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Abstract

There is an exponential increase in Internet of Things (IoT) devices in smart envi-

ronments to monitor and control activities. The use of IoT devices in these environments

increased the computational and storage resources requirement. Cloud computing pro-

vides computational and storage resources, but it requires entire data to be transferred

to the cloud. Using cloud computing for all IoT/Industrial IoT (IIoT) applications is

not feasible as some of these applications are delay-sensitive and require service in

real-time to avoid significant failures. Hence, a distributed fog computing architecture

is developed to provide the computational and storage resources at the network edge to

process and analyze the data. The main research challenges in a fog computing environ-

ment are: to realize the fog computing infrastructure on resource constrained devices

using the virtualization technique to provide the computational resources. Further, it is

challenging to use these fog nodes for service placement and deploy a machine learn-

ing model for real-time data analytics. This research work focuses on developing fog

frameworks for IoT/IIoT service placement and the machine learning model deploy-

ment to process and analyze the sensor data to reduce the service time and resource

consumption and thus enable real-time monitoring of the smart environments.

The Fog-Cloud computing environment is used to place the IoT/IIoT services based

on the resource availability and deadline to address the above research challenges. The

service placement problem in the fog-cloud computing environment is formulated as

a multi-objective optimization problem and a novel cost-efficient deadline-aware ser-

vice placement algorithm is developed to place the services on the Fog-Cloud resources

to ensure the QoS of the IoT/IIoT services in terms of deadline, service cost and re-

source availability. Using simulators or virtual machines based resource provisioning

framework is not feasible as it takes more time and consumes more resources. Hence,

the container-based fog computing framework is developed on 1.4 GHz 64-bit quad-

core processor devices to realize the fog computing architecture on the resource con-

strained devices. Further, the service placement problem in the fog computing envi-

ronment is formulated as a multi-objective optimization problem and the meta-heuristic

algorithms such as Elite Genetic Algorithm (EGA), Modified Genetic Algorithm with

Particle Swarm Optimization (MGAPSO) and EGA with Particle Swarm Optimization

(EGAPSO) are developed for IoT/IIoT service placement in the fog computing envi-

ronment. The experimental results show that using a hybrid EGAPSO based service

placement on the fog nodes reduces service time, cost and energy consumption.



Using fog nodes for deploying the machine learning models to analyze the data re-

duces the size of the data to be transferred to the cloud, which might reduce the network

congestion, reduce the service time and thus enable to make quick decisions. The fog

server-based framework is developed as a prototype for intelligent machine malfunction

monitoring in the Industry 4.0 environment. The various supervised machine learning

models are developed and deployed on the fog server at the network edge to analyze

the data and thus enable real-time monitoring in the smart industry/Industry 4.0 envi-

ronment. The fog server framework is used for industrial machine monitoring at Smart

Industry/Industry 4.0 to detect and classify the machine as normal and abnormal using

the machine operating sounds. The experimental results show the machine learning

models’ performance for the various machines’ sounds recorded with different Sig-

nal to Noise Ratio levels for normal and abnormal operations using Linear Prediction

Coefficients and Mel Frequency Cepstral Coefficient audio features. Using fog server

prototype for monitoring will reduce the total time and thus avoids the significant ma-

chines failures in the industrial environment.

Keywords: Abnormal, Containers, Energy Consumption, Industry 4.0, In-

ternet of Things, IIoT, Malfunction Monitoring, Meta-heuristic,

MFCC, Normal, Resource Provisioning, Service Placement.
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Chapter 1

Introduction

1.1 Internet of Things

Internet of Things (IoT) is defined as the group of physical devices connected over the

internet. IoT has become the most pivotal technology since many devices such as home

and kitchen appliances, thermostats, etc., are connected to the internet and enable seam-

less communication between humans, processes, and things. These IoT devices allow a

new way of interconnection and communication between the devices and thus generate

a huge amount of data. It is projected that the number of IoT devices will reach over

75.44 billion, and these devices will generate enormous data by the year 2025 (Alavi

et al., 2018). Using IoT devices in different environments automates the processes, re-

duces human intervention, cost, service time, and improves the user experience (Atzori

et al., 2010). IoT enables the use of the resources/infrastructure efficiently, enhances

people’s awareness about their cities, and encourages them to actively manage the re-

sources and create new applications using IoT devices.

The things in the IoT are classified into the following:

• Collect data and send: The connected sensor devices such as temperature, mo-
tion, air quality, moisture sensors, etc., collect data and transfer it to process and
analyze to make intelligent decisions.

• Receive data and act: These are the connected devices that receive data and
perform some actions. For example, the signal from the car key opens or locks
the car door.

• Things perform both send and act: The more powerful things can perform both
operations, i.e., can send, receive data, and act. These devices will collect the data
and, based on the data, decide to send the control signal to act. For example, in the
automated irrigation control system, the moisture sensor collects the data. Then
the control system automatically decides to watering or not to water the crops
based on the sensor data.

1.1.1 IoT Applications

The IoT applications bring more value into our lives and reduce time, human interven-

tion, and cost. Many real-world applications make use of more IoT devices to automate

monitoring and controlling operations. Figure 1.1 shows diverse real-world smart envi-

ronments that use the IoT.



Internet 
of 

Things

Smar t Car

Smar t Shopping

Smar t Sur vei l lance

Smar t Industr y

Smar t Home

Smar t Health

Smar t Ci ty

Figure 1.1: Smart Environments where large number of IoT devices are deployed to monitor
and control the environment

1.1.1.1 Smart City Applications

The increase in urbanization and population in the cities requires ensuring a clean, de-

cent life quality for the citizens. Hence, governments are considering developing cities

as smart cities using technologies (Chatterjee et al., 2018). A smart city is a public

area that uses IoT devices to monitor and control the city’s environment. Using IoT

devices enables smart governance, smart economy, smart mobility, smart environment,

and smart living (Arasteh et al., 2016; Simmhan et al., 2018). In the smart city, the IoT

devices are used for automated and smart light control (Ouerhani et al., 2016), cameras

and other connected devices are used for intelligent traffic control and parking monitor-

ing (Al-Turjman and Malekloo, 2019), traffic congestion and vehicle movement, smart

water supply management, waste management, etc. (Zanella et al., 2014). Using IoT

in smart waste management will connect the end devices such as intelligent waste con-

tainers, waste collecting trucks, and the waste controller system, thus identifying the

best possible truck routes and reducing the waste collection cost. Hence, IoT devices in

smart waste management enable significant savings in terms of time and cost.

1.1.1.2 Smart Healthcare

Healthcare is an essential part of life as the aging population and chronic diseases in-

creases, requiring more hospital resources, from doctors to beds. Thus, there is a re-

quirement to reduce the pressure on the healthcare systems and provide a better quality

2



of care for the patients at high risk. In this situation, using IoT devices to monitor

the patients remotely will reduce the pressure on the healthcare systems (Baker et al.,

2017; Catarinucci et al., 2015). The IoT devices are used at the patient’s, doctor’s, and

hospital’s side for different purposes.

IoT for Patients: Using IoT devices for patient monitoring or elder monitoring

transforms the healthcare system and enables a new way of delivering healthcare solu-

tions (Park et al., 2017; Saraubon et al., 2018). The wearable IoT devices for patients

will continuously collect the heart rate, blood pressure, and glucometer readings as the

patient’s data. It can suggest a calorie check, exercise, or a doctor’s appointment.

IoT for Physician: Using IoT for patient monitoring will enable physicians to re-

mote monitor, keep track of the patient’s health effects, and proactive patient treatment.

IoT for Hospitals: The sensors and other IoT devices track the medical equipment,

wheelchairs, and the medical staff’s locations.

The advantages of using IoT in the smart healthcare system are (Satija et al., 2017;

Dhanvijay and Patil, 2019):

• Faster disease diagnosis.

• Proactive and improved treatment.

• Drugs and equipment management.

• Low cost.

1.1.1.3 Smart Surveillance System

Nowadays, the video-based surveillance system is gaining more popularity (Kim and

Ben-Othman, 2018; Tsakanikas and Dagiuklas, 2018). These systems are beneficial

for government, organizations, and residential societies for monitoring safety and secu-

rity activities. These surveillance systems can be used for vehicle monitoring, activity

recognition, and monitoring in public places (Alam et al., 2019), student activity moni-

toring in the smart campus environment (Rashmi et al., 2020). The video feeds from the

surveillance cameras are processed and analyzed using machine learning techniques to

monitor and control the activities in real-time and thus ensure the people’s safety and se-

curity in public areas, classroom environments, and residential environments (Mabrouk

and Zagrouba, 2018).
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1.1.1.4 Smart Manufacturing Industry (Industry 4.0)

The recent advancement in technologies has transformed the industrial environment to

increase the industries’ efficiency and productivity (Tao and Qi, 2017; Kang et al., 2016;

Yang et al., 2019). IoT devices are used in the industrial environment to monitor and

control manufacturing devices in real-time and reduce significant failures. The smart in-

dustries are also referred to as Industry 4.0, which has revolutionized the industries that

focus on interconnectivity, automation, machine learning, and real-time optimization

in manufacturing and supply chain management. Industry 4.0 allows manufacturers to

predict the problems before they happen and thus reduce the manufacturing machines’

potential failures (Tange et al., 2020; Aazam et al., 2018a). The Industrial IoT (IIoT)

applications such as Pump Condition Monitoring, Pipeline leak, Corrosion detection,

and Manufacturing machine monitoring are delay-sensitive and require machine moni-

toring in real-time to reduce significant failures (Aceto et al., 2019; Diez-Olivan et al.,

2019).

1.1.2 Components of IoT Architecture

The components of IoT architecture consist of IoT sensor and actuator devices, data

acquisition or data collection node, gateway devices, and the cloud data center for pro-

cessing and analyzing the collected data is shown in Figure 1.2.

• Sensors and Actuators: The sensors are the devices that detect change in the
environment. These sensor devices continuously sense and collects the data and
then transfer it as a electrical signal. For example, the agriculture field sensor
will collect the moisture, soil temperature, and pH level data. Actuators are the
devices that receive the control signal and act on the received control signal. For
example, the actuators will open or close the water pump valve after receiving the
control signal based on the sensor data (Ray, 2017; Krishna et al., 2017).

Data 
acquisi tion 

systems

Sensors 
and 

Actuator s

Gateway 
devices

Cloud Data 
Center

Figure 1.2: Components of IoT Architecture

• Data Acquisition System and Gateway Devices: These are the devices de-
ployed close to the sensor and actuator devices to collect the data from the sensor.
The collected sensor data is stored in these devices and then transferred to the
cloud for further processing and analysis to make intelligent decisions on the
data.
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• Cloud Data Center: The data collected from the sensor devices should be pro-
cessed, analyzed to decide, and then send the control signal to actuators. Compu-
tational and storage resources are needed to process and store the data. The cloud
data center provides the computational and storage resources as the services and
machine learning techniques for analyzing the sensor data and makes the deci-
sions to transfer the control signal (Aazam et al., 2016; Pham et al., 2015; Mital
et al., 2015). The sensor data can be processed at the device level, at the network
level using network devices such as smart gateways, routers, and remote cloud
data centers are used for complex data processing and storage (Rahimi et al.,
2020; Zahoor et al., 2018).

1.2 Computing Architectures

IoT devices deployed in the different smart environments generate an unprecedented

amount of data. The computing resources are required to process and extract the in-

sights from the data, which is helpful to make the decisions. There are two types

of computing architecture used to process and analyze the IoT data, namely: Cloud-

centric (Centralized) and Device-centric computing (Simmhan, 2017b; Varshney and

Simmhan, 2017).

• Cloud-centric Computing: It uses centralized cloud computing architecture to
process, store and send back decision to the actuators.

• Device-centric Computing: It uses the end devices or network devices to pro-
cess the data close to the data source devices. The two types of device centric
computing are Edge Computing and Fog Computing.

The Cloud, Edge, and the Fog Computing architectures and the use-cases are dis-

cussed in the following sub-sections.

1.2.1 Cloud Computing

Cloud computing is a centralized computing architecture that provides the processing,

storage, and network resources as services remotely over the internet (Rimal et al.,

2009; Beloglazov et al., 2011). The cloud offers on-demand services and uses the pay-

as-you-go price model for charging cloud service users. The complete overview of

cloud computing architecture is shown in Figure 1.3. The most crucial cloud computing

characteristics are (Buyya et al., 2010; Garg et al., 2013; Buyya et al., 2009):

• On Demand Services: Cloud users can access and use cloud resources based on
their requirements. Cloud service allows users to increase or decrease the cloud
resources when they need them and charge based on a pay-as-you-go basis.
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• Rapid Elasticity: On-demand services ensure rapid elasticity, which is essential
for successful resource allocation. Rapid elasticity allows the cloud user to scale
up or down the cloud resources based on the requirement.

• Resource Pooling: The computing, storage, memory, and network resources are
pooled and allocated to multiple users based on user demand.

• Measured Services: The usage of cloud resources is measured and metered by
the cloud service provider. The measurement is used to track resource usage and
the cost of resource usage according to their demands.

Figure 1.3: Overview of an Cloud Computing Architecture (Botta et al., 2016)

1.2.1.1 Cloud Service Models

The cloud services are classified into different models such as Infrastructure as a Service

(IaaS), Software as a Service (SaaS), Platform as a Service (PaaS), and Anything as a

Service (XaaS) (Buyya et al., 2010; Kavis, 2014).

Infrastructure as a Service (IaaS): In IaaS service model, the cloud service provider

offers storage, processing (Virtual Machines), memory, load balancers and other com-

puting resources on demand to the end users (Ghosh et al., 2013). It enables rapid

scale-up and scale-down of the resources based on the user demand and avoids users

managing the physical infrastructure such as the servers and the data center. Using IaaS,

a cloud user can rent the Virtual Machines (VMs), servers, storage, network resources

from the cloud service provider based on the pay-as-you-go basis. Examples of IaaS

are Amazon Web Services and Open Stack.

Platform as a Service (PaaS): PaaS provides the on-demand cloud environment

for developing, testing, delivering, and managing software applications. In PaaS, the
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cloud service providers host the application and software development tools accessible

through APIs and web portals for the cloud end users. Examples of PaaS are Google

App Engine and Windows Azure.

Serverless Computing: Serverless computing is defined as the architecture and

programming model where small code snippets are deployed and executed without any

control over the resources (Baldini et al., 2017; Fox et al., 2017). Serverless comput-

ing allows developers to purchase the backend services on a pay-as-you-go basis and

ensures the flexibility to the developers to pay for what they use. Serverless comput-

ing eliminates infrastructure management and simplifies the developer experience. The

benefits of using serverless computing are:

• No Infrastructure Management: The cloud service provider automatically man-
ages the resources and let the user focus on core business logic.

• Dynamic and Simplified Scalability: Serverless computing ensures the dynamic
and simplified scale-up and scale-down of the resources based on the end-user or
developer requirement.

• More Efficient Use of Resources: Using serverless computing helps to use the
available computing resources efficiently and allows the resources reallocation to
accelerate the innovations.

Software as a Service (SaaS): The cloud service provider provides the software

services hosted on a server and makes them available for end user based on subscription.

The SaaS model is used for the software liscensing over the internet (Choudhary, 2007).

Hence, it allows the end-users to use software applications over the internet instead of

having to install the required software on the end user machines. Examples of SaaS are

Microsoft 365 and Google Apps.

Anything as a Service (XaaS): Nowadays cloud is capable of providing any ser-

vices, and it is termed as the Anything as a Service. The managed service providers

install the hardware on the customer premises on demand, and it is called the Hardware

as a Service (HaaS) and other services include Communication as a Service (CaaS),

Security as a Service (SECaaS), etc.

1.2.1.2 Cloud Deployment Models

The different cloud deployment models are: Public, Private, and Hybrid cloud (Buyya

et al., 2010; Voorsluys et al., 2011).
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Public Cloud: Public cloud is owned by a third party called the cloud service

provider. It provides computing resources, storage resources, and network resources

over the internet. Anyone can use the public cloud, and it is not dedicated to any single

organization or community. One of the main challenges in the public cloud is ensuring

data and service security since anybody can use cloud services.

Private Cloud: The private cloud provides the cloud resources which are explicitly

dedicated to the particular organization or the community. The ownership or cloud

resource management is done by the organization, third party, or a combination of these

two. For example, some companies use the private cloud in their onsite data center, and

the cloud service is maintained over the private network.

Hybrid Cloud: A hybrid cloud combines private and public clouds, allowing data

and application sharing between them. Hybrid cloud provides greater flexibility, de-

ployment options.

1.2.1.3 Virtualization

Virtualization is a process that allows the software to create an abstraction layer over

the physical computer hardware to use the underlying computer resources effectively.

It splits the existing resources such as processors, memory, and storage as multiple

components. It uses an independent virtual computer called Virtual Machines (VMs),

and each of these VMs runs a separate operating system (Xing and Zhan, 2012). Cloud

service providers use virtualization for provisioning resources for multiple users. Some

of the benefits of using virtualization are: efficient resource usage, easy management,

minimal downtime, and faster provisioning.

The different types of virtualization are: full virtualization and operating system

virtualization (Containers) (Sharma et al., 2016; David, 2014; Felter et al., 2015).

• Full Virtualization: It enables the existing Physical Machines (PMs) or servers
to run many machines called VMs, and each VM contains its operating systems,
applications, and necessary binaries. For deploying many VMs on the physical
machines, the user must mention the amount of resources that VM should pos-
sess CPU, RAM, and storage. The managing and controlling of deployed VMs
on PMs is done using the middleware called Virtual Machine Monitoring or hy-
pervisor, which prevents the direct access of the PMs’ hardware resources. One
of the main problems of using VMs is, it consumes more system resources as it
runs the guest operating system on each VMs and also, the booting time of VMs
is very high.
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• Operating System Virtualization (Containers): The OS-level virtualization
called containers is developed to overcome the problems of using VMs. Con-
tainers are the executable software packages that contain the code and required
dependencies together, which run on the host OS kernel. Container consumes
less space than the VMs and provides the rapid scalability and management of
IoT services (Tang et al., 2018). One of the most used container techniques is
using the docker container. Docker container is the lightweight and executable
package that contains the code and the required dependencies to run the appli-
cation (Hoque et al., 2017). Container images are referred to as containers at
runtime and in the case of Docker containers – the images become containers
when they run on Docker Engine. Docker containers that run on Docker En-
gine are portable, more efficient, more secure and do not require a separate OS
per application. Figure 1.4 illustrates the comparison between the VMs and the
Containers.

(a) (b)

Figure 1.4: Comparision between VMs and Containers (Chamberlain, 2018)

These virtualization techniques can provide computing resources for applications

based on user or application requests. Resource provisioning using VMs is not adapt-

able on resource constrained devices (fog nodes) since VMs boot time is high, con-

sumes more resources, and hosting more VMs in a single physical machine degrades

the physical machine’s performance. Thus using VMs to host and process the delay-

sensitive IoT/IIoT service requests might increase the service time. A container is the

preferable lightweight virtualization technique which virtualizes the OS instead of un-

derlying computer. The container not only reduces the resource management overhead

but also provides rapid and high scalability (Fayos-Jordan et al., 2020) based on the

application’s requirement. Hence, docker containers are used for resource provisioning

and process the delay-sensitive IoT applications in real-time.
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Using cloud computing as the computing architecture for all types of IoT applications

is not feasible. It requires entire data to be transferred to the cloud; thus, it increases

communication time, service response time, consumes more computing, storage, and

network resources (Yi et al., 2015; Hu et al., 2017). Hence, device-centric comput-

ing architecture is developed to provide service for delay-sensitive IoT applications in

real-time. The two types of device-centric computing techniques are: Edge and Fog

Computing.

1.2.2 Edge Computing

One of the best methods to address low latency and the bandwidth issues of centralized

computing architecture is by pushing the computation away from the centralized cloud

to the devices. Performing computation on the devices to make real-time decisions

is called Edge Computing (Garcia Lopez et al., 2015; Satyanarayanan, 2017). The

processing and analytics in edge computing are limited to a single device, and edge

computing does not extend across different domains and the cloud. Thus using edge

computing for data processing ensures low latency, reduced resource consumption, and

bandwidth cost for the IoT applications (Shi et al., 2016).

The IoT applications, such as security systems in smart homes or smart buildings,

smart health monitoring, autonomous cars, etc., prefer edge computing to process and

make decisions quickly.

Benefits of using the Edge computing for processing the data are as follows (Shi

and Dustdar, 2016; Premsankar et al., 2018):

• Security: Data accessed and analysed locally on the devices hence the number of
hops of data transfer is reduced to make the data more secured and protected.

• Cost saving: Bandwidth and other resources cost is minimized.

• Rapid Scalability: Computations on the IoT devices allow quick scale-up and
scale-down of their operations.

1.2.3 Mobile Edge Computing (MEC)

Mobile edge computing is defined as pushing the computation to the base stations of the

mobile operator to host and process the data at the network edge. Gupta et al. (2016) de-

fined MEC as a highly distributed computing architecture that provides the computing,
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storage resources to deploy both computationally intensive and delay-sensitive appli-

cations on the base stations. Characteristics of the MEC architecture are: proximity,

optimized utilization of the radio and the network resource, ensures low latency, loca-

tion awareness (Hu et al., 2015). Li et al. (2016) defines the critical benefits of MEC

in terms of its ability to virtualize and programmability of the network to provide the

resources and host the applications.

1.2.4 Fog Computing

A centralized computing architecture was preferred to process, store, and analyze the

data in the last few years or decades ago. It provides greater computational and storage

resources in the cloud. Nowadays, there is a transition towards using decentralized

computing architecture to address the high latency, location unawareness, high service

cost, and more resource usage issues of the centralized computing environment. Hence,

a decentralized computing architecture called Fog Computing is developed to move the

computation close to the data source devices (Solutions, 2015; Puliafito et al., 2019;

Varshney and Simmhan, 2020).

Bonomi et al. (2012) defined fog computing as a decentralized computing archi-

tecture that provides computational, storage, and network resources close to the data

source devices at the edge of the network. Hence, fog and cloud computing environ-

ments share some of the standard features such as virtualization, multi-tenancy, etc.

(Bonomi et al., 2014). In the fog computing environment, devices such as smart gate-

ways, routers, and micro data centers, servers are used as the fog nodes at the edge

of the network to provide computational resources to host, process, and store the IoT

service requests in real-time (Abdulkareem et al., 2019; Aazam and Huh, 2014, 2015a;

Chang et al., 2017).

Fog computing helps to address the following issues (Aazam et al., 2018b; Yi et al.,

2015):

• To carry Machine to Machine (M2M) and Human to Machine (H2M) communi-
cation in IoT applications.

• To enable the data aggregation at the edge and push and pull the data selectively
from the cloud.

• To adapt and scale upon the geographical expansion.

• To provide the data analysis capabilities for making real-time decisions on many
IoT application domains.
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• High latency and the location awareness.

The introduction of fog computing adds a new computation layer between the lower

IoT and the Cloud layers. Hence, using fog computing nodes to process the data at

the network’s edge will reduce communication time and reduce the total service time

and resource requirement. Figure 1.5 shows three layers of computing architecture

consisting of IoT, Fog, and Cloud layers.

Database

Fog Archi tecture

IoT Devices

Cloud Data center  

Database

Lower  
Layer

Fog 
Layer

Cloud 
Layer

Figure 1.5: Three-Layer Computing Architecture

The lower layer consists of IoT sensor devices and actuators deployed in a different

smart environment. These devices generate the data and transmit it to the fog or cloud

to process. The middle layer consists of fog devices, which provide computational

and transient storage resources to process and store the IoT data. Fog nodes will pro-

cess and, if required, decide and send back the control signal to activate the actuators.

Finally, the top layer is the cloud layer provides more considerable computational re-

sources to process, aggregate, and store the data from the different fog nodes for further

analysis (Systems, 2015).

1.2.5 Fog Computing Use-cases

Fog computing ensures quick service for the delay-sensitive applications such as Smart

grid, Industry 4.0 or Smart Manufacturing Industry, Smart Healthcare (Kumari et al.,
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2018), Connected Vehicles. Some of the use-cases are described as follows.

1.2.5.1 Use-case 1: Connected Cars/Autonomous Cars

Connected cars/autonomous cars have huge number of sensor devices and generate

massive amount of data. These connected cars communicate with road side units or

smart traffic light controller which are used as the fog nodes to process the data (Vilalta

et al., 2018).

1.2.5.2 Use-case 2: Smart Home/Building

The various IoT devices are deployed to monitor and control the different activities

remotely. These IoT devices generate massive data, and it is transferred to the fog

nodes. The fog nodes process and analyze to make the quick decisions to send back the

control signals to the actuators. Using fog computing architecture to process this data

in the smart home or smart building offers more security, low latency, minimizes cost

and energy consumption (Rahimi et al., 2020).

1.2.5.3 Use-case 3: Smart Grid

Smart grid has a huge number of sensor devices that are connected to provide an intelli-

gent power supply. Using Fog computing in the smart grid addresses challenges such as

latency issues, handling device failures, and ensuring network security. Fog computing

allows distributed control by using location awareness, performing real-time analytics,

etc., in a smart grid environment to provide uninterrupted power supply (Ruan et al.,

2020). Hence, using fog computing will help to make the real-time decision in the

smart grid environment (Okay and Ozdemir, 2016).

1.2.6 Challenges in Fog Computing Environment

Some of the challenges in the fog computing environment are as follows (Liu et al.,

2019; Wang et al., 2015; Mahmud et al., 2018; Simmhan, 2017a):

• Resource Management: As these devices are resource constrained and geo-
graphically distributed, resource management is one of the main challenges in
the fog computing environment. The use of virtualization techniques using VMs
and containers addresses the resource provisioning and management issue in the
fog computing environment.

• Energy Management: Fog nodes are distributed, and these are battery-operated;
hence, efficient energy management is required to increase these fog nodes’ reli-
ability and availability.
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• Fault Tolerance: The fog nodes are prone to software or hardware failures and
handling these device failures, and load management is a challenge in the fog
computing environment.

• Security and Access Control: The fog nodes operate at the network level; hence
preserving the data integrity and developing the security protocol is required to
protect the fog system from malicious users or nodes.

• Applications Placement: Using fog nodes to host and process the IoT applica-
tion requests is a challenge since the fog nodes are geographically distributed and
computationally less powerful.

1.2.7 Comparison of the Computing Architectures

Edge, Fog, and Cloud computing are the three computing architectures that can process

the IoT data based on the applications’ requirements in a smart application environment.

Table 1.1 shows the comparison between three computing architectures in terms of

different attributes.
Table 1.1: Comparison between Edge, Fog and Cloud Computing Architectures

Attributes Edge Computing Fog Computing Cloud Computing
Number of hops one more than one many

Data processing location on same device
Micro-data centers, servers,
network devices etc. distant cloud server

Latency low low high
Security high high low

Processing capacity low
medium and higher
than edge devices high

Location awareness yes yes no
Mobility yes yes no
Bandwidth requirement less less high

The edge and fog computing architectures use the on-device and more than one hop

device at the network level to process the data at the edge and the micro data centers,

servers are used as the fog nodes, whereas cloud computing requires the multiple hops

transfer to host the IoT data at the cloud. Hence, using cloud computing may increase

the latency due to more hops of data transfer, and thus using fog and edge devices for

processing the data may reduce the latency. Further, the bandwidth requirement for

data transfer to the cloud computing architecture is very high compared to the one-

hop and more than one hop data transfer at the edge and fog computing environment.

The devices’ processing capacity is less in the Edge devices. Fog nodes have typically

higher processing capacity than edge devices and Cloud computing architecture pro-

vides greater computing resources. The edge devices perform computations at the edge
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of the network resulting in less data transfer across the network and hence the secu-

rity threat is less than the cloud. Using fog nodes the number of hops of data transfer

gets reduced and hence the security threat is less than the cloud. Further, Edge and

Fog computing architectures not only provide the location awareness but also handle

the mobility of the devices for data processing. But, cloud computing does not pro-

vide location awareness and the mobility of the devices as it is centralized computing

architecture (Solutions, 2015; Kim, 2016).

1.3 Motivation

Many applications are delay sensitive in different smart environments such as smart

healthcare monitoring, Smart industry/Industry 4.0 environment, Smart/Autonomous

cars, etc. Using a centralized cloud as the computing architecture is not feasible as it

might increase the service time and the service cost (Dastjerdi and Buyya, 2016; Yi

et al., 2015). Hence, fog computing is developed to address latency, bandwidth, cost,

and resource consumption issues (Bonomi et al., 2012). Using the resource constrained

fog nodes to deploy the IoT services will reduce the service time, cloud resource con-

sumption and thus delay sensitive IoT services can be placed on the fog nodes to ensure

the QoS. One way to create the fog computing environment is to use the virtualiza-

tion technique on resource constrained devices. There are several existing works using

simulations and the deployment of VMs on the edge devices or fog nodes to host and

process the IoT data (Salman et al., 2018; Peng et al., 2016). Using VMs on resource

constrained devices might not be feasible as it consumes more host machine resources,

boot time is high. Hence, using the lightweight OS-level virtualization technique will

reduce start-up/booting time, PMs resource consumption and further enhances the scal-

ability and management of the IoT services. Thus, using containers over VMs in the fog

computing environment will help to address the latency-sensitive applications (Hoque

et al., 2017; Tang et al., 2018). Therefore, using the fog computing environment mini-

mizes the communication time and processes the delay-sensitive IoT/IIoT applications

in real-time. Further, the challenge is using resource constrained devices to develop

the fog framework for real-time monitoring to analyze the sensor data and make quick

decisions in smart environments.

With this motivation, a novel QoS-aware service placement strategy is developed to

place the IoT/IIoT service requests in the Fog-Cloud environment to ensure the QoS of

the application in terms of deadline, cost and resource availability. A container-based

two-level resource provisioning fog framework is developed to host and process the
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IoT/IIoT applications requests. The service placement strategies are proposed to place

the service requests on the developed fog framework to minimize service time, service

cost, and energy consumption in the fog computing environment. Pushing intelligence

close to the data source devices will reduce the service time and thus enable a real-time

monitoring in the smart environments. This motivated to develop the fog server-based

framework as a prototype to deploy the machine learning models on the fog server to an-

alyze the various sensor data and enable real-time monitoring. The developed prototype

considers the intelligent malfunctioning machine monitoring system for classifying the

machines as normal and abnormal machines based on the analysis of machines’ oper-

ating sounds and thus enable real-time monitoring in the smart industry/Industry 4.0

environment.

1.4 Organization of Thesis

Figure 1.6 shows the detailed organization of thesis with the formulated research ob-

jective and the respective research contribution chapters. The thesis is organized as

follows.

IoT Applications

Smar t 
Industr y/Industr y 4.0 Smar t EnvironmentsSmar t Sur vei l lance

Cloud Computing Fog Computing Edge Computing

Computing Archi tectures

Data Analytics
Ser vice Placement 

Strategies
Resource Provisioning 

Framework

Resource Provisioning and Ser vice Placement 
Strategies for  IoT/IIoT Applications in Fog 
Computing Environment (Chapter s 3 & 4)

Objective 3Objective 1 & 2

Fog Frameworks for  IoT Ser vice Placement and Data Analytics in Smar t Environments

Fog-based Real-time Data Analytics for  Smar t 
Environments  (Chapter  5)

Figure 1.6: Thesis Organization with respect to Research Objectives and the Contributions
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Chapter 2 presents the state-of-the-art resource provisioning frameworks, the ser-

vice placement strategies on the fog and cloud computing architectures, data analytics,

and the monitoring systems in smart environments. Further, the outcomes of the litera-

ture survey are discussed to find out the research gaps in the fog and cloud computing

environments. Finally, the problem statement and research objectives of the work are

given in detail.

In Chapter 3, a detailed explanation about the QoS-aware service placement strate-

gies to place the IoT/IIoT services in the Fog-Cloud computing environment and the

performance evaluation of the service placement strategies are discussed in detail.

Chapter 4 describes the development of a container-based two-level resource pro-

visioning fog framework using the resource constrained 1.4 GHz processor devices.

Further, the meta-heuristics based service placement strategies to place IIoT service re-

quests on the developed fog framework to minimize service time, service cost, and the

fog node energy consumption are discussed in detail.

Chapter 5 discusses the cost-efficient fog server-based framework for real-time data

analytics in smart environments. The fog server-based prototype is developed to deploy

the supervised machine learning techniques to analyze data in smart environments. An

intelligent industrial machine monitoring system is considered for identifying the nor-

mal and abnormal machines based on the analysis of the machines’ operating sounds in

the Industry 4.0/Smart Industrial Environment.

Finally, Chapter 6 presents the concluding remarks based on the thesis contributions

with the future directions in the fog computing environment.

1.5 Summary

In this chapter, a detailed explanation for the Internet of Things, IoT applications is pre-

sented. The basic concepts of the computing architectures used to process the IoT data,

such as Cloud Computing, Edge Computing, and Fog Computing, are discussed. The

possible use-cases and the comparison of these computing architectures with respect to

the different attributes are given in detail. Further, the motivation for doing this research

and the detailed organization of the thesis is presented in this chapter. The detailed lit-

erature survey, identified research gaps, the problem statement, and the objectives are

discussed in the next chapter.
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Chapter 2

Literature Survey

Nowadays IoT has gained a lot of attention in every aspect of day-to-day life, and it is

used everywhere for remote and automated monitoring. These IoT devices generate a

massive amount of data; thus, efficient computing architectures are essential to provide

the computational resources to process and analyze data.

In this chapter, the existing works on the resource provisioning framework and ser-

vice placement strategies in the Fog-Cloud environment, and the data analytics in smart

environments such as smart surveillance, smart industry (Industry 4.0) applications are

discussed in detail.

2.1 Resource Provisioning Frameworks and Service Placement Strategies in Fog
and Cloud Computing Environments

Using the centralized cloud as a computing architecture to process the data may expe-

rience more delay. Hence, the flexible indie-fog infrastructure is developed by Chang

et al. (2017) using the customer premises equipment as fog nodes to provide the services

for the IoT applications. Thus using wi-fi access points, routers, and other network de-

vices as fog nodes not only provides the computational resources for servicing the IoT

applications in real-time but also reduces the delay. Aazam et al. (2018b) designed the

layered architecture for the placement of fog infrastructure between the existing Cloud-

IoT infrastructure and thus provides the computational resources to handle the urgent

tasks and then offload them to the cloud for further processing. Lee et al. (2016) de-

veloped a gateway and micro server-based fog infrastructure for Wireless Sensor and

Actuator Networks. The developed architecture consists of a master layer that handles

control functionalities. The worker layer handles resource management, the flow man-

agement based on the Software Defined Networking (SDN), and the virtual gateway at

the lower level of the architecture. The new simulation environment called FogDirSim

is developed for simulating the actual management policies using the RESTFul APIs

for industrial fog computing management platform (Forti et al., 2020). The developed

management platform can decide when and where to migrate specific services and re-

duce the fog node’s energy consumption. But, they did not consider the container-based

multi-level fog computing framework and the multi-objective optimization for IoT/IIoT

service placement in the fog computing environment.



IoTSim-Osmosis framework is developed to support osmotic computing (Alwasel

et al., 2020). In osmotic computing, the tasks/services are migrated from the centralized

cloud to the edge devices or IoT devices based on events. The developed simulation

framework evaluates the smart electrical billing application and assesses the execu-

tion time, network transmission time, and energy consumption. Further, simulations

were carried out for enabling the edge and cloud framework but did not consider the

container-based fog framework. Aazam and Huh (2015a) developed a micro data cen-

ter (MDC) based fog resource management model for efficient and effective resource

management. The resource estimation for the customers is done by relinquishing the

customer service type and price to provide the resources for processing the IoT appli-

cations. Battula et al. (2020) developed a stochastic model for selecting the resources

and behavior in single and multi-location fog nodes using the Markov chain. Further,

a nearest location best-fit strategy is proposed for resource selection by considering all

the fog characteristics. However, the current work did not consider the container-based

fog framework for IoT service placement.

A hierarchical and secure fog to cloud (mF2C) continuum architecture is developed

for effectively utilizing the computing resources at the different architecture levels. The

developed architecture can host the IoT applications requests to process, analyze the

data, and ensure the resource coordination between the hierarchies (Masip-Bruin et al.,

2018). A fog development kit (FDK) is developed to create a fog environment for

computing and network resource allocation and service placement on the fog nodes

(Powell et al., 2020). The developed kit uses the SDN and virtualization techniques for

allocating resources. Further, the FDK is integrated with the fog emulators to create a

flexible fog environment to build the application prototypes with less additional cost.

Luo et al. (2019) developed a container-based multi-cloud to multi-fog architecture.

The temporary and long-term service model is designed to reduce the IoT applications’

service delay for efficient fog resource utilization. Further, they developed an energy-

aware task scheduler to improve network nodes’ lifetime and the tasks’ delay constraints

in the fog computing environment.

Zhang et al. (2017) developed a cooperative fog computing-based architecture for

the Internet of Vehicle (IoV) applications for handling the big data from the smart

city applications. The developed architecture for IoV consists of an edge and fog

layer and supports mobility, multi-source data acquisition, multi-path data transmission,

distributed data computation, and storage. Further, they considered the hierarchical
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model for resource management between the Inter-fog and Intra-fog. The SDN-based

edge framework is developed for efficient resource allocation in the vehicular networks

(Goudarzi et al., 2020). The reinforcement learning algorithm is designed for handling

the resource allocation problem at the edge using cloud assistance. The computation

and network resource allocation in the developed three-tier architecture is done using

the experience reply information.

A smart gateway-based communication between the Cloud-IoT infrastructure is de-

veloped to enable data processing at the network level to decide what to send to the

cloud for further processing (Aazam and Huh, 2014). Thus, using the smart gateway-

based fog infrastructure at the network level will optimize network and cloud resource

usage, power consumption. The autonomic generic computing model is developed by

Etemadi et al. (2020) to scale up or scale down the fog resources using the Bayesian

learning technique. The developed model will provide the resources to accommodate

IoT services’ workload in the fog computing environment. A micro cluster-based fog

computing framework is developed for collaborative task execution among the devices

by sharing the incentive information to form a microcluster (Luo et al., 2020). The de-

veloped framework is used to host and process the delay-sensitive or energy-intensive

services to optimize the service time and the devices’ energy consumption.

The Ubiquitous Resource Management for Interference and Latency-Aware (UR-

MILA) middleware solution is developed to manage the resources across the edge, fog,

and cloud for handling mobility and minimize the service level objective violations of

the delay-sensitive IoT applications (Shekhar et al., 2019). The developed middleware

is responsible for choosing adequate resources based on deterministic user mobility pat-

terns. Further, a fog server selection algorithm is developed based on the user’s mobility

and evaluated for network latency and cost. Peralta et al. (2020) developed a flexible

and dynamic architecture by combining the fog and cloud architecture to reduce data

download time at the end node or the fog nodes. An M/M/1 queuing system is mod-

eled at the multi-level computing architecture for reducing the service delay at the fog

node and uses network coding to enable the distributed data storage. But, they did not

consider ensuring the QoS in the fog and cloud computing environment.

The different service placement strategies are developed to place the IoT service

/application modules on the fog and cloud computing environments. Taneja and Davy

(2017) proposed resource-aware-based service placement in the fog and cloud com-

puting environment to place the IoT application modules using the Benchmark Lower
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Bound (BLB) algorithm. The application module placement using BLB is done based

on the resource availability to effectively utilize the fog resources at the network level

to minimize the network usage of the IoT applications. Desikan et al. (2017) developed

a distributed latency-aware data processing model in the fog computing environment.

The gateway devices share the available resource information with other gateways and

then decide data forwarding for processing in the fog layer. Therefore using fog-enabled

gateway devices not only reduces the transmission latency but also reduces the response

time. But, they did not consider the multi-objective-based service placement in the fog

computing environment.

Mishra et al. (2018) developed the nature-inspired meta-heuristic algorithms for in-

dustrial applications placement in the heterogeneous fog computing environment. The

distinct VMs are considered the server to place the service requests to optimize the ex-

ecution time and the energy consumption in the fog environment. Skarlat et al. (2017)

developed a heuristic algorithm to solve the fog service placement problem. The service

requests are placed on the fog node based on resource availability, thus minimizing the

service cost and satisfying the IoT applications’ deadline. Liu et al. (2020) proposed a

heuristic-based Horae task scheduling algorithm in the Mobile Edge Computing (MEC)

environment for scheduling task requests on the edge server for efficient resource uti-

lization and further satisfy the edge server placement constraints in the MEC. The de-

veloped heuristic algorithm considers minimizing the processor slack timing and meets

the processor topologies and placement constraints of the MEC environment. But, they

did not consider the multi-level fog computing architecture to service the IoT applica-

tions.

Hassan et al. (2020) developed a heuristic approach for IoT service placement based

on the network priority, energy consumption in the Fog-Cloud computing environment.

The proposed method considers the IoT applications with a maximum of two services

placed on Fog-Cloud architecture. Souza et al. (2018) developed service placement

strategies in the Fog-Cloud computing scenarios based on the service specification and

resource availability. The services are atomized and then placed on the Fog-Cloud com-

puting resources for parallel execution using Best-fit and Best-fit with Queue methods

in the Fog-Cloud computing environment. Murtaza et al. (2020) developed an adaptive

and intelligent task scheduling method in the Fog-Cloud environment to improve the

QoS in terms of delay and energy consumption. A smart layer is introduced between

the IoT and cloud to process the data using the learning-based policies. Further, the ser-
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vice cost and available resources in the fog computing environment are not considered

for servicing the IoT applications. Deng et al. (2016) considered the framework consist-

ing of the Fog-Cloud computing devices for optimal placement of the workload such

that the power consumption and the delay for the IoT applications are minimized. The

mathematical model is developed for optimal workload allocation among the devices

in the Fog-Cloud environment. Further, the problem is decomposed into subproblems

and then solved using the approximation method to get the optimal solutions. However,

the current work did not consider multi-objective optimization in the fog computing

environment.

Bozorgchenani et al. (2020) developed a mathematical model for energy consump-

tion and energy harvesting in the fog computing environment. A prediction-based en-

ergy harvesting approach is proposed for selecting the fog nodes in the cluster to re-

duce fog node energy consumption and thus enhance the fog nodes’ lifetime. Yang

et al. (2018) developed the energy-efficient homogeneous fog framework by exploiting

the user devices. Further, carried out a mathematical analysis to develop a maximal

energy-efficient task scheduling algorithm in the homogeneous fog network to opti-

mize the energy efficiency. Goudarzi et al. (2020) developed a weighted cost model to

optimize the execution time and the energy consumption in the considered Edge-Fog-

Cloud computing environment. Further, a concurrent IoT application placement using

the memetic-based algorithm and the pre-scheduling algorithm is developed to increase

the number of parallel task execution in the Edge-Fog-Cloud computing environment.

Mahmud et al. (2018) proposed a latency-aware application module placement in

the fog computing environment for satisfying the service deadline and further consid-

ered application module forwarding to optimize the number of active fog nodes that

violates the QoS of the applications in the fog computing environment. Ghanavati

et al. (2020) formulated the application placement problem as a bi-objective optimiza-

tion model by considering both makespan and energy consumption. Further, proposed

Ant-Mating Optimization algorithm for optimal task placement on the fog nodes min-

imizes the makespan and the energy consumption in the fog computing environment.

Mahmoud et al. (2018) proposed an energy-aware-based application placement in the

fog computing environment. Further, smart healthcare-based task/service placement is

done based on the fog nodes’ resource availability and energy consumption to process

the health sensor data in real-time. However, the existing works did not consider the

service cost and deadline in the two-level fog computing architecture.
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Tables 2.1 and 2.2 summarize the key existing works on the Resource Provision-

ing Framework and Service Placement Strategies, respectively. Most of these existing

works considered simulations and deployed VMs on the devices to develop the fog

frameworks, but these are not efficient as they might take more time for booting and

consume more PMs resources. Also, the existing works on service placement strate-

gies in the fog and cloud computing environment were evaluated using simulators or

used VMs based resource provisioning frameworks. This motivated to consider the

containers for developing the multi-level resource provisioning fog framework on re-

source constrained devices to host and process the IoT/IIoT service requests. Hence,

using containers on the network edge or resource constrained devices to create the fog

framework will enable servicing of delay-sensitive IoT applications in the fog comput-

ing environment. Further, developing the multi-objective optimization-based service

placement and other meta-heuristic-based hybrid algorithms is essential to optimize the

fog nodes’ service time, cost, and energy consumption for servicing the IIoT applica-

tions in the fog computing environment. As these fog nodes are battery operated and

reducing energy consumption will increase the fog nodes’ reliability and availability,

optimizing the service time will avoid significant industrial environment failures.

2.2 Data Analytics in the Fog Computing Environment

With an increase in the number of IoT devices in smart cities or IIoT devices in the

smart manufacturing environment, there is an exponential increase in data generated.

Using distributed computing architecture to process and analyze the data at the network

level will address the latency issues in the smart city/Industry 4.0 environment. Some

of the existing works on data analytics in the fog computing architecture are outlined in

this section.

Tang et al. (2017) developed a hierarchical distributed fog architecture using dif-

ferent devices and integrated the intelligence into the architecture to analyze latency-

sensitive and latency tolerant applications data. The sequential learning method is de-

veloped and deployed on the hierarchical fog architecture for anomaly detection and

avoids the smart pipeline monitoring system’s critical failures. Liu et al. (2020) de-

veloped an intelligent system for numerical control machine tools monitoring and data

processing system for the smart manufacturing industry. The developed framework

considers the bi-directional data and control flow between the machine and the software

system used for analyzing the machine data. Li et al. (2018) proposed a fog computing-

based DeepIns system for defect detection and inspection in the smart manufacturing
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environment. The developed models are deployed on the fog nodes for real-time defect

and the degree of defect detection in the images captured from the sensor devices in the

manufacturing environments.

Tuli et al. (2020) proposed a deep learning ensemble-based edge system architecture

called HealthFog for real-time heart disease analysis. The proposed system is deployed

on the FogBus (Tuli et al., 2019) framework for evaluating the system’s performance in

terms of execution time, jitter, power consumption, and the accuracy in the fog comput-

ing environment for processing the heart patients data considered as the user requests.

A Fog-IBDIS system is developed to integrate and share the industrial data with the fog

nodes to ensure the security of the data, also reduces the network traffic load by using

the fog architecture and thus reducing the network resource consumption (Wang et al.,

2019). The data analysis is done using the task flow graph, and each graph has the mod-

ules which are integrated with the fog architecture. The developed Fog-IBDIS system

can use the edge devices’ to preprocess the industrial data, and other more extensive

analytics is performed at the cloud server.

He et al. (2017) developed a multi-tier fog computing architecture using both ad-hoc

and the dedicated fog nodes to perform the data analytics for smart city applications.

Further, QoS-based resource allocation strategies are developed to provide computa-

tional resources for real-time data analytics services. Yassine et al. (2019) proposed

a new platform for IoT data analytics using fog and cloud resources for smart home

applications. The proposed system is used to address the fog and cloud computing

environment’s issues, such as computing resources, storage resource requirements for

the online and offline data processing, task allocation, and classification analysis. Fur-

ther, the system is used for IoT device management and admission authentication in the

smart home environment.

Chen et al. (2016) developed a dynamic video surveillance system for real-time car

detection and tracking using fog computing nodes. In the developed system divide and

conquer strategy is used for processing the video. The moving vehicle detection al-

gorithm is deployed on the fog node to detect the vehicle. The video frames of the

detected vehicle are used for tracking the vehicle. Thus utilizing the fog nodes to pro-

cess the video will reduce the service time and the network load of real-time video

surveillance systems. Diro and Chilamkurti (2018) developed a deep learning model

for a distributed attack detection scheme for the IoT environment. The deep learning

models are trained using the fog nodes and implemented on edge for attack detection.
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The parallel and distributed network attack scheme with a centralized attack scheme is

considered to compare the performance of the developed model. Further, compared the

developed model with the traditional ML approaches.

Foukalas (2020) developed a cogni-IoT platform for providing distributed intelli-

gence using fog computing for IIoT applications. The developed platform is used for

the machines’ predictive maintenance by deploying machine learning models on the

devices. Thus, it intelligently monitors the machine conditions based on the sensor

data in the smart factory environment. EdgeEye, an edge computing-based framework,

is developed for real-time video analytics (Liu et al., 2018). The developed framework

provides the deep neural network models for processing and analyzing the videos on the

edge devices, reducing computation and bandwidth resources. Khochare et al. (2017)

developed a distributed video analytics system using the Orchestration Platform for Hy-

brid Dataflows across Edge and Cloud (ECHO) platform (Ravindra et al., 2017). The

ECHO platform is used on the Edge, Fog, and Cloud resources to deploy the deep learn-

ing model for real-time automated parking billing and the urban scene classification in

a smart city environment.

Fog-based smart gateway prototype is developed for data conditioning, data filter-

ing, and performing data analytics on sensor data from wearable devices (Constant

et al., 2017). The developed smart gateway is also responsible for deciding what data

to be transferred to the cloud for further analysis and long-term storage. Further, the

developed prototype can be used for smart data analytics in the health environment for

analyzing the wearable sensor data in real-time. Zeng et al. (2020) developed a dis-

tributed framework using the cameras and the edge cluster architecture for dynamic

workload management. The developed model considers the workload balancing among

the cameras and the workload partition between the cameras and the edge clusters for

efficient usage of the edge resources. Hence, it maximizes the throughput, reduces the

latency without affecting the accuracy of the video analytics methods.

Table 2.3 shows the summary of key existing works on data analytics in the fog

computing environment. Many of these current works used fog and cloud to perform

the video data analysis, sensor data analysis in urban video surveillance, industrial ma-

chine monitoring applications based on vibrations, and other sensor data. But, it is

also essential to develop an intelligent machines’ monitoring system based on the op-

erating sounds to detect and classify the industrial machines as normal and abnormal

(malfunctioning) using the fog computing architecture.
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2.3 Outcome of Literature Survey

The extensive literature survey of the existing works on the different resource provi-

sioning frameworks and the service placement strategies on the Fog-Cloud computing

environment is done in section 2.1. Using fog nodes as the computing resources to per-

form the data analytics in the smart city, the smart industrial environment is done in the

section 2.2 and thus identified some of the following research gaps in the fog and cloud

computing environment to carry out the research work.

Research Gaps

1. Resource Provisioning Framework and IoT/IIoT Service Placement
• Developing heuristic or meta-heuristic approaches for IoT/IIoT application

placement in fog and fog-cloud architecture is essential to ensure the appli-
cations’ QoS.

• Most of the existing works used VM-based virtualization or simulators to
simulate resource provisioning and service placement strategies. Hence, us-
ing Docker and containerization techniques at the edge/fog facilitates faster
resources and faster deployment of applications/services.

• Many of the authors proposed single objective or bi-objective optimiza-
tion techniques for IoT application placement. Hence, there is a need to
develop multi-objective optimization-based service placement strategies on
the Multi-level fog infrastructure for placing the IoT/IIoT applications.

• There is a need for learning-based workload prediction and allocation in the
fog computing environment to achieve low latency and efficient utilization
of the fog computing resources.

2. Data Analytics in the Fog Computing Environment
• Some of the works considered using the cloud environment to deploy the

machine learning and deep learning techniques to analyze the data. Us-
ing fog nodes for deploying the machine learning models on the resource
constrained fog nodes to analyze IIoT data in real-time is helpful for the
delay-sensitive IoT/IIoT applications.

• Many of the existing works considered sensor-based machine monitoring to
detect the defects in a smart factory environment. There is a need for Intel-
ligent Machine monitoring using the machines’ operating sound to monitor
the malfunctioning machine in the Smart Manufacturing Industry (Industry
4.0) environment.
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3. Service Migration and Load Balancing on the Fog Nodes
• There is a need for handling the fog nodes failure in the fog computing

environment.

• There is a need for handling the migration of tasks or services in the fog
environment for load balancing due to unavailability of resources or node
failure in the fog computing environment. Hence, there is a requirement
for handling the runtime service migration between the fog nodes if any
anomaly is predicted in the fog computing environment.

2.3.1 Problem Statement

This research aims to design and develop fog frameworks for IoT/IIoT Service Place-

ment and Data analytics for smart environments. Accordingly, the research problem

and objectives are defined as follows.

Problem Statement:
”To Design and Develop the Fog Frameworks for IoT/IIoT Service Placement and Data

Analytics in Smart Application Environments”

2.3.2 Research Objectives
1. Design and develop the QoS-aware Service Placement Strategies in Fog-Cloud

Computing Environment.

2. Design and develop a container-based Framework and QoS-aware Service Place-
ment strategies in the Fog Computing Environment.

3. Design and develop a Cost-effective Fog server framework for Real-time Data
Analytics in Smart Application Environments.

2.4 Summary

In this chapter, the existing computing architectures/frameworks developed for resource

provisioning to host and process IoT service requests in the fog-cloud and fog comput-

ing environments are presented in detail. Further, the state-of-the-art service placement

strategies were discussed to place the IoT/IIoT service requests in the fog-cloud com-

puting environment. Also, the existing works on data analytics for smart environments

are discussed in detail.

Finally, the challenging issues based on the outcomes of the literature survey, the

problem statement, and the research objectives are discussed in detail. The QoS-aware

Service Placement Strategies in the Fog-Cloud computing environment are explained

in the next chapter.
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Chapter 3

QoS-aware IoT/IIoT Service Placement in Fog-Cloud

Environment

Cloud computing provides scalable resources to process and store the data. Using cloud

computing for delay-sensitive IoT applications is not preferable as it requires entire data

to be transferred to the cloud for processing, which will lead to network congestion and

increase communication time. Hence, the service delay and the service cost are high

as the cloud resources are billed based on the pay-as-you-go approach (Buyya et al.,

2009). Therefore, using Fog-Cloud computing architecture will provide the service in

real-time by hosting a few service in the fog computing environment (Bonomi et al.,

2012).

Using both Fog and Cloud computing to process the data might reduce the network

congestion and the service time. But, the placement of the services on the fog nodes is

the key challenge because of the geographical distribution and the limited computing

capabilities of the fog nodes. The node that can host the service requests should satisfy

the Quality of Service (QoS) in terms of service cost, deadline, and resource requests.

This motivated to conisder the available resources at the network edge to host and pro-

cess the IoT services to minimize the cloud resource usage and thus reduce the network

resource usage, service cost and energy consumption for the IoT services. Hence better

placement strategies are required to place the service requests on the fog nodes to min-

imize the service delay, service cost, and energy consumption. This chapter discusses

service placement strategies for the Fog-Cloud Computing environment. The First Fit

Decreasing (FFD) algorithm (Baker, 1985) is applied for service placement in the Fog-

Cloud computing environment based on the resource availability on the fog nodes to

minimize the service delay and network resource usage. Further, a novel cost-efficient

deadline aware service placement approach is proposed to place the services in the Fog-

Cloud computing environment and thus ensures the QoS in terms of deadline and the

service cost of the IoT services in the Fog-Cloud environment.



3.1 Three-Tier Architecture for Servicing IoT/IIoT Applications

The three-tier computing architecture with IoT, Fog, and Cloud layers is considered

for processing the IoT data. Fog computing is used as the intermediate computing

architecture between the IoT and Cloud layers, as shown in Figure 1.5 (Page No. 12,

Chapter 1).

Table 3.1: List of Notations
Notations Description
VM set of cloud servers
SK set of all services
FN set of all fog nodes
R total number of computing resources
tfpro processing time in fog node in ms
tcpro processing time in cloud server in ms
tfcom communication time in fog include both request and response in ms
tccom communication time in cloud including both request and response in ms
tfav service availability time in fog nodes in ms
tcav service availability time in cloud server in ms
Tt total service time in ms
Dd service deadline defined for the IoT applications in ms
Cf

pro processing cost in $ for service s deployed in fog node
Cc

pro processing cost in $ for service s deployed in cloud server

C
f
sto storage cost in $ for service s deployed in fog node

Cc
sto storage cost in $ for service s deployed in cloud server

CCPU
n unit cost in $ for processing resource in mips at fog node

CCPU
m unit cost in $ for processing resource in mips at cloud server

Csto
n unit cost in $ for storage resource in mips at fog node (per byte per second)

Csto
m unit cost in $ for stoarge resource at cloud server (per byte per second)

Cs
max maximum service cost in $

S
f
cost service cost for the applications deployed on the fog nodes in $
Sc
cost service cost for the applications deployed on the cloud server in $
Scost total service cost in $
ssize service size
γj processing capability of a fog node j
βf bandwidth between nodes in Mbps
γc processing capability of a cloud server
Γ(n,s) service availability time in fog nodes in ms
βc bandwidth between cloud server and IoT in Mbps
λsn input rate/ arrival rate of service requests on fog node
λsm input rate/ arrival rate of service requests on cloud server
LCPU

a required amount of processing elements (in mips)
Lsto

a storage size of service in bytes
L

ei
s (t) total amount of data generated by end devices (in bytes)

Emax maximum energy consumption in joules
ETotal

eng total energy consumption of fog-cloud environment in joules
E

eng
fj

energy consumption of fog node j in joules
E

eng
ft

energy consumption during transmission in fog in joules
E

eng
fp

energy consumption during processing in fog in joules
E

eng
ct energy consumption during transmission in cloud server in joules

Eeng
cp energy consumption during processing in cloud server in joules

P idle
f power consumption of fog node in idle state in watts

P idle
c power consumption of cloud server in idle state in watts
Ptrans maximum power consumption during transmission in watts
Pproc maximum power consumption during processing in watts
time total time duration in ms
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Tier 1 (IoT Layer) contains the end devices such as sensor nodes, camera devices,

and other IoT devices that continuously sense and generate the data. Tier 2 (Fog Layer)

consists of a router, smart gateways as fog nodes, and independent Micro Data Center

(MDC) as fog servers (Simmhan, 2017a). These devices can use VMs or container tech-

niques to provide the computational resources at the network’s edge and host IoT appli-

cations. These devices are used to process the data and then forward data to the cloud,

thus reducing the network congestion by reducing data size. Tier 3 (Cloud Layer) is a

centralized cloud data center that provides substantial processing and storage resources.

A Cloud data center performs computationally intensive operations and stores the data

for a longer duration.

3.2 Service Placement Problem Formulation

Table 3.1 shows the list of mathematical notations used in this work. The service place-

ment problem in the Fog-Cloud computing environment is considered as the NP-hard

problem (Brogi et al., 2020; He et al., 2018). The service (SK) placement on the avail-

able computing resources (R) is considered as mapping each service requests on the fog

and the cloud resources as given by Equation (3.1).

SK → R (3.1)

The available computing resources in Fog-Cloud environment is given by R={FN∪VM},
where FN is the number of fog nodes and VM is the number of cloud server in the three-

tier architecture. The set of all services to be deployed on the computing devices is

denoted by SK = {s1, s2, ......sk}.

3.2.1 Resource Constraints in Fog-Cloud

The computing resources considered for deploying the IoT service requests (s∈SK) are:

fog nodes (n∈FN ) and the cloud server (m∈VM ) in the Fog-Cloud computing environ-

ment.

The deployment of IoT service requests on fog nodes should consider the available

resources on the resource constrained fog nodes such that the fog nodes are not over-

loaded. Thus, the resource requirement of service should be less than the fog nodes’
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available computing resources in terms of CPU (in millions of instructions per second

(MIPS)), RAM and storage capacity of the fog nodes defined by the Equation (3.2).

∀fj ∈ FN


∑SK

∀si CPU
req(si) ∗ xij ≤ CPUavailable(fj)∑SK

∀si RAM
req(si) ∗ xij ≤ RAMavailable(fj)∑SK

∀si storage
req(si) ∗ xij ≤ storageavailable(fj)

where,

si ∈ SK , i ∈ [1, K] services

fj ∈ FN , j ∈ [1, N ] fog nodes

vj ∈ VM , j ∈ [1,M ] cloud servers

(3.2)

xij =

1, if si is placed on fog node fj

0, if si is placed on cloud server vj
(3.3)

The deployment of IoT applications on the fog node fj and the cloud server vj is

indicated by xij given by Equation (3.3).

3.2.2 Service Time and Energy Consumption in Fog-Cloud

The IoT applications, such as smart healthcare applications, autonomous cars, and in-

dustrial applications, are delay-sensitive. Thus, using the fog nodes at the network level

will reduce the total service time. The delay-sensitive applications are deployed on

the fog node and delay-tolerant on the cloud server. The master-worker IoT applica-

tion model is considered, consisting of the independent modules to be placed on the

Fog-Cloud environment such that the service deadline of the application is satisfied.

The total service time Tt depends on the processing time, service availability time, and

communication time. Equation (3.4) defines the total service time (Tt) for the IoT ap-

plications in the Fog-Cloud computing environment.

Tt =
(
((tfpro + tfav + tfcom) ∗ xij) + ((tcpro + tcav + tccom) ∗ (1 − xij))

)
(3.4)
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The processing time (tfpro) in the fog node FN and the processing time (tcpro) in

cloud server VM depends on the processing capacity of the VMs on which the service

requests are deployed, and the communication time (tfcom, t
c
com) depends on the data

transfer rate between the IoT devices and the computing devices (fog node and cloud

server). Communication time consists of both service request time and the response

time from the devices. Service availability time (tfav, t
c
av) in the Fog-Cloud environment

for the applications/services is defined as the total waiting time to prepare data and

computing resources and waiting time in the queue to get the computing resources in

the Fog-Cloud environment. Thus waiting time of the service requests depends on the

processing time and the arrival time of the IoT applications. The placement of IoT

application requests on the fog nodes should satisfy the deadline of the IoT application

as given by Equation (3.5).

Tt ≤ Dd (3.5)

The total energy consumption (ETotal
eng ) in the Fog-Cloud computing environment de-

pends on the energy consumed by the fog and cloud devices. The energy consumption

is calculated during the processing and communication in both fog and cloud comput-

ing environments as defined by Equation (3.6). The energy consumption in the fog and

cloud devices for the deployed services is given by Equations (3.7)-(3.10).

ETotal
eng =

(
(Eeng

ft + Eeng
fp ) ∗ xij + (Eeng

ct + Eeng
cp ) ∗ (1− xij)

)
(3.6)

The energy consumption during processing (Eeng
ft ) in the fog node (Equation (3.7))

depends on the total power consumption over the period of time for transferring (Ptrans)

the data and the power consumption when the fog node is idle (P idle
f ).

Eeng
ft =

time∑
t=0

(
P idle
f +

(
Ssizei

βf
∗ Ptrans

)
∗ xij

)
(3.7)

The energy consumption during processing Eeng
fp in the fog node (Equation (3.8))

depends on the total power consumption over the period of time for processing service
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requests and the power consumption when the fog node is idle.

Eeng
fp =

time∑
t=0

(
P idle
f +

(
Ssizei

γf
∗ Pproc

)
∗ xij

)
(3.8)

Similarly, energy consumption in the cloud environment is calculated using the

Equations (3.9)-(3.10). The energy consumption in the cloud environment (Eeng
ct ) de-

pends on the power consumption of the cloud devices over the time duration of process-

ing and communication.

Eeng
ct =

time∑
t=0

(
P idle
c +

(
Ssizei

βc
∗ Ptrans

)
∗ (1− xij)

)
(3.9)

Eeng
cp =

time∑
t=0

(
P idle
c +

(
Ssizei

γc
∗ Pproc

)
∗ (1− xij)

)
(3.10)

3.2.3 Service Cost in Fog-Cloud Environment

The total service cost for the IoT applications deployed in the Fog-Cloud environment

is given as follows. The total service cost is defined as the sum of the processing and

storage cost. It depends on the number of resources utilized for providing the service for

the deployed IoT applications in the fog and cloud environment. Equations (3.11) and

(3.12) give the processing cost of both the fog (Cf
pro) and cloud computing resources,

respectively. The processing cost of the IoT applications in both fog and cloud comput-

ing environments (Cc
pro) depends on the amount of CPU resources used, and the unit

cost for the processing elements in both fog (CCPU
n ) and cloud (CCPU

m ) environments

is given by Equations (3.11) and (3.12), respectively.

Cf
pro =

K∑
i=1

N∑
j=1

(CCPU
n ∗ LCPUa ∗ λan ∗ xij) (3.11)

Cc
pro =

K∑
i=1

M∑
j=1

(CCPU
m ∗ LCPUa ∗ λam ∗ (1− xij)) (3.12)
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Equations (3.13) and (3.14) define the storage cost in the fog and cloud environ-

ments, respectively. The storage cost for the application requests on fog (Cf
sto) and

cloud (Cc
sto) depends on the amount of storage resources utilized and the unit cost for

the storage resources in both the fog (Csto
n ) and cloud (Csto

m ) environments for all ser-

vice requests as given by Equations (3.13) and (3.14), respectively.

Cf
sto =

K∑
i=1

N∑
j=1

(
Csto
n ∗ Lstoa ∗ xij

)
(3.13)

Cc
sto =

K∑
i=1

M∑
j=1

(
Csto
m ∗ Lstoa ∗ (1− xij)

)
(3.14)

The service cost for the IoT applications deployed in the Fog (Sfcost) and Cloud

(Sccost) computing environments is given by the Equations (3.15) and (3.16), respec-

tively. The service cost is defined as sum of the processing and storage cost in both the

fog and cloud computing environment.

Sfcost = (Cf
pro + Cf

sto) (3.15)

Sccost = (Cc
pro + Cc

sto) (3.16)

3.2.4 Optimization Model for Service Placement

The master-worker IoT application model is considered, which consists of modules

that will process the service requests independently and then send back the response

to each request. Each of these application modules is regarded as an independent ser-

vice request. Thus, minimizing the service time of these applications by deploying in

the Fog-Cloud computing environment minimizes service cost by reducing the cloud

resource usage. The total service cost for the applications deployed in the Fog-Cloud

computing environment is given by the Equation (3.17).

Scost = Sfcost + Sccost (3.17)

38



IoT/IIoT service placement problem in Fog-Cloud computing environment is for-

mulated as the multi-objective optimization problem. The optimization model is de-

fined for minimizing the service cost and energy consumption for the IoT/IIoT services

deployed in the Fog-Cloud computing environment such that it ensures the QoS of the

IoT/IIoT services given by Equation (3.18). The total service cost for the IoT/IIoT ap-

plications depends on the processing cost and storage cost in the Fog-Cloud computing

environment. Hence, considered minimizing the total service cost and energy consump-

tion of the IoT/IIoT services in the Fog-Cloud computing environment should satisfy

the defined constraints. The service time should be less than or equal to the deadline

for the services defined by Equation (3.18), and the resource requests should satisfy

the resources available with the fog nodes and the cloud to place the services in the

Fog-Cloud computing environment as defined by the Equation (3.2).

Minimize
K∑
i=1

R∑
j=1

Scost(si, Rj)

Minimize
K∑
i=1

R∑
j=1

ETotal
eng (si, Rj)

Subject to :

Tt ≤ Dd

0 ≤ ETotal
eng ≤ Emax

where,

si ∈ SK , i ∈ [1, K] services

∀j ∈ R,where R = {FN ∪ VM}

(3.18)

The constraints defined for the objective functions are as follows:

• Total service time for the IoT/IIoT service should be less than the service deadline
defined for the deployed services in the Fog-Cloud environment.

• The energy consumption should be less than the maximum energy consumed in
the Fog-Cloud computing environment.

• Each service request for the resources and placement decision should satisfy
the resource requirement defined by Equation (3.2). The service should also be
placed only on one computing node in the Fog-Cloud computing environment.
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3.3 Service Placement Strategies in the Fog-Cloud Environment

In this section, the existing First-Fit Decreasing (FFD) algorithm is applied for service

placement in a fog-cloud environment and the details are shown in subsection 3.3.1.

Further, a new deadline aware based service placement (DASP) algorithm is proposed

to place services in the Fog-Cloud computing environment and the details are given in

subsection 3.3.2.

3.3.1 Strategy 1: FFD based Service Placement

The placement of services on the fog nodes and the cloud is referred to as the bin

packing problem (Salaht et al., 2019). But the main challenge is to find the eligible node

which can host and provide the service. The placement of these services on the fog

nodes should consider the nodes distributed over geographical locations with limited

computing capability so that the service delay is minimal. Hence, a heuristic-based

First-Fit Decreasing (FFD) algorithm (Baker, 1985) is applied to place the services

on the fog nodes while considering its available resources. This work on the applied

FFD algorithm for service placement in fog environment is based on our publication

(Natesha and Guddeti, 2018).

The deployment of services s ∈ SK on the fog node should satisfy the resources

required of the applications in the fog environment. The application requests which

meet the resources requirement are deployed on the fog nodes at the network edge.

First-Fit Decreasing (FFD) approach is applied to deploy services on the distributed

fog node at Tier 2 of the architecture based on the availability of the resources of the

fog nodes. Using FFD, services are deployed on the fog nodes, and thus it reduces

the number of services to be transferred to the cloud. Hence, using the fog nodes to

process the data reduces communication time, thus minimizing the service delay and

the network resource usage for IoT applications.

3.3.2 Strategy 2: Deadline Aware Service Placement

The IoT service placement in the Fog-Cloud environment is referred to as the NP-hard

problem (Brogi et al., 2020; He et al., 2018). But the primary challenge is to find a

suitable fog node that can host the services and thus provide the service in real-time.

Hence, we propose a novel cost-efficient Deadline Aware Service Placement (DASP)
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algorithm to place the service requests in the Fog-Cloud computing environment. Using

the DASP algorithm, the service time and the service cost and energy consumption are

minimized, thus ensuring the QoS of IoT applications in terms of deadline and resources

availability. Figure 3.1 shows the service allocation procedure for deploying the IoT

service requests in the Fog-Cloud computing environment.

Algorithm 3.1 Deadline Aware Service Placement
Input: Services s ∈ SK

Resource list include both Fog (FN ) and Cloud (VM ) resources
Result: Placement list← []

Intialize: Placement list← []
for each service s ∈ SK do

for each set of all Resources in fog nodes n∈ FN do
// check for resource availability constraints in fog

nodes n∈ FN
if(Resources Availability(s,n))
Ttotal ← ServiceTime(s,n) using Equation (3.4)

Sfcost← ServiceCost(s,n) using Equation (3.15)
if(Tt ≤ Dd and Sfcost ≤ Cs

max )
// Update the placement list; place service s ∈ SK on fog

node n ∈ FN
Placement list← (s, n)
break

else
// Place IoT service s on Cloud server

Tt← ServiceTime(s,m) using Equation (3.4)
Sccost← ServiceCost(s,m) using Equation (3.16)
// Update the placement list; place service s on cloud

server m ∈ VM
Placement list← (s,m)

end
end
update Services and Resources list
return Placement list

For each service requests, Algorithm 3.1 checks for the resources demand and the

availability of resources in fog nodes. If the availability of the resources is satisfied for

the service requirements in the fog nodes, then the expected service completion time and

the service cost are calculated based on the amount of resources used as per given cost

parameters defined by Equations (3.11)-(3.14). If the total expected service completion

time and service cost are less than the defined service deadline and the maximum service
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cost for each service, then the service ’s’ can be placed on the fog node n. If resources

are not available with the fog nodes, such requests could be forwarded to the cloud

server m, and the service cost for such application is calculated. The delay-sensitive

applications can be serviced in real-time using fog computing nodes, thus minimizing

the number of applications deployed in the cloud, leading to less resource consumption

in the cloud server. Hence, using the Fog-Cloud computing architecture to place the

delay-sensitive applications that satisfy the resource constraints and service deadline

minimizes the service cost, service time for the IoT applications.

3.3.2.1 Mathematical Analysis and Example for DASP Algorithm in the Fog-Cloud

The mathematical analysis for the proposed approach is done by considering one ex-

ample scenario (Liu et al., 2017; Kherraf et al., 2019). The three-tier architecture is

considered for servicing the IoT applications, as shown in Figure 1.5 (Page No. 12,

Chapter 1). The middle layer consists of distributed network devices that can process

data and send control signals back to the actuators. Transferring the huge data from

end devices to the cloud consumes more time. Thus using fog nodes at the network

level will reduce the transmission/communication time, network traffic, service time,

and service cost by reducing cloud resource consumption.

Let, Leis (t) be the total amount of data generated by the sensor and other end devices,

which is to be stored and processed on the computing nodes. The expected service time

in the fog environment is defined as the sum of the service availability time, processing

time, and communication time defined by Equation (3.4). Service availability in a fog

environment depends on the waiting time for the service in fog nodes. The waiting time

for the services given by Equation (3.19) depends on the service request arrival time

and the fog node’s processing speed. The service time should be greater than the arrival

time to maintain the queue’s stability at the fog node given by the Equation (3.20).

Γ(n,s) = δ(n,s) − λsn (3.19)

λsn ≥ 0 (3.20)
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Figure 3.1: Service Allocation in the Fog-Cloud Computing Environment

If any of these service constraints in Equations (3.5) and (3.17) fail, and if resources

are not available, then the service requests can be forwarded to the centralized cloud.

The service cost for the application deployed in the cloud environment depends on the

resources used to process the deployed applications. The service cost should be less

than the maximum service cost defined by Equation (3.17).

The architecture considered for the placement of two service requests with two

fog gateways and the public cloud is shown in Figure 3.2. The resources are avail-

able in the computing nodes described as R={CPU, RAM, Storage}, and the task re-

quests are represented by the set T={CPU, RAM, Size, Deadline, Max.Cost}. The

resources available in cloud and fog gateways (G1 and G2) considered for this example

are given by Cloud={10000, 4GB, 10000}, G1={4000, 1GB, 3000} and G2={5000,

1GB, 2000}. The application with two tasks, T1 and T2, each task resource requests

given as T1={3000, 512MB, 2000, 750ms, $250} and T2={5000, 2GB, 3000, 850ms,
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Figure 3.2: Example for Service Placement in the Fog-Cloud Environment

$700} is considered in the example. Further, we can assume that the fog and cloud

environments have the communication time of 50 ms and 100 ms, respectively. The de-

cision to allocate the tasks on the fog node is based on the availability of the resources,

satisfying the service deadline and service cost. Otherwise, the task request is placed

on the cloud data center, which provides substantial computational resources to host the

applications.

Table 3.2: Calculation Results

Fog Cloud

Tt Scost Tt Scost

T1 716ms $210 767ms $ 410

T2 - - 700ms $650

The expected service time and the service cost of the application, which satisfies the

resource requirement in the fog computing environment, are defined by the Equation

(3.2). From the considered example, task T1 requirements are satisfied by the gateway

G1 and then calculates the expected service time and the service cost for deploying

the service on G1 and found that it satisfies the service deadline and cost constraints.

Hence, task T1 is deployed on the gateway G1, and a similar procedure is followed for

task T2 which will be placed in the cloud environment. Table 3.2 shows the obtained

results, and it is observed that Task T1 can be placed on either G1 or cloud but, task T1

has more delay and cost if it is placed in the cloud when compared to using fog gateway.

Hence, deploy task T1 on G1 and task T2 hosted in the cloud environment since enough

resources for T2 requests are unavailable in fog gateways G1 and G2. The values of Tt

and Scost for T1 and T2 are shown in Table 3.2.
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3.4 Performance Evaluation

3.4.1 Experimental Simulation Setup

The proposed DASP algorithm is evaluated using the iFogSim simulator (Gupta et al.,

2017), which is built on top of the cloudsim (Calheiros et al., 2011). The iFogSim

simulator uses the VMs deployed on the data center as the resource provisioning frame-

work. The proposed service placement methodology is implemented by extending the

ModuleMapping and ModulePlacement classes. The applications and distribution of

workload are made using the Application class and FogDevice class in the simulator.

The workload is distributed using a uniform distribution with varying resource require-

ments. The fog and cloud resources to deploy the IoT/IIoT service requests; the fog

nodes are resource constrained and have limited computational and storage resources

compared to the cloud servers. Hence, Alibaba cloud resource configurations such as

small VMs as the fog nodes and the larger VMs (Resources, 2022) as the cloud server

and their pricing model are considered in the simulation as shown in the Table 3.3.
Table 3.3: Simulation Parameters

Computing
Nodes and Task

Resource
Types

Values

Fog Nodes

RAM 2 GB
CPU (in MIPS) 2000-6000
Storage 1-2 GB
unit cost/ CPU $ 0.05
unit cost/ Storage $ 0.02

Cloud Server

RAM 4 GB
CPU (in MIPS) 8000-20000
Storage 3-8 GB
unit cost/ CPU $ 0.10
unit cost/ Storage $ 0.05

Services

RAM 1-3 GB
CPU (in MIPS) 2000-15000
Storage 1-5 GB

The five different configurations, namely: Config 1, Config 2, Config 3, Config 4,

and Config 5, with the number of fog nodes as 200, 400, 600, 800, and 1000, respec-

tively, and five cloud servers are considered to deploy the service requests using the

service placement algorithms. The number of fog nodes in Tier 2 of the architecture

depends on the amount of work done and the fog nodes’ resource availability. The data

movement can happen between the fog nodes horizontally in the same tier or vertically
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between the fog nodes and the cloud. The fog nodes capable of hosting the service

will process the data, send control signals to actuators, and send the processed data to

the centralized cloud for further analysis. Each gateway device is connected to the end

devices, which collect data from the sensor and then forward it to the gateway devices.

The computational capabilities of these computing nodes are heterogeneous, and the re-

source capabilities and cost parameters of these computing devices considered for our

simulation are given in Table 3.3.

3.4.2 Application Types for Simulation

The IoT application model is represented by a directed graph, which consists of in-

dependent modules. Each module will perform some operations, and these modules

should be deployed in the Fog-Cloud computing environment to minimize service time.

In the simulation, the master-worker (Mahmud and Buyya, 2019) model is considered,

which independently requests the services. Some of the services are delay-sensitive,

and a few more are delay tolerant. The model considers the IoT data from the smart

building environment used to monitor the building. The MainModule is placed on the

end devices, and worker modules are placed on the fog nodes such that the QoS of ap-

plications is satisfied in the Fog-Cloud computing environment. Figure 3.3 shows the

application types considered for the simulation.

Figure 3.3: Application types considered for simulation

3.4.3 Results and Discussion

The different network topology configurations are simulated by considering two com-

puting environments: Fog-Cloud and CloudOnly. In the Fog-Cloud computing envi-

ronment, IoT services are distributed among the fog node and cloud server based on

resource availability, service deadline, and cost. In the CloudOnly approach, all service

requests are placed on the centralized data centers. All the data is transferred to a cloud
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server, where it is processed and sends the control signal to the actuators if any actions

are required. These two computing approaches are used for comparing the application

service time, service cost, service deadline and the energy consumption. Further, the

network resource usage for the IoT/IIoT services is measured by using the different net-

work configurations in Tier 2 of the computing architecture. The five different network

topology configurations are considered by varying the number of fog nodes in Tier 2

from 200 to 1000. The number of IoT/IIoT service is varied from 250 to 1500 for per-

formance evaluation of the proposed DASP algorithm in the Fog-Cloud and CloudOnly

computing environments.

The proposed DASP is compared with the different service placement methods,

such as placing all the modules in the cloud, i.e., CloudOnly, EdgeWards, a default

placement method in iFogSim simulator (Gupta et al., 2017) and state-of-the-art Bench-

mark Lower Bound (BLB) (Taneja and Davy, 2017) algorithm for service placement in

the Fog-Cloud computing environment. The EdgeWards approach is the default service

placement strategy is used to deploy the services as close to the edge of the network.

It considers traversal from the leaf node to the top in the different tiers. BLB deploys

the services if resources are available on the network edge and the cloud resources. The

BLB approach uses the key-value pair to identify the mapping of service requests on the

fog and cloud resources based on resource availability. The simulations are carried out

five times for the different configurations of fog nodes in Tier 2 of the architecture and

the other service placement strategies considered for performance evaluation in both

the Fog-Cloud and CloudOnly computing environments. The average of the simulation

results is shown in Figure 3.4.

The 1500 IoT/IIoT service requests are deployed on the different topology config-

urations using the various service placement strategies. Figure 3.4 (a) shows service

time for the deployed services in both CloudOnly and Fog-Cloud computing environ-

ments. It is observed from the Figure 3.4 (a) that if all the services are placed in a

cloud data center, it needs more time to provide the service due to an increase in the

communication time for transferring a large amount of data.

In the Fog-Cloud environment, the simulations are carried out for the default service

placement method (EdgeWards), BLB, FFD, and proposed DASP algorithm for ser-
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(b) Network Usage
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(c) Service Cost
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(d) Energy Consumption

Figure 3.4: Performance comparison of DASP with state-of-the-art service placement strategies
in terms of (a) Service Time (b) Network Usage (c) Service Cost (d) Energy Consumption in
the Fog-Cloud computing environment

vices placement on the iFogSim simulator. Using Fog computing to host applications

will reduce the service time. It is observed from Figure 3.4 (a) that the proposed DASP

method performs better than CloudOnly, EdgeWards, BLB, and FFD based placement

methods in terms of service time. Hence using fog computing for delay-sensitive IoT

applications such as Healthcare monitoring, Industrial applications will provide the ser-

vice very quickly. Figure 3.4 (b) indicates a significant decrease in network usage for

the proposed DASP approach when compared to default EdgeWards, BLB, FFD, and

CloudOnly service placement approaches considered for the performance evaluation.

Figure 3.4 (c) shows service cost for applications in two different computing environ-

ments for the proposed and state-of-the-art service placement strategies. It is found that

using fog computing nodes to deploy the services will reduce the service cost by reduc-

ing the size of data to be transferred and thus minimize the cloud resource consumption.

Figure 3.4 (d) shows the energy consumption for the IoT services that are deployed on

the Fog-Cloud computing environment. It is observed that using DASP reduces the
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energy consumption in the different topology configurations as compared to the state-

of-the-art service placement strategies in the Fog-Cloud computing environment.

The 250-1500 number of IoT application requests are deployed on various network

topology configurations using the proposed DASP method in the Fog-Cloud computing

environment. Further, the number of IoT applications that satisfy the service dead-

line were calculated. Some of the IoT/IIoT application services are delay-sensitive and

should complete the processing within the deadline, and a few application services are

delay tolerant. It is observed that using more fog nodes between the IoT and cloud

architecture can satisfy the maximum number of application services’ deadline.
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Figure 3.5: Performance evaluation of proposed DASP in terms of Service Deadline in the Fog-
Cloud computing environment

Figure 3.5 shows that the percentage of services that meet the service deadline for

different topology configurations using fog and cloud allocations. Using fog nodes

to host delay-sensitive IoT applications will satisfy the deadline and reduce network,

processing, and storage resource usage in the cloud servers.

The use of fog nodes for hosting services will reduce the amount of resources con-

sumed for processing the applications in the cloud and reduce the service cost for the

applications. The different applications are considered with the varying resources and

deployed on two different computing architectures such as Fog-Cloud and CloudOnly.

In Fog-Cloud, used different topology configurations to deploy the services on the avail-

able computing resources. Using fog nodes to deploy the services that satisfy the re-

sources requirement and service deadline will provide the service in real-time. Hence,

it minimizes the number of service requests deployed in the cloud environment and

reduces the service cost by lowering cloud resource usage.
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3.4.4 Statistical Hypothesis Analysis

Table 3.4: p-values for t-test analysis

Algorithms Configurations p-Values

CloudOnly-DASP

Config 1 0.021
Config 2 0.011
Config 3 0.015
Config 4 0.017
Config 5 0.019

EdgeWards-DASP

Config 1 0.019
Config 2 0.012
Config 3 0.021
Config 4 0.017
Config 5 0.019

BLB-DASP

Config 1 0.027
Config 2 0.029
Config 3 0.031
Config 4 0.033
Config 5 0.026

FFD -DASP

Config 1 0.031
Config 2 0.023
Config 3 0.034
Config 4 0.021
Config 5 0.024

The statistical hypothesis testing is carried out for the proposed DASP algorithm

with the existing benchmark methods for the service placement in the Fog-Cloud com-

puting environment. The t-test analysis is considered to evaluate the service placement

strategies in Fog-Cloud environment. The t-test is carried out for the proposed DASP

method, and the different benchmark methods (CloudOnly, EdgeWards, BLB, and FFD)

for service placement and results of the t-test analysis are shown in Table 3.4. For the

null hypothesis, we considered the threshold value of p or the significance level de-

noted by α. The widely adopted arbitrary value of α = 0.05 is considered. From this

hypothesis analysis, we found that the value of p for the benchmark methods is less

than the threshold value of α, as shown in Table 3.4 and thus rejects the null hypoth-

esis. Hence proposed DASP method is a better approach for IoT service placement in

the Fog-Cloud computing environment than the existing benchmark and state-of-the-art

service placement approaches.
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3.4.5 Time Complexity Analysis

The time complexity for the baseline service placement strategies are given as fol-

lows. The service placement using CloudOnly environment depends on the number

of cloud servers (M) and the number of IoT/IIoT application services (K) is given

by O(KM) and the default EdgeWards service placement strategy considers the avail-

able fog nodes (N) and it takes O(KN). The time complexity for the BLB approach is

O((|R| + |K| + |K| ∗ |R|) ∗ log|R| + |K| ∗ log|K|), where ’R’ is the total comput-

ing resources consist of both the fog and cloud resources. The time complexity for

the applied FFD approach depends on the number of services and the fog computing

resources used in the infrastructure. The resources comparison of the fog nodes and

the IoT/IIoT services take O(KN) time, and sorting the services in decreasing order of

resources requests takes O(K log K). The overall time complexity for the FFD approach

is given by O(KN + K log K), where K is the number of IoT/IIoT application services

and N is the number of fog nodes present in the fog layer.

The time complexity for the proposed DASP approach depends on the number of fog

nodes used in Layer 2 of the computing infrastructure and IoT/IIoT services to be placed

onto the fog nodes. The available resource comparison will take O(KN) to compare

the service resource requirement with available resources of the fog nodes, where K

and N are the number of IoT/IIoT services and fog nodes present in the considered

architecture, respectively. After satisfying the criterion of available resources with the

fog nodes, the computation of both service time and the service cost is dependant on

the constant time (C). Thus the services placement after satisfying the constraints in the

Fog-Cloud environment depends on the number of IoT/IIoT services and the constant

time given as O(KC). Hence the overall time complexity is O(KN+KC). The final time

complexity for the proposed DASP approach is given by O(K(N+C)).

3.4.6 Limitations of the Work

The proposed DASP approach considers the service placement in the Fog-Cloud com-

puting environment. iFogSim simulator is used for evaluating the proposed service

placement strategies, which uses the VMs based fog framework to provide the resources

to host the IoT/IIoT services. Using VMs based fog framework for resource provision-

ing is not efficient as deploying VMs consumes more PMs resources, and takes high
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booting time. The inter-dependent IoT/IIoT services are not considered for evaluating

the performance of the proposed service placement strategy using DASP approach.

3.5 Summary

This Chapter discusses two service placement strategies to place the IoT/IIoT service

requests in the Fog-Cloud computing environment. The FFD method is applied for

service placement and evaluated for different network topologies. Further, the ser-

vice placement problem is solved using the novel cost-efficient deadline-aware service

placement algorithm to reduce the service time, service cost and the energy consump-

tion. Also, it ensures the IoT service’ QoS in terms of service deadline, service cost,

and resource availability. The proposed DASP approach is evaluated for the various

topology configurations in Tier 2 of the computing architecture. The experimental re-

sults show that using fog computing to process the data at the edge of the network will

reduce the service time, service cost, energy consumption and network resource usage

for the IoT/IIoT services and thus reduce the cloud resource usage. The VMs based

resource provisioning framework is considered in the simulation, but using VMs for

servicing all IoT services may not be feasible as booting time is high and consumes

more resources, and deploying more VMs on a single node might reduce the perfor-

mance of the PM. The next Chapter discusses the container-based fog framework and

the QoS aware IoT/IIoT service placement strategies in the fog computing environment.
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Chapter 4

Container-based Framework for QoS aware IoT/IIoT

Service Placement in Fog Environment

The different virtualization techniques used for resource provisioning are Virtual Ma-

chines (VMs) and Containers. The resource provisioning framework in the iFogSim

simulator uses the VMs deployed on the PMs in the data center. Resource provisioning

using VMs is not adaptable in a resource constrained fog nodes since VMs boot time

is high, consumes more resources, and hosting more VMs in a single physical machine

degrades the physical machine’s performance (He et al., 2012; Nguyen et al., 2020).

Thus using VMs in a fog environment increases the service time for the delay-sensitive

IoT/IIoT applications. Hence, containers are the preferable lightweight virtualization

technique used for resource management in a fog environment due to their fast startup

time, reducing the resource management overhead, and providing rapid and high scal-

ability (Fayos-Jordan et al., 2020). This motivated us to develop the fog framework on

resource constrained nodes using the docker containers.

The smart manufacturing environment has heterogeneous sensors for monitoring the

devices and generates vast data. Using fog computing devices in the industrial environ-

ment to process heterogeneous data reduces the service time and avoids significant fail-

ures. Also, reducing the total energy consumption increases the lifetime of the battery-

operated fog nodes and thus increases the reliability and availability of those devices in

the industrial environment. But the primary challenge is to find suitable fog nodes that

are distributed and vary significantly in terms of resource availability, data processing

speed, and service time to host IIoT service requests to process the data. Hence, bet-

ter service placement strategies are essential for the placement of IIoT services in the

fog computing environment such that the resource-constrained devices are utilized effi-

ciently (Chiu et al., 2018; Lin et al., 2018). Therefore, the placement of IIoT services on

the resource-constrained fog nodes is referred to as an NP-hard problem (Brogi et al.,

2020). The service placement problem is formulated as the multi-objective optimiza-

tion problem to minimize the service time, service cost, and energy consumption in the

fog computing environment. This chapter explains the proposed work on a two-level re-

source provisioning fog framework using docker containers on devices with a 1.4 GHz



64-bit quad-core processor. Further, we explain three novel approaches for solving the

IIoT service placement problem in the fog computing environment. The proposed work

with three novel approaches for solving the service placement problem is based on our

publications (Natesha and Guddeti, 2021a, 2022).

4.1 Two-level Architecture for Servicing IoT/IIoT Applications

Fog computing is defined as the decentralized computing architecture for processing

the data at the network level using smart gateways, routers, and micro-data centers as

the fog nodes combined with the advantages of cloud and virtualization techniques.

Thus, fog computing provides the computational and storage resources close to the data

source node (Aazam et al., 2018c). Hence, we develop a two-level fog framework to

provide the resources using docker and containers on resource constrained 1.4 GHz

processor devices.
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Figure 4.1: Fog computing architecture

Figure 4.1 shows the fog computing architecture considered for provisioning the

resources to process the IoT data. The lower layer consists of the physical sensor nodes

and actuator devices. The middle layer contains the fog nodes generally considered as
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networking devices or independent MDC as fog servers. The two-level fog infrastruc-

ture is used to provide the resources and place the service on the fog nodes. The two-

level fog infrastructure consists of Fog Master Node (FMN) and Fog Cell (FC). FMN

is responsible for continuous monitoring of the topology and deciding the placement of

the services based on the designed service placement strategies. FC is the independent

node that provides the computational resources and hosts the service. Fog cells process

the data, send back the response to actuators, and transfer the data to the upper layer for

further processing.

Storage 
Resources

Processing 
Resources

Network 
Resources

Control l ing 
Component

Ser vice 1 Ser vice M

Computational Resources Application 

Fog Cell  Components 

Figure 4.2: Fog Cell architecture

FMN consists of Fog Cell Registry; it registers the fog cell once entered into the

topology and monitors the FC. The host Monitor is responsible for continuous moni-

toring of the available and used resources in the fog nodes. The host monitor controls

the status of available resources in FCs and helps decide the placement of services.

Fog Cell Controller is responsible for dynamic topology controlling and monitoring the

FCs; therefore, many FCs can be added and used to deploy the services dynamically in

the fog infrastructure. The fog service registry performs the registering of the services

to be deployed. It is also responsible for the placement of services on the fog nodes

based on the service placement algorithm.

Fog Cells: Fog Cells are the nodes that provide the computing resources and host

the applications. The components of fog cells are shown in Figure 4.2. The applications

contain multiple independent services, and these services are deployed on the fog cells

based on the available computing resources. The controlling component present in the

FC is responsible for managing the usage of resources and deployment of services.

The data is processed in the fog environment, and then the decision control signals are

transferred to the actuators to take action based on the control signal. Thus, using the

fog computing environment reduces the service time for IoT applications.
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4.2 Service Placement Problem Formulation

Table 4.1: List of Notations

Notations Description
SM set of all services
FN set of all fog nodes
tpro processing time in seconds
tcom communication time in seconds
tav service availability time in seconds
Tt Total service time in seconds
Dd service deadline in seconds
ssize service size
ssizereq size of service request
ssizeres size of service response
γj processing capability of a fog node j
βf bandwidth between nodes in Mbps
λin input rate/arrival rate of service requests on fog node
Ctotal total service cost in $
Cmax maximum service cost in fog given in $
Cec energy consumption cost of fog node given in $
Cpro processing cost in fog environment given in $
Csto storage cost in fog environment given in $
Lcpua required amount of processing resource (in mips per request)
uCPUc unit cost in $ for processing resource in mips at fog node
ustoc unit cost in $ for storage resource at fog node (per byte per second)
uengc unit cost in $ for energy consumption per joule in fog environment
rstoj amount of storage resource used in fog node (in bytes)
Emax maximum energy consumption in joules
ETotaleng total energy consumption of fog nodes in joules
Eengfj energy consumption of fog node j in joules
Eengtra energy consumption during transmission in joules
Eengpro energy consumption during processing in joules
P idlef power consumption of fog node in idle state in watts
Ptrans maximum power consumption during transmission in watts
Pproc maximum power consumption during processing in watts
time total time duration in seconds

4.2.1 Resource Constraints in Fog

Table 4.1 shows the list of mathematical notations used in this section. The placement

of services on the fog node depends on the dynamic usage and availability of computa-

tional resources in the fog nodes. The services hosted on a fog node consume resources

such as CPU, RAM, and storage. Thus, the resource demands of the deployed services

on these fog nodes must not exceed the fog nodes’ available computational resources

since these fog nodes have limited computational and storage resources. The following

equations give the resource constraints for the fog environment, and the placement of
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services on the fog nodes should satisfy the resource constraints of each service request,

as defined by Equation (4.1).

∀fj ∈ FN


∑SM

∀si CPU
req(si) ∗ xij ≤ CPUavailable(fj)∑SM

∀si RAM
req(si) ∗ xij ≤ RAMavailable(fj)∑SM

∀si storage
req(si) ∗ xij ≤ storageavailable(fj)

where,

si ∈ SM , i ∈ [1,M ] services

fj ∈ FN , j ∈ [1, N ] fog nodes

(4.1)

xij =

1, if si is placed on fog node fj

0, otherwise
(4.2)

A set of all applications (services) SM requests for resources {RAM, CPU, storage},
and to decide for placement of these services, the total available resources on the fog

nodes are denoted by fj should be more than the resource requests by the IIoT service.

The allocation of the services on the fog nodes is indicated by Equation (4.2), xij =1 if

the service is placed on the fog node else, xij=0.

4.2.2 Service Time and Energy Consumption in Fog

The service time is defined as the sum of processing, communication, and service avail-

ability time for the services in the fog computing environment given by Equation (4.3).

The processing time tpro depends on the service size (data size) ssizei and the processing

capacity of the fog node γj given by Equation (4.4).

Tt = tpro + tav + tcom (4.3)

tpro =
M∑
i=1

N∑
j=1

(
ssizei

γj

)
xij (4.4)
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tcom =
M∑
i=1

N∑
j=1

(
ssizereq + ssizeres

βf

)
xij (4.5)

The communication time tcom is defined as the total time involved for transferring

the service request to fog nodes and response back to the actuators. tcom depends on

the service size (data size) and the link capacity βf connected between the nodes is

given by Equation (4.5). The service availability time tav involves the time taken for

selecting the fog node to deploy the services and data. Also, it depends on the total time

of the service request in the waiting queue to get the selected fog nodes’ computational

resources. Thus tav depends on the amount of time it takes for completing the current

service request. The total service time calculated for each of the services should be less

than the service deadline defined for the application requests, given by Equation (4.6).

Tt ≤ Dd (4.6)

It is assumed that if the fog node is not hosting any services, these fog nodes will

consume some energy during the idle state. The energy consumption of the fog node

during active state while hosting/running some services is calculated (Tang et al., 2018;

Jalali et al., 2016; Murtaza et al., 2020). The fog node’s energy consumption is de-

fined as the sum of the energy consumption during the transmission of data and the

energy consumption during the processing of the services defined by Equation (4.7).

The Equations (4.8) and (4.9) define the energy consumption during the transmission

and processing of the application, respectively.

Eeng
fj = (Eeng

tra + Eeng
pro ) (4.7)

Eeng
tra =

time∑
t=0

(
P idle
f +

(
Ssizei

βf
∗ Ptrans

))
(4.8)

Eeng
pro =

time∑
t=0

(
P idle
f +

(
Ssizei

γf
∗ Pproc

))
(4.9)
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ETotal
eng =

N∑
j=1

Eeng
fj (4.10)

The energy consumption depends on the maximum power consumed by the fog

node per unit time for transmitting and processing the whole data as defined by Equa-

tions (4.8) and (4.9), respectively. The total energy consumption of the fog nodes for

servicing the IIoT application services is defined by Equation (4.10).

4.2.3 Service Cost in Fog

The service cost for the IIoT applications deployed on the fog node is defined as the sum

of processing cost, storage cost, and energy consumption cost in the fog infrastructure

is given by Equation (4.11).

Ctotal = Cpro + Csto + Cec (4.11)

The processing cost for the service depends on the amount of CPU/MIPS used for

processing the application service request, and the arrival rate of the service request on

the fog nodes is given by Equation (4.12). The storage cost depends on the amount of

memory used for storage and the size of the service request, as defined by Equation

(4.13).

Cpro =
M∑
i=1

N∑
j=1

(
uCPUc ∗ Lcpua ∗ λin ∗ xij

)
(4.12)

Csto =
M∑
i=1

N∑
j=1

(
ustoc ∗ rstoj ∗ xij

)
(4.13)

The fog infrastructure’s energy consumption cost depends on the amount of en-

ergy consumed by the fog nodes and the time duration. The energy consumption cost

is calculated as the product of total energy consumed and the cost of the unit energy

consumption in the fog infrastructure as defined by Equation (4.14).

Cec =
M∑
i=1

N∑
j=1

(
ETotal
eng ∗ uengc ∗ xij

)
(4.14)
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4.2.4 Optimization Model for Service Placement

The set of available fog nodes denoted by FN = {f1, f2, .....fN} and a set of all services

to be deployed on the fog nodes denoted by SM = {s1, s2, ......sM}. The main objec-

tive is to find the fog nodes for optimal service placement such that the service time,

service cost, and energy consumption for the IIoT applications are minimized in the fog

computing environment. Hence, the service placement problem in fog computing en-

vironment is formulated as the multi-objective optimization problem. The formulated

multi-objective optimization functions are given by Equations (4.15)-(4.18).

Minimize

M∑
i=1

N∑
j=1

(Tt(si, fj)) (4.15)

Minimize
M∑
i=1

N∑
j=1

(CF
total(si, fj)) (4.16)

Minimize
M∑
i=1

N∑
j=1

(ETotal
eng (si, fj)) (4.17)

Subject to :

Tt ≤ Dd

Ctotal ≤ Cmax

0 ≤ ETotal
eng ≤ Emax

where,

si ∈ SM , i ∈ [1,M ] services

fj ∈ FN , j ∈ [1, N ] fog nodes

(4.18)

The constraints defined for the said multi-objective functions are as follows:

• Total service time for the IIoT application should be less than the service deadline
defined for the deployed IIoT application.

• The service cost should be less than the maximum service cost defined for the
said application.

60



• The energy consumption should be less than the maximum energy consumed by
the fog nodes.

• Each service request for the resources and placement decision should satisfy
the resource requirement defined by Equation (4.1). The service should also be
placed only on one fog node in the fog computing environment.

4.3 Service Placement Strategies in the Fog Computing Environment

In this section, we propose three novel strategies for IIoT service placement in the fog

computing environment. The first strategy is on a novel Elitism-based Genetic Algo-

rithm (EGA) to place the IIoT service requests. Later, we proposed two novel strate-

gies for IIoT service placement by using hybrid meta-heuristic algorithms, namely:

MGAPSO and EGAPSO by combining the genetic algorithm with Particle swarm opti-

mization (MGAPSO) and EGA with PSO, respectively.

4.3.1 Strategy 1: EGA based Service Placement

The service placement problem in the fog computing environment is solved using the

Elitism-based Genetic Algorithm (EGA). Elitism-based GA passes the first best or few

best chromosomes from the current generation to the next generation. Thus it avoids

random destruction of the best chromosome after crossover and mutation operations.

Using elite chromosomes will preserve the degeneration of the population and pre-

mature convergence. Hence, Elitism-based GA is preferred to the traditional GA for

service placement in the fog computing environment. The operations involved in the

Elitism-based Genetic algorithm are: Fitness evaluation, Selection of Elite chromo-

some, Crossover, and Mutation. The chromosome length is equal to the number of

services, and the values (genes) represent the fog node number.

Figure 4.3: Chromosome

For example, consider six service requests, as shown in Figure 4.3, and the chromo-

some gene value represents the possible service placement on the fog nodes. Further,

the number of fog nodes considered in the fog infrastructure is equal to 4.
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Selection Operation

The elitism concept is used to select the best individual for the next generation directly

without performing the crossover and mutation operations. Using elitism avoids the loss

of the best individual after crossover and mutation operations and speeds up the Genetic

Algorithm’s performance. The elitism rate for selecting the best individual for the next

generation should be less. Thus it avoids the degeneration of the population. Hence, the

population is sorted based on the fitness value and selects 8% of the population as the

elite chromosomes and passes them to the next generation.

Crossover Operation

The crossover operation is performed on the remaining population to obtain the off-

spring for the next generation. The single-point crossover operation is performed on

the two-parent chromosomes to produce the new offspring from the remaining popu-

lation, thus finding the best feasible chromosome for the next generation. The single

point is selected on both the parent chromosomes and values (genes) after the point

is swapped between the two parents to obtain the new offspring. The Figures 4.4 (a)

and 4.4 (b) show the chromosome before and after the single point crossover operation,

respectively.

(a) Before Crossover (b) After Crossover

Figure 4.4: Crossover operation between the two parent chromosome (a) Before Crossover (b)
After Crossover

Mutation Operation

Mutation operation is performed on the new offspring chromosome to mutate one or

more genes in the original chromosome to obtain the new chromosome. Thus, the mu-

tation operation on the chromosome preserves the diversity within the population and

the premature convergence. The mutation operation is performed on the chromosome

by replacing the gene values with the random value within the range of the number of

fog nodes [1, N].
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Figure 4.5: Mutation Operation

The example for the mutation operation on the chromosome is shown in Figure

4.5. The above procedure continues until the maximum number of generations is con-

sidered and returns the best individual chromosome. The best individual chromosome

represents the possible optimal solution for the placement of service requests on the fog

nodes to optimize the energy consumption, service cost, and service time, thus ensuring

the QoS of IIoT applications.

Fitness =
3

Tt(si, fj) + Ctotal(si, fj) + ETotal
eng (si, fj)

(4.19)

Algorithm 4.1: EGA: Elitism-based Genetic Algorithm for Service Placement in
the Fog Computing Environment
Input: Set of all Services SM={s1,s2,.....sM}

Set of all Fog Nodes FN={f1,f2,............fN}
Result: service allocation list← [ ]
Initialize: crosssover probability (Pc)← 0.5, mutation rate (Pm)←0.3
num generation←250, elitism rate← 0.08, population←100
population← Generate Population Randomly()
fitness← Calculate Fitness(population) using Equation (4.19)
elite list← Sorted(fitness,population,elitism rate)
service allocation list← best individual
rem population← (population - elite list)
while num generation do

parent1, parent2← selection operation(rem population)
// Perform Crossover operation

child1, child2← crossover operation(parent1, parent2, Pc)
// Apply Mutation operation on the new child chromosomes

newchild← mutation operation(child1, child2, Pm)
new population← elite list

⋃
newchild

fitness← Calculate Fitness(new population) using Equation (4.19)
elite list← Sorted(Fitness, new population,elitism rate)
rem population← (new population - elite list)
service allocation list← best individual

end
return service allocation list
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Algorithm 4.1 shows the complete steps involved for service placement in the fog

environment. The initial population is considered randomly, where each chromosome

represents the possible solution of service placement in the fog computing environment.

After generating the initial population, the fitness value is calculated for each of the

chromosomes by using Equation (4.19). The fitness function is defined as a fraction

of the sum of the service time, cost, and total energy consumed. These are multiplied

with constant weights of 1
3
, which depends on the number of objective parameters in

the optimization model.

4.3.2 Strategy 2: MGAPSO based Service Placement

Further, two different meta-heuristics based hybrid service placement strategies are de-

veloped to deploy the IIoT service requests on the fog computing architecture. The

Genetic Algorithm (GA) and proposed EGA algorithm are combined with PSO to de-

velop the hybrid MGAPSO and EGAPSO service placement strategies, respectively.

Algorithm 4.2: MGAPSO based Service Placement
Input: Number of fog nodes N

Number of service requests M
Result: best chromosome
Intialize: Population← 100, Num generation← 300, Mutation rate (Pm)← 0.3

Crossover rate (Pc)← 0.5
Population← Generate Initial Population Randomly

while (Num generation!=0) do
// Find the Fitness value of chromosome using Equation

(4.19)
fitness← Calculate Fitness(Population)
// Call Selection Operation()
parent← Selection operation(Population, fitness)
// Call PSO using Procedure 1
newparent1, newparent2← PSO Procedure(parent1,parent2, fitness)
// Apply single point cross over operation on the best

particles returned by Procedure 1
child1, child2← Call CrossOver Operation (newparent1, newparent2, Pc)
// Apply Mutation operation on the new child chromosomes
newchild←Call Mutation Operation (child1, child2, Pm)
fitness← Calculate Fitness(new population) using Equation (4.19)
best chromosome← Update Service Allocation List

end
return best chromosome

Both GA and PSO are meta-heuristic algorithms that work on the initial random

population and provide near-optimal solutions for the NP-hard problems. Initially, the
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Procedure 1: PSO Procedure(Particle, Fitness)
Input: Particles, fitness values of particle
Result: best particle
Initialize: c1, r1, c2, r2, Pbest, Gbest

while Num generation!=0 do
for each particle do

// Update the Velocity and Position of the Particle using
the below Equations

Vt+1 = Vt + c1 ∗ r1 ∗ (Pbest −Xt) + c2 ∗ r2 ∗ (Gbest −Xt)
Xt+1 = Xt + Vt+1

end
Find the Fitness of the particle using fitness function Equation (4.19)
Update the Pbest and Gbest

update best particle
end
return best particle

fitness of the chromosome is calculated by using Equation (4.19). Then the new chro-

mosome is selected by using the selection operation of the GA. After the Selection

operation, the PSO Procedure (Procedure 1) is called to find the best feasible particle

using the PSO algorithm. Each chromosome is mapped as the particle and then up-

date the particle position and velocity. After the maximum number of iterations, the

PSO procedure will return the best particle. The single-point crossover operation is

performed on the best particle returned by the PSO to find the new offspring for the

next generation. Then mutation operation is applied to find the new chromosome. For

mutation operation, the gene (value) is replaced randomly with the value of the number

of fog nodes [1, N]. The above procedure continues until the maximum number of gen-

erations and returns the best chromosome. The chromosome returned by the MGAPSO

will represent the best feasible service allocation order on the fog nodes. Algorithm 4.2

shows the complete procedure of MGAPSO based service placement strategy.

4.3.3 Strategy 3: EGAPSO based Service Placement

The convergence rate for the MGAPSO is slower as it passes all the chromosomes to the

next generation till it gets the best chromosome. To address the issue of the MGAPSO

algorithm, another hybrid EGAPSO algorithm is developed by combining the Elitism-

based GA with the PSO algorithm for IoT/IIoT service placement in the fog computing

environment.
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Algorithm 4.3: EGAPSO based Service Placement
Input: Number of fog nodes N

Number of service requests S
Result: service allocation list
Intialize: Population← 100, Num generation← 300

Mutation rate (Pm) ← 0.3, Crossover rate (Pc) ← 0.5, service allocation list ← best
individual, elitism rate← 0.08
Population← Generate Initial Population Randomly
// Initial chromosome represents the possible allocation of
services on the fog nodes

fitness← Calculate Fitness(population) using Equation (4.19)
elite list← Sorted(fitness,population,elitism rate)
rem population← (population - elite list)
while (Num generation!=0) do

// Call Selection Operation()
parent1, parent2← selection operation(rem population)
// Call PSO using Procedure 1
newparent1, newparent2← PSO Procedure(parent1,parent2, fitness)
// Apply single point cross over operation on the best

particles returned by Procedure 1
child1, child2← Call CrossOver Operation (newparent1, newparent2, Pc)
// Apply Mutation operation on the new child chromosomes
newchild←Call Mutation Operation (child1, child2, Pm)
new population← elite list

⋃
newchild

fitness← Calculate Fitness(new population) using Equation (4.19)
elite list← Sorted(Fitness, new population,elitism rate)
rem population← (new population - elite list)
service allocation list← best individual

end
return service allocation list

The convergence rate of the Elitism-based GA is faster than the simple GA since

it saves the best chromosome for the next generation without performing the crossover

and mutation operation. Hence, the few elite chromosomes are passed to the next gen-

eration directly, and then the PSO operation is applied on the remaining chromosomes

using Procedure 1. Then, the crossover and mutation operations are performed on the

particles returned by the PSO to get the best chromosome. The above procedure is

continued until the maximum number of generations and returns the chromosome. The

best individual chromosome returned by the EGAPSO will represent the best feasible

service allocation order on the fog nodes. Algorithm 4.3 shows the complete procedure

of EGAPSO based service placement strategy.
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4.4 Performance Evaluation

4.4.1 Experimental Testbed Setup

The Raspberry Pi Model 3B+ devices with Cortex-A53 (ARMv8) 64-bit SoC @ 1.4GHz

quad-core processor, with 1GB LPDDR2 SDRAM and the 5V/2.5A DC power input are

used to develop the fog-testbed infrastructure and run the proposed service placement

strategies. All these fog nodes run Hypriot 1 a lightweight operating system for low

computing power devices that supports the built-in docker2. Figure 4.6 shows the fog

testbed infrastructure developed for performance evaluation with twenty fog nodes.

Figure 4.6: Fog Computing Testbed for performance evaluation

The different technologies or software components used to develop the fog com-

puting framework to provision the computational resources to host and run the IoT

applications is shown in Figure 4.7.

Redis Database: Redis 3 is open source, scalable database, fast and easily deploy-

able on the devices. Both the FMN and FCs run the Redis database instances. In the

fog nodes, two types of Redis database instances are used: local and shared. The lo-

cal Redis instance is used in FCs. Both local and shared Redis database instances are

used in the FMN. The local instance in both FCs and the FMN is used to store the

fog node/cell configuration information, IP address, and the fog node’s total resource

utilization statistics. The deployable IoT service images and services output data are

stored in the shared Redis database instance of the FMN.

1https://blog.hypriot.com/
2https://www.docker.com/
3https://redis.io/
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Figure 4.7: The Software Components used in the Testbed

Celery: Celery4 is used to monitor and get the heartbeats of the fog nodes in the

topology to check whether the status of the node is alive or not. The resources’ usage

is continuously monitored for both the fog master and cell nodes. In the fog frame-

work, resource provisioning is decided based on the availability of the computational

resources. FMN avoids service placement if the available resources are insufficient to

satisfy the service resource requests. The Celery worker instances are present in both

the FMN and fog cell nodes. The Celery worker in FMN triggers fog cells to download

data and service images from the shared database, and the Celery present in the fog cell

will execute the deployed service requests on the fog cells.

REST is the main factor that enables the communication in micro-services architec-

ture due to various light software component footprints present in the docker. The Flask

python framework is used in a developed testbed for communication purposes due to its

minimalistic features. The power meter is used for measuring the energy consumption

of the fog nodes in the testbed with an input capacity of 240V, 50Hz, 20A.

4.4.2 Application Types for Testbed

The IoT applications such as the smart building, smart manufacturing industry (Indus-

try 4.0), and smart healthcare (Kumari et al., 2018) deploy more number IoT devices

4http://www.celeryproject.org/
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to monitor and control the environment; which continuously sense and generate mas-

sive data. Processing this vast data in the fog environment reduces the service time

and provides service in real-time. The performance of the proposed service placement

algorithm in the fog computing environment is evaluated for the master-worker IoT

application model, which consists of a set of independent modules. Using fog nodes

in the industrial environment to process heterogeneous data reduces the service time

and avoids significant failures. Also, reducing the total energy consumption increases

the battery-operated fog nodes’ lifetime, thus increasing the reliability and availability

of those devices in the fog environment. An IoT application includes separate mod-

ules/services which perform some operation and then send back the response to the

actuators. Based on the application scenarios, each IoT application is represented in the

form of a directed graph (Mahmud and Buyya, 2019). The sensor data from Melbourne

city 5 which consists of sensor readings such as the temperature, humidity, and light are

continuously read and accordingly find the average, minimum, and maximum values of

each data type and then decide to send the control signal information to the actuators.

4.4.3 Results and Discussion

The proposed service placement strategies are evaluated on the fog infrastructure set-

up, which dynamically provisions the resources to host the service requests. A different

set of services ranging from 200 to 1000 services are considered to carry out the exper-

iments. The number of fog nodes in the testbed is varied from five to twenty in terms

of five (i.e., 5,10,15, and 20) nodes. The IIoT service requests are placed on the fog

nodes in the testbed using developed service placement strategies and then measured

the service time, service cost, and the total energy consumption in the fog environment.

For the proposed algorithms (EGA, MGAPSO, and EGAPSO), the number of gen-

erations varies from 50 to 350 in terms of 50, and the mutation rate ranges from 0.1

to 0.3 in steps of 0.05. It is found that the fitness value of the chromosome remains

constant after 300 generations at a 0.3 mutation rate as shown in Figure 4.8. Hence,

the mutation rate of 0.3 and the number of generations to 300 are used for the pro-

posed hybrid algorithms. The experimental parameters considered for different service

placement strategies are given in Table 4.2.

5https://data.melbourne.vic.gov.au/Environment/Sensor-readings-with-temperature-light-humidity-
ev/ez6b-syvw/data
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Table 4.2: Experimental Parameters
Parameters Values

Number of Nodes 5-20
Number of Services 200-1000
Number of Generation G 300
Population Size N 100
elitism rate 8%
Mutation rate (Pm) 0.3
Crossover rate (Pc) 0.5
c1, c2 2
r1, r2 0.5

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
0 . 0 0 1 2
0 . 0 0 1 4
0 . 0 0 1 6
0 . 0 0 1 8
0 . 0 0 2 0
0 . 0 0 2 2
0 . 0 0 2 4
0 . 0 0 2 6
0 . 0 0 2 8

Fit
nes
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e
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M u t a t i o n  r a t e  =  0 . 3
 

 

Figure 4.8: Fitness value vs Number of Generations

The experiments are carried out five times for the different service placement strate-

gies and presented an average of the experimental results. The performance of the

proposed service placement algorithms are compared with the existing state-of-the-

art Genetic Algorithm (GA) (Canali and Lancellotti, 2019), Delay Energy based Task

Scheduling (DEBTS) (Yang et al., 2018), Double Matching Strategy (DMS) (Jia et al.,

2018), Simulated Annealing (SA) (Rezazadeh et al., 2018), Particle Swarm Optimiza-

tion (PSO) (Mishra et al., 2018), GAPSO (Yadav et al., 2019) and the two baseline

algorithms, namely: First-Fit (FF) and Branch-and-Bound (BB) algorithms (Rakshith

et al., 2018) for service placement in the fog computing environment. The experiments

are carried out on the developed testbed to evaluate the performance of the proposed

EGA, MGAPSO, EGAPSO, and state-of-the-art service placement strategies.

The First-Fit algorithm considers the availability of the computational resources

and allocates the services on fog nodes. But, First-Fit does not consider the optimal

allocation, and hence it reduces the efficiency by underutilizing the available limited

computational resources. Thus it increases the service time, service cost, and energy
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consumption in the fog computing environment.

On the other hand, the BB algorithm allocates the services on the fog nodes. As

the number of services and the fog nodes in the topology increases, the service time

increases exponentially, thus maximizing the service cost and energy consumption in

the fog computing environment for servicing the IIoT applications. The DMS approach

is based on the deferred acceptance approach for resource allocation in the fog com-

puting environment. The DEBTS approach optimizes the energy consumption and the

service delay in the homogeneous fog network. The Lyapunov optimization technique

is used to minimize the total energy consumption of fog devices. The GAPSO is the

hybrid algorithm for optimizing the energy consumption and the service delay in the

fog computing environment. This hybrid GAPSO approach considers the GA and PSO

approach for deciding the service allocation in the fog computing environment. The

service placement strategies considered for performance evaluations are not optimal as

it takes more time to provide the service and thus not suitable for the delay-sensitive

IIoT applications. Hence to overcome these problems, EGA and hybrid algorithms are

proposed to allocate the services optimally and therefore minimize the service time,

service cost, energy consumption in the fog computing environment.

The number of service requests is varied from 200 to 1000. These service requests

are generated using uniform distribution and then deployed on the developed two-level

fog computing framework using different service placement strategies. The experimen-

tal results show that the proposed EGAPSO approach minimizes the service time, cost,

and energy consumption for servicing the IIoT applications in the fog computing en-

vironment. The experimental results for the various service placement algorithms are

shown in Figures 4.9 and 4.10.

The fog nodes in the framework will provide the resources for hosting the IIoT

applications and reduce the service time by performing the data processing operations

on the available computing resources. The service placement algorithms in the fog

computing environment are developed and evaluated for finding the total service time

for a set of services by placing the requests on the fog framework. Figure 4.9 shows

the total service time, service cost, and energy consumption for the different number

of service requests deployed using different service placement strategies on fog testbed
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(a) Service Time
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(b) Service Cost
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(c) Energy Consumption

Figure 4.9: Performance comparison of service placement strategies in terms of (a) Service
Time (b) Service Cost and (c) Energy Consumption in the two-level fog computing framework

with 20 fog nodes. Figure 4.9 (a) shows the service time for various service placement

algorithms. It is observed that the service time for the EGAPSO algorithm is less when

compared to the other service placement algorithms.

The total service cost of the IIoT applications for the different service placement

strategies is calculated in the fog computing environment. Figure 4.9 (b) shows the

total service cost for servicing the IIoT application service requests in the fog comput-

ing framework. Figure 4.9 (b), it is observed that the EGAPSO algorithm uses the fog

resources efficiently and further reduces the service cost as compared to the other ser-

vice placement strategies. The total energy consumption of the fog computing testbed

for servicing the deployed IIoT application requests is measured by using an external
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power meter connected to the framework with an input capacity of 240V, 50Hz, 20A.

The total energy consumed for running a set of services with different service place-

ment algorithms is given in Figure 4.9 (c). It is observed from Figure 4.9 (c) that the

total energy consumption of the fog nodes is less for EGAPSO as compared to the other

service placement algorithms.

The number of fog nodes in the testbed is varied from five to twenty in terms of five

(i.e., 5,10,15, and 20) nodes. The total service time for servicing the 1000 IIoT service

requests is calculated. As the number of fog nodes increases, the service time for the

IIoT applications minimizes and thus provides the service in real-time for the delay-

sensitive IIoT applications. From Figure 4.10, it is observed that using more fog nodes

can reduce the total service time for the IIoT service requests in the fog computing

environment.
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Figure 4.10: Service Time of various service placement strategies for different number of fog
nodes in the testbed

4.4.4 Statistical Hypothesis Analysis

The statistical hypothesis testing is carried out for the proposed IIoT service place-

ment algorithms. The t-test analysis is considered for evaluating the service placement

strategies in the fog computing environment. The t-test for the proposed hybrid service

placement strategies: EGA, MGAPSO and EGAPSO for service placement in the fog

computing environment and also compared with First-Fit, Branch-and-Bound, DEBTS,

DMS, GA, SA, PSO and GAPSO. The results of t-test analysis are shown in Table 4.3.

For the null hypothesis, considered the threshold value of p or the significance level
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(confidence level) denoted by α. The widely adopted threshold value of α = 0.05

is considered. From this hypothesis analysis, it is found that the value of p for the

EGAPSO method is less than the threshold value of α, as shown in Table 4.3 and thus

rejects the null-hypothesis. Hence, among the proposed service placement algorithms,

EGAPSO is the better approach for IIoT service placement in the fog environment.

Table 4.3: p-values for t-test analysis
Metric Algorithms p-Values

Service Time
First-Fit - EGAPSO 0.0271
Branch-and-Bound - EGAPSO 0.0232
DEBTS - EGAPSO 0.0371
DMS - EGAPSO 0.0314
GA - EGAPSO 0.0218
SA - EGAPSO 0.0328
PSO - EGAPSO 0.0291
GAPSO - EGAPSO 0.0247
MGAPSO - EGAPSO 0.0222
EGA - EGAPSO 0.0256

Service Cost
First-Fit - EGAPSO 0.0292
Branch-and-Bound - EGAPSO 0.0336
DEBTS - EGAPSO 0.0347
DMS - EGAPSO 0.0311
GA - EGAPSO 0.0384
SA - EGAPSO 0.0418
PSO - EGAPSO 0.0235
GAPSO - EGAPSO 0.0261
MGAPSO - EGAPSO 0.0248
EGA - EGAPSO 0.0212

Energy Consumption
First-Fit - EGAPSO 0.0260
Branch-and-Bound - EGAPSO 0.0245
DEBTS - EGAPSO 0.0221
DMS - EGAPSO 0.0321
GA - EGAPSO 0.0393
SA - EGAPSO 0.0401
PSO - EGAPSO 0.0214
GAPSO - EGAPSO 0.0228
MGAPSO - EGAPSO 0.0318
EGA - EGAPSO 0.0232

74



4.4.5 Time Complexity Analysis

The time complexity for the First-Fit algorithm depends on the number of fog nodes

(N) and the number of IoT/IIoT service requests (M) is given by O(NM). The time

complexity for Branch-and-Bound algorithm is O(NM)2. The time complexity for the

DEBTS and DMS algorithms is O(NM)2, respectively. The time complexity for the

GA, SA and PSO is O(GNM) and O((NM)2 +NM), O(NM) respectively.

The time complexity of the Elitism based Genetic algorithm (EGA) depends on the

number of generations, population size, and the operations: Fitness evaluation, elitism

operation, Selection of an elite chromosome, Crossover, and Mutation. The time com-

plexity is calculated as O(Generations*( O(Fitness Evaluation) +O(sort operation to

select elite list)+ O(selection operation) + O(Pc*Crossover Operation) + O(Pm* Mu-

tation Operation)), where Pc and Pm are the probabilities of crossover and mutation

rates considered for the evaluation, respectively. For updating the elite chromosome,

the chromosomes are sorted based on the fitness value and the time complexity for

the sorting algorithm used is O(NlogN). The time complexity for the Elitism-based

Genetic Algorithm is represented as O(G*( O(N) + O(NlogN)+ O(NM) + O(Nm)

+O(Pc*Nm) +O(Pm*m))), where, G is the number of generations, N is the size of the

population, M is size of the chromosome and m is the subset of population chromosome

selected after the selection operation. If the Pc and Pm values are considered as con-

stant values, then the overall time complexity of the Elitism-based Genetic Algorithm

is O(G(N ∗M + NlogN)). The time complexity of the EGAPSO algorithm depends

on the size of the generation, fitness evaluation, selection operation, update velocity, the

position of a particle, crossover, and mutation operations. The time complexity for the

PSO procedure is O(NM).

The time complexity for GAPSO and MGAPSO is given by O((G*NM)+NM). The

time complexity of the EGAPSO algorithm is simplified as O((G*NM) +(N log N)

+NM), where N is the population size, O(N log N) is the time complexity for the sorting

algorithm used for selecting the elite chromosome in the EGAPSO algorithm.
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4.4.6 Limitations of the work

The proposed work considers the container-based fog framework to provide the re-

sources for deploying the IoT/IIoT service requests. Further, various service placement

strategies are developed to place the service. The limitation of the work is the inter-

dependent IoT applications are not considered for service placement. Further did not

consider handling device failures, load balancing, service migrations in the developed

fog framework, if any accidental fog node failures in the developed fog framework.

4.5 Summary

This chapter describes the development of docker and containers-based two-level fog

framework to provide the resources. Then the fog service placement problem was for-

mulated as a multi-objective optimization problem to ensure the QoS of IoT/IIoT ap-

plications. Further, the EGA and the hybrid MGAPSO and EGAPSO based service

placement strategies are proposed to place the IoT/IIoT service requests in the fog com-

puting environment. The experiments are carried out for the proposed EGA and the

hybrid MGAPSO and EGAPSO and the state-of-the-art service placement algorithms

on the fog infrastructure testbed developed using the docker and containers on the clus-

ter of 1.4 GHz 64-bit quad-core processor devices with twenty nodes. The different

service placement strategies are assessed in terms of service time, service cost, and the

energy consumption of the fog nodes in the two-level fog computing environment. The

experimental results show that the proposed hybrid EGAPSO outperforms the other

proposed and the existing state-of-the-art service placement strategies considered for

the performance evaluation. The Industry 4.0/Smart Industrial applications are delay-

sensitive, hence there is a need for the cost-efficient computing architecture to push the

intelligence and data analysis close to the source device thus enabling the automation

and real-time monitoring. Using the resource constrained fog nodes/server to deploy

the machine learning models and analyze the various sensor data from the smart envi-

ronments reduces the service time and thus enable the real-time monitoring in the smart

environments. The fog server based framework for real-time data analytics in the smart

industrial environment is discussed in the next chapter.
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Chapter 5

Fog Server-based Framework for Real-time Data

Analytics in Smart Application Environment

With the rapid growth in the use of IoT and IIoT devices in monitoring and surveillance

environments, the amount of data generated by these devices has increased exponen-

tially. There is a need for cost-efficient computing architecture to push the intelligence

and data processing close to the data source nodes. Using fog nodes to process and ana-

lyze the sensor data at the network edge reduces the service latency, network congestion,

thus avoiding significant failures in the smart industry/Industry 4.0 environment. This

motivated to develop an intelligent and cost-efficient real-time monitoring system for

the smart industrial environment using the available computing resources such as Indus-

trial controller units (ICU), Gateways as fog server. The resource constrained network

devices in the industrial environment are used as the fog server to deploy the machine

learning model to analyze the sensor data and automate the real-time monitoring. With

this motivation, a fog server-based framework is developed as a prototype for intelli-

gent machine malfunction monitoring based on the machines’ operating sounds. The

developed prototype consists of a fog server at the network edge and the end node for

analyzing the machines’ operating sounds. Further, the supervised machine learning

models are developed and deployed on the fog server to identify and classify the ma-

chines as normal and abnormal. Thus using a fog server in the industrial environment to

analyze the data will enable real-time monitoring in the industry and avoid significant

machine failures. The proposed fog server framework for real-time data analytics in

Industry 4.0 environment is based on our publication (Natesha and Guddeti, 2021b).

5.1 Intelligent Machine Malfunction Monitoring System for Industry 4.0

The intelligent machine malfunction monitoring system is developed using the fog com-

puting architecture for Industry 4.0 or smart industrial applications to detect the mal-

functioning machines based on the machines operating sound. The Linear Prediction

Coefficients (LPC) and Mel Frequency Cepstral Coefficients (MFCC) from the machine

sounds are used to build and deploy the supervised machine learning models on the in-

dustrial controller units are considered as fog servers. The developed Machine Learning



(ML) models detect and classify the malfunctioning machine as normal and abnormal,

thus enabling automation in the industrial environment.

5.1.1 Fog Computing Model for IIoT

The fog server architecture is used for processing the sensor data using the devices

present in the manufacturing industry. The industrial controller unit (ICU)/Micro Data

Center (MDC) (Aazam and Huh, 2015b) in the manufacturing industry is used as a

fog server that can host and run the ML models to process and analyze the machine

operating sounds. The fog architecture and the components of the fog server are shown

in Figure 5.1.
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Figure 5.1: Fog Architecture for Smart Industry (Industry 4.0)

The fog server consists of different modules to process and handle the IIoT data in

an industrial environment, such as resource manager, service monitoring module, and

analytic module. The resource manager manages the dynamic resource provisioning,

and the analytical module runs the ML models to analyze the IIoT data. The service

monitoring module is responsible for controlling and monitoring the machines if any

unusual events are detected.

In the architecture, the IIoT sensors are interfaced with the edge devices, which col-

lect the data and transfer it to the centralized cloud server and fog server for processing
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and analyzing the data to check for the fault/malfunction of the machines. Using a fog

server in the industrial environment for machine monitoring reduces the machine down-

time and thus increases the reliability and availability of the machines towards a higher

production rate. The different ML models are developed and deployed on the fog server

for analyzing the machine sounds to detect and identify the malfunctioning machines

based on their operating sound.

The procedure for classifying the machine sounds as normal and abnormal by de-

ploying the machine learning models on the fog server is shown in Figure 5.2.
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Figure 5.2: Machines’ Sound Classification using Fog Server

5.1.2 Feature Extraction

The first step in the machines’ sound classification is to extract the essential features

of the audio signal. The Linear Prediction Coefficients (LPC) (Sanjaya et al., 2018;

Alim and Rashid, 2018) and the Mel-Frequency Cepstral Coefficients (MFCC) (It-

tichaichareon et al., 2012; Sahidullah and Saha, 2012) are considered as the audio fea-

tures for classifying the machine sounds. LPC and MFCC are the widely used features

in the sound analysis systems (Koolagudi et al., 2017). These LPC and MFCC features

are robust and represent the steady and consistent source behaviors, and further, these

features give very accurate estimates of sound and have low computational complexity.

5.1.2.1 LPC Features
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Figure 5.3: Procedure for LPC feature extraction
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The LPC feature extraction procedure is shown in Figure 5.3. The first step is to

frame the machine sound signal into overlapped frames so that the overlapped frames

ensure that there is no signal loss. The audio signals are sampled at 16KHz and thus

generate the small frames of length 25ms and considered frame shift length of 10ms. In

the next step, the hamming window operation is performed to minimize the discontinu-

ity of the signal from start to end of the audio frames. After windowing each frame, the

autocorrelation analysis is done on all the frames of the audio samples. The final step

is the LPC analysis to obtain the LPC features that are steady and consistent.

5.1.2.2 MFCC Features

The MFCC features are robust to noise, and the Mel Cepstrum represents the frequen-

cies captured by the human ear. The extracted MFCC features are used for building the

ML model. Figure 5.4 shows the procedure for MFCC feature extraction.
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Figure 5.4: Procedure for MFCC feature extraction

The first step is framing and windowing the given audio signal to reduce the frame

size so that the sampled audio signals do not vary significantly. The machine sound

signal is segmented into the overlapped frames so that there is no signal loss from the

original audio signal. The audio signals are sampled at 16KHz and thus generate the

small frames of length 25ms with a frameshift of 10ms. Then the hamming window

operation is performed on the audio frames to minimize the discontinuity of the signal.

After generating the frames and windowing operation, the next step is to calculate the

power spectrum of each frame using the Fast Fourier Transform (FFT). The 512-point

FFT is applied to extract the information in the frequency domain. Then in the next step,

Mel-filter wrapping is applied to model it as triangular filters using 26 Mel-filter banks,

and the obtained output is considered as the power spectrum. The Mel-scale mimics the

human ear perception of sound. The conversion of frequency (f) in Hz to Mel (m) and

Mel (m) to frequency (f) is done by using Equations (5.1) and (5.2) respectively.
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m = 2595 log10(1 +
f

700
) (5.1)

f = 700(10(m/2595) − 1) (5.2)

The log operation is done on the output of the Mel-filter bank, and then Discrete

Cosine Transform (DCT) is applied for logarithmically compressed Mel filter banks to

obtain the MFCC features. These MFCC features are used for developing supervised

machine learning models.

5.1.3 Classification Models

The different Machine Learning (ML) models are considered for solving the machine

sound classification problem in the fog computing environment. These models are de-

veloped and deployed on the fog server (ICU/MDC) for malfunction machine detection

based on their operating sounds in the industrial environment. Thus, it helps for fault

detection and reduces severe machines’ failure in the industry.

5.1.3.1 Random Forest (RF)

RF is a supervised ML model used for both classification and regression problems. RF

creates the number of decision trees called forests on the randomly selected data points.

Each tree returns the predictions of the considered classes in the problem. Then, RF

selects the class through majority voting, i.e., the class with the maximum number of

tree predictions will be regarded as the final prediction of the RF algorithm.

5.1.3.2 Support Vector Machine (SVM)

SVM is a popular supervised ML model for solving classification and regression prob-

lems. The main objective of the SVM algorithm is to create a hyperplane for segregat-

ing the given data in the best possible way. It selects the hyperplane with the maximum

margin between the support vectors (data points). The multidimensional hyperplane

represents the separation of the different classes considered in the problem.
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5.1.3.3 Logistic Regression (LR)

The most common ML classification model for solving binary classification problems.

It is the statistical method used to predict the binary class, and it is fast, uncomplicated,

and convenient for solving the classification problem.

5.1.3.4 AdaBoost Classifier (AdaB)

It is the Adaptive boost classifier, combines the multiple classifiers to increase the ac-

curacy of the developed classifier model. The general concept of the AdaB model is

to set the weights of the classifier to train the data sample in each iteration such that it

ensures the accurate predictions of the data samples. ML classification algorithms are

combined with this if it accepts the weights on the training set to increase the accuracy

rate; by default, it uses the decision tree classifier.

5.1.3.5 Multi-Layer Perceptron (MLP)

The MLP is a feed-forward Artificial Neural Network (ANN) model which is consid-

ered for solving the classification problems. MLP model consists of the input layer,

an output layer, which predicts the output, and in-between these two, there are hidden

layers with multiple perceptrons. MLP uses back-propagation for learning the model

such that it reduces the cost function by changing the bias and weights.

5.2 Performance Evaluation

5.2.1 Experimental Setup

The cloud and fog computing configuration is considered to evaluate the developed su-

pervised ML models for the machine’s sound classification. In the cloud computing

configuration, the recorded machine sound is transferred to the cloud server. It extracts

features and then feeds them to the classification model to predict the machine sound

as Abnormal or Normal. Then, send back the control signal to end devices to control

the actuators based on the output of ML classifiers or store results (output of ML clas-

sifiers) in the cloud server if required for further analysis. But using a centralized cloud

to process and analyze the machine sound might increase the service time. In fog com-

puting configuration, devices such as ICU/MDC are considered as fog servers in the

industrial environment. Using a fog server to process and analyze the machines’ sound
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will reduce the service time.

Table 5.1: Dataset details used for Experiment

Machine Type Operations
Anomalous

Operations
Model ID

Number of samples

Normal Anomalous

Pump
Discharge to

water pool

Leakage,

contanimation
id 00 922 162

Valve
Open/ Close

repeat

More than two

type of contamination
id 00 850 180

Fan Normal Operation
Voltage change,

clogging
id 00 647 235

The Raspberry Pi 3B+ model with CPU 1.4 GHz 64-bit quad-core, ARM Cortex-

A53 CPU, 1 GB LPDDR2 SDRAM is used as the end node to collect the machines’

sound and activate the actuator devices after receiving the control signal. The device

with a 1.8 GHz Dual-Core Intel Core i5 processor with 8 GB, 1600 MHz DDR3 RAM

is considered as the fog server in the industrial environment. The remote cloud server

(in AWS Cloud) instance type is t2.medium with 2 vCPUS, 4 GB RAM, Intel 2.5 GHz

processor is considered as the cloud server which runs the ubuntu 16.04 LTS OS. The

recorded machine sound is stored in the end node and then transferred to the fog and

cloud servers for further processing. The experiments are carried out using the devel-

oped machine learning models on the cloud and the fog server for the recorded audio

samples under different Signal-to-Noise Ratio (SNR) levels.

5.2.2 Dataset

The machine sound dataset for malfunctioning industrial machine investigation and in-

spection (MIMII) (Purohit et al., 2019a,b) is used for monitoring and controlling the

malfunctioning machines in the smart industrial environment. The dataset contains

Normal and Anomalous sounds for Pump, Valve, Fan, and Slide Rails machines. The

dataset includes 5000-10000 seconds of normal sound audio files and about 1000 sec-

onds of anomalous/abnormal sound audio samples for each machine type. The unusual

sounds such as leakage, contamination, rotating unbalance, and rail damage are con-

sidered abnormal sounds. The MIMII dataset assists for anomalous detection and en-

sures the control of these machine types based on the sound. These audio samples are
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recorded at -6dB, 0dB, and 6dB SNR levels. The given dataset is collected for seven

different types of machines represented by id 00 to id 06 and contains 26092 Normal

sound files and 6065 Anomalous sound files. The Valve, Pump, and Fan machine sound

are considered to conduct the experiment and classify the machine sound as normal

and abnormal. This MIMII dataset is used in the experiment to detect and classify the

Normal and Abnormal sounds using supervised machine learning techniques, and the

complete details of the dataset used like machine type, model type, and the number of

sound files, are given in Table 5.1.

(a) Pump (b) Valve (c) Fan

Figure 5.5: Normal Audio Signal Representation for different Machines under SNR= 0dB

(a) Pump (b) Valve (c) Fan

Figure 5.6: Abnormal Audio Signal Representation for different Machines under SNR=0dB

The waveform for both normal and abnormal sounds of different machines under

SNR=0dB level is shown in the Figures 5.5 and 5.6, respectively. It shows the change in

the amplitude over a period of time. The X-axis is the time duration of the audio signal

recorded, and Y-axis represents the amplitude of the machine’s sound for both normal

and abnormal sounds recorded under the SNR=0dB level in the industrial environment.

The Mel-power spectrogram for the different machine sounds at SNR= 0dB level is

shown in the Figures 5.7 and 5.8. The X-axis in the spectrogram represents the time,

and Y-axis represents the frequency of the sound in Hz. The Mel-power spectrogram

for both normal and abnormal machine sounds at SNR=0dB level is shown in Figures

5.7 and 5.8, respectively.
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(a) Pump (b) Valve (c) Fan

Figure 5.7: Normal Sound Power Spectrogram for different Machine types at SNR=0dB

(a) Pump (b) Valve (c) Fan

Figure 5.8: Abnormal Sound Power Spectrogram for different Machine types at SNR=0dB

5.2.3 Results and Discussion

The different supervised ML classification models such as Logistic Regression (LR),

Random Forest (RF), Support Vector Machine (SVM), AdaBoost (AdaB), and ANN-

based Multi-Layer Perceptron (MLP) are deployed on fog server (ICU/MDC) to classify

the machine sound in the industrial environment. For experiments, the data split of 80%

and 20% is considered as the training and testing data, respectively, for the developed

classification algorithms. The metrics for evaluating the performance of these classifi-

cation models are: Accuracy, Precision, Recall, and F measure score (F1 Score). Also,

plotted the Receiver Operating Characteristic (ROC) curve for each classification model

for different machine sounds recorded under different SNR levels.

As the considered MIMII dataset is imbalanced, one of the ways to deal with the

imbalanced dataset is by selecting the ROC curve and F1 Score as the performance

evaluation metrics instead of using the Accuracy, as it can mislead the classifier model

performance in the imbalanced learning scenarios (Boyle, 2019; He and Garcia, 2009).

Hence, evaluated the developed classifier model’s performance by plotting the ROC

curve, F1 score, which is the weighted average of precision and recall for the devel-

oped ML classifier models (Davis and Goadrich, 2006). The ROC Curves for the de-

ployed classifier models for LPC and MFCC features are given in Figures 5.9-5.14. The

ROC curve shows the ability of these developed models to classify the machine sounds
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(a) Pump (b) Valve

(c) Fan

Figure 5.9: ROC curve for the ML models using LPC features for different Machines sound
under SNR=-6dB

as normal and abnormal. The ROC curve is represented by using True Positive Rate

(TPR) and False Positive Rate (FPR) as defined by using Equations (5.3) and (5.4).

Figures 5.9-5.11 show the ROC curve for the deployed ML models using LPC features

for classifying the machine sounds recorded under -6dB, 0dB, and 6dB SNR levels,

respectively. It shows that the deployed model did not perform well for the Valve and

Fan machine sound at -6dB level due to the noise in the audio samples.

Figures 5.12-5.14 show the ROC curves for deployed ML models using MFCC

features for the different machine sounds recorded at -6dB, 0dB, and 6dB SNR levels,

respectively. From these figures, it is observed that the ML models are not able to

classify the Valve correctly and Fan machine sound at SNR=-6dB level (Figure 5.12)

due to the increase in the noise level compared to the other two SNR levels (Figures 5.13
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(a) Pump (b) Valve

(c) Fan

Figure 5.10: ROC curve for the ML models using LPC features for different Machines sound
under SNR=0dB

and 5.14). Further, the developed classifiers work better for the MFCC features when

compared to the LPC features of the machine sounds. The Area Under the ROC curve

(AUC) value indicates how best the developed classification model is and measures

the developed model’s prediction quality. The AUC value ranges from 0 to 1. The

higher AUC value indicates the developed model works better, and the lower AUC

value indicates the developed model is not good enough for the classification.

TPR =
TruePositive

TruePositive+ FalseNegative
(5.3)

FPR =
FalsePositive

TrueNegative+ FalsePositive
(5.4)
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(a) Pump (b) Valve

(c) Fan

Figure 5.11: ROC curve for the ML models using LPC features for different Machines sound
under SNR=6dB

Figure 5.12 shows the AdaB classifier model works better for Valve and Fan ma-

chine sounds recorded at SNR=-6dB as compared to other models. Figure 5.13 explains

AdaB classifier model works better for all the types of machine sounds as compared to

the other models at the SNR=0dB level. Figure 5.14 shows ROC for all the models for

SNR=6dB audio samples, where all of the classifier models work better as the noise

level is less in the recorded audio samples to classify the machine sounds as normal and

abnormal based on their operating sounds.

The other evaluation metrics considered are: Accuracy, Precision, Recall, and F1 Score

as defined by using the Equations (5.5)-(5.8).

Accuracy =
NumberofCorrectPredictions

TotalNumberofPredictions
(5.5)
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(a) Pump (b) Valve

(c) Fan

Figure 5.12: ROC curve for the ML models using MFCC features for different Machines sound
under SNR=-6dB

Precision =
TruePositive

TruePositive+ FalsePositive
(5.6)

Recall =
TruePositive

TruePositive+ FalseNegative
(5.7)

F1 Score = 2 ∗ Precision ∗Recall
Precision+Recall

(5.8)

The Accuracy, Precision, Recall, and F1 Score values for the deployed ML mod-

els are calculated, and the complete details of the values obtained for each parameter

for different ML models using LPC and MFCC features are given in Tables 5.2 and
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Table 5.2: Performance of the Classifier Models using LPC Features for different types of
Industrial Machines

Machine Type SNR level Classifiers Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Pump

-6dB

SVM 83.47 91.66 52.5 66.80

RF 96.66 97.5 95.45 96.33

LR 84.41 91.89 60.0 72.25

AdaB 96.66 97.5 95.45 96.33
MLP 96.66 97.5 95.45 96.33

0dB

SVM 85.71 92.46 63.33 74.97

RF 98.63 99.15 96.66 97.84

LR 93.50 90.38 91.90 91.10

AdaB 98.63 99.15 96.66 97.84
MLP 98.63 99.15 96.66 97.84

6dB

SVM 96.52 93.94 93.94 93.94

RF 97.39 96.32 94.47 95.36

LR 96.10 92.93 95.05 93.94

AdaB 97.39 96.32 94.47 95.36
MLP 97.45 96.32 94.47 95.36

Valve

-6dB

SVM 82.60 41.30 50.0 45.23

RF 61.29 50.66 50.47 49.45

LR 80.51 40.25 50.0 44.60

AdaB 67.74 61.0 57.85 57.88
MLP 74.19 74.53 62.61 63.09

0dB

SVM 83.47 91.66 52.5 66.80

RF 91.39 95.34 73.33 79.37

LR 93.50 90.38 91.90 91.10
AdaB 92.47 88.58 82.05 84.83

MLP 95.69 90.51 94.74 92.45

6dB

SVM 91.30 95.23 75.0 80.83

RF 84.41 91.54 66.66 70.38

LR 93.50 90.38 91.90 91.10
AdaB 84.41 85.77 68.59 72.23

MLP 92.20 92.46 85.26 88.16

Fan

-6dB

SVM 82.60 41.30 50.0 45.23

RF 82.22 68.58 64.69 66.16
LR 91.30 95.23 75.0 80.83

AdaB 75.55 59.72 60.64 60.11

MLP 73.33 60.60 64.18 61.42

0dB

SVM 96.52 93.94 93.94 93.94
RF 94.64 94.49 93.12 93.76

LR 86.95 93.18 62.5 66.34

AdaB 94.64 94.49 93.12 93.76
MLP 94.0 96.05 90.0 92.38

6dB

SVM 97.39 96.32 94.47 95.36

RF 96.52 93.94 93.94 93.94

LR 86.95 93.18 62.5 74.34

AdaB 97.40 95.86 95.86 95.86
MLP 96.42 95.0 97.36 96.01
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Table 5.3: Performance of the Classifier Models using MFCC Features for different types of
Industrial Machines

Machine Type SNR level Classifiers Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Pump

-6dB

SVM 91.11 93.93 87.5 89.63

RF 93.33 92.82 92.82 92.82

LR 96.66 97.5 95.45 96.33

AdaB 96.66 95.83 97.36 96.47
MLP 96.66 97.5 95.45 96.33

0dB

SVM 96.33 97.89 88.88 92.67

RF 98.63 99.15 96.66 97.84

LR 98.63 99.15 96.66 97.84

AdaB 98.63 99.15 96.66 97.84
MLP 98.90 99.33 97.05 98.14

6dB

SVM 95.08 97.0 89.28 92.45

RF 96.72 97.95 92.85 95.11
LR 87.91 93.20 73.80 78.61

AdaB 96.70 97.94 92.85 95.10

MLP 98.16 98.92 94.44 96.51

Valve

-6dB

SVM 67.74 33.87 50.0 40.38

RF 61.29 50.66 50.47 49.45

LR 74.19 71.33 65.23 66.30

AdaB 87.09 92.0 80.0 83.15
MLP 92.10 94.64 88.46 90.64

0dB

SVM 93.54 86.16 93.46 89.20

RF 92.47 95.88 76.66 82.63

LR 94.62 89.32 91.41 90.32

AdaB 95.69 90.51 94.74 92.45
MLP 97.84 94.11 98.71 96.22

6dB

SVM 96.10 93.87 95.52 94.66

RF 97.40 96.37 96.37 96.37

LR 93.50 90.38 91.90 91.10

AdaB 98.70 99.16 97.22 98.15
MLP 97.91 96.95 96.95 96.95

Fan

-6dB

SVM 73.52 36.76 50.0 42.37

RF 86.66 66.25 93.02 74.45

LR 82.22 71.96 79.39 74.28

AdaB 91.11 84.79 84.79 84.79
MLP 91.22 86.80 84.18 85.40

0dB

SVM 93.54 86.16 93.46 89.20

RF 94.62 89.32 91.41 90.32

LR 94.62 89.32 91.41 90.32

AdaB 95.69 90.51 94.74 92.45
MLP 98.80 97.91 99.18 98.52

6dB

SVM 96.10 93.87 95.52 94.66

RF 96.72 97.95 92.85 95.11

LR 93.50 90.38 91.90 91.10

AdaB 97.40 96.37 96.37 96.37
MLP 98.80 97.91 99.18 98.52
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(a) Pump (b) Valve

(c) Fan

Figure 5.13: ROC curve for the ML models using MFCC features for different Machines sound
under SNR=0dB

5.3, respectively. The F1 Score is considered to measure the performance of developed

models as the considered dataset is imbalanced (Brownlee, 2015, 2014). The exper-

imental results show that AdaB and MLP work better using MFCC features of -6dB

and 0dB SNR levels of Pump machine sounds, and for Valve, Fan machines sound

recorded under -6dB, 0dB, and 6dB SNR levels in terms of F1 Score. The two best

performing ML models at different SNR levels are highlighted in the Tables 5.2 and

5.3. Classifying the machine sounds like the normal and abnormal sounds in the indus-

trial environment helps for fault detection and machine malfunction monitoring. The

obtained experimental results can be considered as the benchmark results. Since fog-

based machine malfunction monitoring using machine learning models is essential to

classify the machine sounds as normal and abnormal in the Industry 4.0/smart industrial
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(a) Pump (b) Valve

(c) Fan

Figure 5.14: ROC curve for the ML models using MFCC features for Different Machines sound
under SNR=6dB

environment.

The cloud and fog computing architectures are used independently for comparing

the classification time (including both communication and analyzing) to process and

classify the machine sound samples as abnormal and normal. The ML models are de-

ployed in the cloud server to analyze and classify the machine’s sound as normal and

abnormal and record the total classification time. In the cloud computing configura-

tion, the recorded machine sound is transferred to the cloud, where it is processed and

analyzed and then sends back the control signal to end devices. In fog computing con-

figuration, the machine sound is transferred to the fog server. It processes and analyzes

the machine sound to classify machines’ sounds as normal or abnormal. The time to

classify the audio samples as normal and abnormal is calculated for 5, 10, 15, and 20
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Figure 5.15: Comparison of Classification Time in Fog and Cloud

audio samples using the cloud and fog computing architectures. The single file size is

varied from 2.6 MB to 3 MB and the bandwidth speed is approaximately 2.8-5 Mbps

for the experimental evaluation. Figure 5.15 illustrates the comparison of the classifi-

cation time using the fog and cloud computing architectures. The experimental results

found that using a remote cloud server to process the machine sound takes more time

than the fog computing configuration. Thus, using fog computing architecture to pro-

cess machine sounds in the Industry 4.0 environment will reduce the classification time

(≈50%) and thus minimizes the significant failures of industrial machines.

5.2.4 Statistical Hypothesis Analysis

The statistical hypothesis analysis is carried out for the developed classification models

using a t-test. The hypothesis testing compares the best performing classification mod-

els with the other developed classification models for LPC, and MFCC audio features

considering the F1 Score value. For the t-test, the threshold value considered for the

p-Value is 0.05. From the t-test analysis, it is found that the p-values for the models

are less than the threshold value of 0.05, as shown in Table 5.4. From Table 5.4 it is

observed that p-values are less than 0.05 for MLP, and it thus rejects the null hypothe-

sis. Hence, among the developed classification model, MLP performs better than other

classification models in the fog server-based framework.

5.2.5 Time Complexity

The time complexity of the above classification models depends on, number of training

samples (m), the number of features (k), the number of trees (Ptree), number of support
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Table 5.4: p-values for Classification Models

Feature Type Classification Models p-values

LPC

SVM-MLP 0.000013

RF-MLP 0.000010

LR-MLP 0.003694

AdaB-MLP 0.000346

MFCC

SVM-MLP 0.000102

RF-MLP 0.000010

LR-MLP 0.000013

AdaB-MLP 0.000010

vectors (nsv), the number of iterations (M). In AdaB classifier M is number of times

that the additional model is called. The time complexity for MLP algorithm depends on

number of hidden layers (l), number of perceptrons (h) in each layer. The training and

testing time complexity for all the above ML classifier models is given in Table 5.5.

Table 5.5: Time Complexity of Classification Models
Classification

Model
Training Time

Complexity
Testing Time
Complexity

SVM m2k knsv
RF m2kPtree kPtree
LR kmM k
AdaB m2kM kPtreeM
MLP mkhlM khlM

5.2.6 Limitations of the Work

The industrial environment’s network and industrial controller units can be used as

the fog server to deploy the machine learning models to analyze the IoT/IIoT data.

The developed fog server prototype can be deployed in the industrial environment to

enable the real-time monitoring of the malfunctioning machines based on the machines’

operating sounds. This prototype can be extended and deployed on resource constrained

devices using the container-based two-level (Fog Master and Cell node) architecture to

analyze data. Further, the service placement strategies will be evaluated with the various

workloads in the developed fog frameworks. The above limitations can be addressed as

part of the future work on extending and deploy the developed prototype in the industrial

environment to monitor malfunctioning machines in real-time.
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5.3 Summary

This chapter discusses the use of fog computing architecture for Industry 4.0/ Smart In-

dustry environment. The fog server framework is deveoped as a prototype for the intel-

ligent machine malfunction monitoring system based on the machine operating sounds

to identify and classify the machines as normal and abnormal. The LPC and MFCC fea-

tures are extracted from the machine sound samples in the fog computing environment.

The different supervised ML classification algorithms are developed and deployed on

the fog server in the manufacturing industrial environment. The deployed ML models

can classify the different machine sounds as normal and abnormal, recorded under -6dB,

0dB, and 6dB SNR levels. Also, using fog computing for industrial machine monitoring

minimizes the total service time and thus enables real-time monitoring, which avoids

the significant machines failures in the Smart Industry/Industry 4.0 environment. The

conclusions and the future directions of this research work are discussed in the next

chapter.
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Chapter 6

Conclusions and Future Directions

6.1 Conclusions

Nowadays, the use of IoT devices is increased exponentially and thus generates an enor-

mous amount of data. Using a centralized cloud for all types of IoT applications is not

feasible. It might increase the service time and resource cost due to increased commu-

nication time and more network resources usage. Fog Computing is the driving force

for addressing these issues and service delay-sensitive IoT applications in real-time,

reducing the service cost, and avoiding dangerous failures in the different smart envi-

ronments. The primary challenge is realizing the fog computing environment using the

cloud computing features and the virtualization technique on the resource constrained

devices at the network edge. The resource constrained fog nodes are used for IoT ser-

vice placement and data analytics to minimize the service time, network resource usage

and service cost for various smart environments.

The Fog-Cloud computing environment is used to host the IoT applications requests

on the Fog-Cloud computing environment such that the QoS of the IoT applications

are satisfied. The existing FFD approach is applied to place the services based on the

resource available in the fog nodes. Further, the service placement problem in the fog-

cloud computing environment is formulated as a multi-objective optimization problem

and a novel cost-efficient Deadline-Aware Service Placement (DASP) strategy is pro-

posed to place the IoT/IIoT application services on the Fog-Cloud computing architec-

ture with various network configurations in the fog layer. The experimental results show

that the DASP service placement strategy performs better than the FFD, state-of-the-art

service placement strategies, and CloudOnly approach considered for the performance

evaluation in the Fog-Cloud computing environment. However, the dynamic charac-

teristics of the network topology configurations, the mobility of the devices, and the

device failures are not considered for deploying the IoT/IIoT application services in the

Fog-Cloud computing environment.

Realizing fog architecture on the resource-constrained devices to provide the com-

putational resources to host and process the service requests is regarded as one of the



main challenges in the fog computing environment. Using simulations and VMs based

resource provisioning fog framework on resource constrained devices may not be ef-

ficient since it takes more time for booting and consumes more physical machine re-

sources. Hence, a two-level fog computing framework is developed using the docker

and containers on 1.4 GHz 64-bit quad-core processor devices. Further, the service

placement problem is formulated as the multi-objective optimization problem to mini-

mize the service time, cost, and energy consumption in the fog computing environment.

The various meta-heuristic-based service placement strategies are developed and eval-

uated on the fog framework consisting of twenty fog nodes. The experimental results

show that the proposed hybrid EGAPSO based service placement algorithm performs

better than the proposed (EGA and MGAPSO) and state-of-the-art service placement

strategies in the two-level fog computing environment.

The key limitations of this research contribution are as follows:

• The inter-dependent IoT/IIoT application services are not considered to check
the performance of the proposed service placement strategies on the developed
multi-level fog testbed.

• Handling the device failures in the developed multi-level fog architecture is not
considered.

• Load balancing in the fog computing environment is not considered.

The fog nodes are resource constrained and deploying the machine learning mod-

els on a resource constrained devices is a challenge. Hence, the cost-efficient fog

server-based framework is developed as a prototype for intelligent machine malfunc-

tion monitoring in the industrial environment. The fog server architecture analyzes the

machine sounds to detect and monitor the malfunctioning machines in the Smart In-

dustry/Industry 4.0 environment. The various supervised machine learning models are

developed and deployed on the fog server to classify the machines’ sounds as normal

and abnormal. The different machine sound recorded at different SNR levels are used

to detect and classify the machines as normal and abnormal. The experimental results

show that the developed models could correctly classify the machine’s sound recorded

under the SNR=6dB level. Also, it is observed that the ML model’s performance is

superior for using the MFCC machine sound features compared to the LPC features of

machines sound of any SNR levels in the fog computing environment. Thus, using a
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fog computing environment to process the IoT/IIoT data at the network edge level will

minimize the service time and reduce the service cost, network resource consumption,

and avoid critical failures in the smart industrial environment.

The key limitations of this research contribution are as follows:

• The developed service placement algorithms are not considered to evaluate the
different workloads (audio and video) in the developed fog node and fog server
architecture.

• The noise separation from the audio samples is not considered.

• Using distributed ML techniques on the fog server for analysing the machine
operating sound is not considered.

6.2 Future Directions

The crucial future directions to address the key limitations of the thesis contributions

are as follows:

1. Resource Provisioning and Service Placement in Fog-Cloud Environment
• Develop the Quality of Experience-based service placement strategies in the

multi-level fog computing environment to optimize the fog nodes’ service
time, cost, energy consumption, and resource usage.

• Design and develop the inter-dependent IoT/IIoT application model and
then place the inter-dependent applications modules/service on the multi-
level fog computing architecture. Based on the application requirement,
design the inter-dependent applications and deploy the applications in the
multi-level fog computing environment using the heuristic, meta-heuristic,
or game theory-based approaches to provide the service in real-time.

2. Handling Fog Nodes’ Failure and the Service Migration
• Develop the fault tolerance mechanism and thus handle the mobility of the

devices in the Fog environment

• Load balancing and the service migrations between the fog nodes in the
multi-level fog computing environment. Developing energy-aware, perfor-
mance aware, and learning-based techniques for load balancing and service
migrations in the multi-level fog computing environment.

• Develop the learning-based workload prediction and allocation strategies
in the fog computing environment to achieve low latency and efficient uti-
lization of the fog computing resources. Using ML-based techniques for
workload prediction and allocation based on the history of resource usage
and the workload allocation in the fog computing environment.
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3. Data Security in the Fog Computing Environment

• Ensure the data security in the multi-level fog computing architecture. De-
veloping the secure authentication mechanisms and the secured protocols to
identify the malicious fog node, ensure the data privacy in the multi-level
fog computing environment.

4. Fog based Real-time Data Analytics in Smart Environments

• To deploy the developed fog server framework in the industrial environment
to identify the malfunctioning machines based on their operating sounds.

• Extend the developed prototype on the container-based two level fog frame-
work to deploy on the resource constrained devices in the industrial envi-
ronment to analyse the machine data.

• Using developed service palcement strategies to evaluate the different work-
loads (audio and video) in the fog server-based frameworks.

• Deploying the deep learning models using containers on resource constrained
devices for distributed data analytics for the smart environments.

• Video-based intelligent machine malfunctioning monitoring using the fog
computing infrastructure in the Smart Industrial Environment. The deep
learning techniques to analyze the videos on the fog nodes of the industrial
environment and identify the malfunctioning machines in the industry.

• Use linear or non-liner filters for noise separation from the audio signals and
analyse the machine sounds to classify the sounds as normal and abnormal.

• Orchestrator development for controlling and managing the Containerized
Applications in the Fog Computing Environment.
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