future work

7.1 Conclusion

The major contributions of the thesis are summarized in this chapter.

7.1.1 Contributions

Some Nature Inspired Algorithms are proposed in conjunction with Quantum Comput-

ing for Optimizing WSNs which are as follows:

1. Energy Efficient scheme for Clustered WSNs using Quantum Inspired Computing

in which Quantum PSO is used

2. Quantum PSO algorithm for Clustered WSNs which Improves Network Lifetime

3. Quantum Inspired Multiobjective Optimization in Clustered Homogeneous Wire-

less Sensor Networks for Improving Network Lifetime and Coverage

4. Quantum Optimizer based on MOEAD for Optimizing Lifetime and Coverage in

Homogeneous and Heterogeneous WSNs

In the first contribution Chapter 3, our algorithm QPSOEEC is compared with

LEACH (Heinzelman et al., 2002) and PSO ECHS (Rao et al., 2017). Results show that

values of total energy consumed using QPSOEEC are 89% better than LEACH and

71% better than PSOECHS.
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In the second contribution Chapter 4, a new term, Network Lifetime Factor (NLF)

is defined and the NLF values of LEACH (Heinzelman et al., 2002) and PSO ECHS

(Rao et al., 2017) are compared with those of the proposed algorithm. The NLF values

for our algorithm are better than those for LEACH and PSO-ECHS.

In the third contribution Chapter 5, the Quantum inspired Multi Objective Evo-

lutionary Algorithm based on Decomposition (QMOEAD) is proposed. The scheme

is compared with LEACH (Heinzelman et al., 2002), SEP (Smaragdakis et al., 2004),

NSGA II (Deb et al., 2002) and MOEA/D (Özdemir et al., 2013) by simulation for

Homogeneous WSNs and our scheme proves to be better than the mentioned schemes.

In the final contribution Chapter 6, a Quantum Optimizer for both Homogeneous

and Heterogeneous WSNs is proposed. The scheme is compared with LEACH (Heinzel-

man et al., 2002), SEP (Smaragdakis et al., 2004), NSGA II (Deb et al., 2002) and

MOEA/D (Özdemir et al., 2013). Both Homogeneous and Heterogeneous WSNs are

considered for 6 different scenarios and our scheme proves to be better than the men-

tioned schemes.

7.1.2 Future scope

In this section, some directions for possible future work are suggested. Several research

directions worth investigating are as follows :

The effect of Quantum computing in conjunction with PSO and MOEAD has been stud-

ied ; there are many more Nature Inspired algorithms with which Quantum computing

can be combined (like ACO, GA, FA, CS, etc) and used to optimize some parameters of

WSN. Also, we have investigated optimizing the parameters - energy,lifetime, coverage.

Optimization of other parameters like Interconnectivity, Reliability can be considered.

Some scientists are of the opinion that parallel computing will improve upon the power

of quantum computing. Quantum phenomena essentially allow evaluating many poten-

tial answers simultaneously, which is something parallel computers also do. However,

parallel computers require an amount of hardware proportional to the number of things

being simultaneously evaluated (N), while the number of qubits needed by a quantum

computer is only proportional to log(N). In theory, quantum machines can also perform
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the evaluation in almost zero time. On the other hand, a quantum computer simply re-

turns a single randomly-selected correct result, while a parallel computer can directly

return all valid results. Quantum computing will surely yield better performance but

with increased hardware cost.
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