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ABSTRACT

According to the recent report by the Global Cancer Observatory, breast cancer has

overtaken lung cancer as the leading type of cancer in terms of new cases reported. In

2020, breast cancer accounted for 11.7% of all new cancer cases and 6.9% all cancer

related deaths. Timely diagnosis and targeted treatment can significantly improve the

survival chances of breast cancer patients. Pathological procedures are integral parts

of cancer diagnosis and treatment planning. In the routine cancer pathology analysis,

tissue samples are extracted from the tumor regions and applied with suitable stain-

ing agents. The glass slides prepared this way are analyzed by pathologists through

a microscope to make interpretations about the disease condition. The manual proce-

dure of microscopy analysis is tedious, time consuming, and error-prone. Digitization

of pathological glass slides into slide images opens a plethora of possibilities to apply

computational methods to automate several pathology procedures. The focus of this the-

sis work is to develop computational methods for automated analysis of breast cancer

histopathology images and extract clinically relevant information to support prognosis

and treatment planning. Grading and molecular subtyping of breast cancer are the two

important pathology procedures considered for automation in this thesis work. Partic-

ularly, automation of two breast cancer grading procedures namely mitosis detection

and nuclear atypia scoring are taken as the first two objectives. The third objective is

automated molecular subtyping of breast cancer, a classification that supports targeted

treatment and hence better outcome.

Breast cancer grading categorizes the disease based on its aggressiveness. The

grade information is used for prognosis and treatment planning. Among the three pa-

rameters involved in breast cancer grading (mitotic cell count, nuclear atypia score, and
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tubule formation), mitotic cell counting is the most challenging task for pathologists.

It is possible to automate this task by applying computational algorithms on pathol-

ogy slide images. Lack of sufficiently large datasets, and class imbalance between

mitotic and non-mitotic cells are the two major challenges in developing effective deep

learning-based methods for automated mitosis detection. In order to address these chal-

lenges, an approach of combining datasets from different sources and a more effective

image data augmentation technique are used. Following these, a novel method pipeline

is proposed which makes use of an advanced deep learning algorithm to address this

problem. In contrast to the existing methods that are trained and validated on inde-

pendent datasets, the proposed approach aims to develop generalized dataset-agnostic

solutions for mitosis detection. The results obtained for the proposed method show

improvement over existing deep learning methods based on independent datasets.

Nuclear atypia score is the second parameter used for grading breast cancer. Manual

procedure of nuclear atypia scoring is laborious and marked by pathologists’ disagree-

ment as well as low reproducibility. Automation of this procedure using computational

methods is seen as a viable alternative to these challenges. It is observed that most of

the existing methods rely on extracted feature-based learning algorithms. Deep learn-

ing algorithms are not sufficiently utilized to address this task. In this thesis, a novel

deep learning based framework for automated nuclear atypia scoring of breast can-

cer is proposed. The framework consists of three major phases namely preprocessing,

deep learning, and postprocessing. In the proposed approach, the original three-class

problem of slide level atypia scoring is reformulated as a six-class problem of nuclei

classification for the effective use of deep learning algorithms. The method based on

this framework gives a performance that exceeds the state-of-the-art by a significant

margin.

Molecular subtyping classifies cancer based on the expression of genetic alterations

behind the disease. Identifying the specific subtype aids in targeted treatment of the

disease to achieve better outcome. Molecular subtyping through immunohistochem-
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istry (IHC) analysis is a pathology procedure to determine the subtype of breast can-

cer. The existing manual procedure involves assessing the status of the four molecular

biomarkers ER, PR, HER2, and Ki67. To automate this procedure, a deep learning-

based framework using IHC image analysis is proposed. At present, there are no meth-

ods found in literature for IHC based automated molecular subtyping. The proposed

system is evaluated for the performance of individual biomarker status predictions and

patient-level subtype classification. The results obtained at the various levels of evalua-

tions are highly promising.

In the extensive literature study carried in the preliminary stage of the research work,

it is understood that the potential of deep learning algorithms is not fully utilized in the

automation of pathology procedures for mitosis detection and nuclear atypia scoring.

The bottlenecks for this are identified and potential solutions are investigated in this

thesis work. The performance of proposed methods for these tasks validates the rele-

vance of the solution approach adopted. In the absence of any prior work in the literature

for automated molecular subtyping of breast cancer, the proposed deep learning-based

classification framework establishes a new direction for automating this labor-intensive

pathology procedure. The high performance of the proposed method is a strong indica-

tion of the clinical applicability of automated methods. In essence, by automating three

key pathology procedures in breast cancer diagnosis and treatment planning, this thesis

work aims to contribute to the global research efforts towards making cancer treatment

more effective, affordable, and accessible.

Keywords: Histopathology; Breast Cancer; Cancer grading; Mitosis, Nuclear

atypia; Deep learning; Convolutional neural networks; Patch ex-

traction; Nuclei segmentation; Data augmentation; Immunohisto-

chemistry; Molecular subtyping; Biomarkers; Estrogen receptor;

Progesterone receptor; Ki67; Human epidermal growth factor re-

ceptor
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CHAPTER 1

INTRODUCTION

This chapter provides an overview of the pathology procedures for grading and molec-

ular subtyping of breast cancer, automation of these procedures through image analysis

and its significance in improving cancer treatment. Motivation of the research, objec-

tives and the major contributions are presented in the final sections of the chapter.

1.1 Overview of Cancer and Histopathology

Cancer refers to a group of diseases that are characterized by uncontrollable prolifera-

tion of cells in the living body that leads to the formation of tumors. It can affect any

part of the human body such as lungs, liver, colon, stomach, breast, etc., and spread

from the primary affected site to other parts of the body. Cancer costs millions of lives

across the world every year. A recent report by the World Health Organization (WHO,

2020) says cancer caused around 10 million deaths across the world in the year 2020.

The latest GLOBOCAN report (Sung et al., 2020) estimated 19.3 million new cancer

cases in 2020. The threat of cancer is projected to worsen with 28.4 million new cases

in 2040. Early diagnosis and timely treatment can increase the survival chances of can-

cer patients to a large extent. Hence there are active research works ongoing worldwide

to improve early diagnosis of cancer (Wardle et al., 2015) and devise appropriate treat-

ment. Considering the severe menace posed by cancer on humanity, there is a dire need

to accelerate the research on cancer to improve the current treatment protocols.

Histopathology is a tissue level study of diseases for diagnostic and prognostic eval-

uation. It has a vital role in treatment of cancer. In histopathology analysis of cancer, the



tissues are extracted from the suspected tumor region through a biopsy procedure. His-

tology glass-slides are prepared using these tissues by following the routine procedures

and analyzed via an appropriate microscope. Two important pathology procedures in

the treatment of cancer are grading and molecular subtyping. Grading of cancer clas-

sifies the disease into different histologic grades by considering the factors like how

different the appearance of the tumor cells/tissues is compared to the normal ones, and

the tumor growth rate. Cancer grading primarily aims at determining the aggressive-

ness of cancer. Aggressiveness indicates how fast the tumor is growing and how likely

it can spread to other parts of the body. These details help in improved prognosis and

treatment planning of the disease. Cancer grading protocols vary for different cancer

types. For example, prostate cancer grading is done using Gleason scoring (Epstein

et al., 2016), Fuhrman system (Fuhrman et al., 1982) is used for renal carcinoma, and

Anneroth/Bryne invasive front grading (Bryne et al., 1989; Sawair et al., 2003) for oral

squamous cell carcinoma.

Another therapeutically relevant classification of cancer is the molecular subtyp-

ing (Collisson et al., 2019; Al-Thoubaity, 2020; Guinney et al., 2015). It considers the

genetic factors behind malignancy to categorize the cancer into different subtypes and

facilitates targeted therapy of the disease. Although gene expression profiling is the

direct way to identify the genetic alterations that trigger malignancy, the procedure is

costly and not routinely available. An alternate pathology procedure is to investigate

the presence of tissue level bio-markers produced by the underlying genetic factors. All

these pathology procedures are labor-intensive, time-consuming, and error-prone due to

the human factors like fatigue, expertise etc. Moreover, manual procedures are known

to have high levels of interobserver disagreement (Robbins et al., 1995; Malon et al.,

2012).
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1.2 Breast Cancer Histopathology

Breast cancer is a heterogeneous type of cancer that originates in breast tissues, and

it primarily affects women. In 2020, female breast cancer has overtaken lung cancer

to become the most dominant type of cancer globally. There were 2.26 million new

breast cancer cases and 6,84,996 deaths in 2020 according to the GLOBOCAN report.

These statistics portray an alarming picture. Breast cancer-related mortality can be

reduced by early-stage detection and accurate identification of the specific subtype of

the cancer (Harbeck and Gnant, 2016) to provide targeted treatment in a timely manner.

Grading and molecular subtyping of breast cancer are significant procedures to achieve

these objectives.

1.2.1 Breast Cancer Grading

Breast cancer is graded by a system known as the Nottingham Grading System (NGS) (El-

ston and Ellis, 2002). It is a modification of the Bloom-Richardson grading system

(Bloom and Richardson, 1957). There are three parameters used for the grading of

breast cancer as per the NGS. They are: i) mitotic count, ii) nuclear pleomorphism

(atypia), iii) tubule formation. Mitosis is the process of cell division in living organ-

isms. The number of dividing cells in the tumor region is indicative of the growth rate

of the tumor. Atypia scoring (Das et al., 2020b) quantifies the size and the shape varia-

tions of cancer cells. Tubule formation (Basavanhally et al., 2011) refers to the ring-like

structures formed by the cancer cells and typically found in low grade cancers.

Among the three parameters in NGS, mitotic cell count is the most objective one.

The other two parameters are relatively subjective in nature, and the scoring accuracy

of these depends largely on the expertise of the pathologist. Each of these parameters

is assigned a score ranging from 1 to 3 based on the criteria defined in NGS. The pa-

rameters of NGS and the scoring criteria for a specific configuration of the microscope

is shown in Table 1.1. Based on the total score (TS) obtained by adding the individual

3



Table 1.1: Nottingham Grading System (NGS) parameters and scoring criteria
for breast cancer grading.

Parameter Score Score Criteria

Mitosis count
1

0–9 mitotic cells in 10 consecutive High Power
Fields (HPFs)

2 10–19 mitotic cells in 10 consecutive HPFs
3 ≥20 mitotic cells in 10 consecutive HPFs

Nuclear atypia
1 Small, uniform, and regular nuclei
2 Moderate variations in size and shape
3 Multiple nucleoli with prominent variation

Tubule formation
1 >75% of the tumor forms tubule
2 10–75% of the tumor forms tubule
3 Multiple nucleoli with prominent variation

CancerGrade(TS⋆) =


grade : 1, if TS is 3 − 5
grade : 2, if TS is 6 − 7
grade : 3, if TS is 8 − 9

(1.1)

⋆TS → Total Score

parameter scores, cancer grade is determined as shown in Eq. (1.1). Conventionally,

these three parameters are individually evaluated by manual analysis of histopathology

slides, stained using Hematoxylin and Eosin (H & E), under a compound microscope.

This labor-intensive procedure requires the service of an expert pathologist for each

parameter’s evaluation and the final grading. The manual procedure of breast cancer

grading is error-prone and has shown high interobserver disagreement (Malon et al.,

2012; Robbins et al., 1995) with possible impact on the treatment course and outcome.

Automation of this procedure has the potential to reduce the workload of pathologists,

eliminate human errors, and speed up the treatment.

1.2.2 Molecular Subtyping of Breast Cancer

Molecular subtyping of breast cancer is based on the expression of genetic factors be-

hind the uncontrollable proliferation of malignant cells causing tumor formation. Most
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commonly accepted molecular subtypes of breast cancer are Luminal A, Luminal B,

HER2-enriched, and Triple-negative/Basal-like (Al-Thoubaity, 2020). Each of these

subtypes demonstrates different phenotypic expression and clinical behavior. Since the

genetic factors behind these subtypes are different, the treatment required for each of

them also varies from one subtype to another. St Gallen International Expert Consen-

sus (Goldhirsch et al., 2013) provides time-to-time recommendations for the targeted

treatment of different molecular subtypes of breast cancer.

Determination of molecular subtype is a vital procedure for effective breast cancer

treatment. A cost-effective and commonly adopted method for molecular subtyping is

by immunohistochemistry (IHC) analysis (Zaha, 2014; Dabbs, 2017). In this process,

the status of four key molecular biomarkers namely estrogen receptor (ER), proges-

terone receptor (PR), human epidermal growth factor receptor 2 (HER2), and antigen

Ki67 are analyzed. This analysis is done by applying appropriate antibody reagents to

the tumor tissue samples and observing the glass slides prepared this way via a micro-

scope. Response to these antibodies indicate the presence and extent of the molecular

biomarkers. The biomarker responses are assessed by pathologists to decide the molec-

ular subtype of the tumor.

The pathology procedure for molecular subtyping is also manually done by trained

pathologists. IHC slides are prepared separately for the four biomarkers by applying

appropriate antibodies reagents. Typically, for each biomarker 10 hotspot regions in

the slide are chosen to estimate the biomarker response. In this way, 40 hotspots per

patient need to be analyzed to determine the final molecular subtype of the cancer. This

labor-intensive procedure requires the service of an experienced pathologist making it

costly, time consuming, and prone to inter-observer variability (Gavrielides et al., 2011;

Chung et al., 2016).
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Figure 1.1: A sample high power field (HPF) slide image captured at 40× magnifica-
tion of the microscope.

1.2.3 Automation of Pathology Procedures

Digital pathology has become an important tool in the diagnostic procedures of cancer.

In this, pathology slide regions are scanned using slide scanners or camera mounted

microscopes, and stored as digital images (Higgins, 2015). Such slide images captured

at the maximum magnification level of the equipment are referred to as high power field

(HPF) images. Figure 1.1 shows an HPF image captured at 40× magnification of the

microscope used. Instead of directly analyzing the biopsy slides through a microscope,

pathologists can analyze the HPF images from any location for diagnosis and prog-

nosis. Another possibility opened up by digital pathology is the use of computational

algorithms for semi-automated or fully-automated analysis of the digitized slides (Mul-

rane et al., 2008). Pathology image analysis for different treatment aspects of cancer

is an active research area for various cancer types (Thakur et al., 2020; Srinidhi et al.,

2020).
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The last 10 years have seen several research efforts to automate the grading of breast

cancer using H & E-stained histopathology images created by digitizing biopsy slides.

Earlier methods attempted to grade breast cancer using custom datasets with a limited

number of slide images. Some of these methods followed the NGS (Dalle et al., 2008)

and the others did not consider the individual parameters of NGS (Doyle et al., 2008;

Naik et al., 2008). Since small-scale proprietary datasets were used in these methods, a

fair evaluation and comparison of such methods was barely possible. Automated breast

cancer grading attracted attention as a relevant research problem since the launch of

open contest MITOS (Roux et al., 2013) targeted to address automated mitosis detec-

tion. A public dataset of 100 annotated H & E-stained slide images (ICPR, 2012) were

made available to the research community. Since then, several methods were proposed

for this challenging task using the same dataset. Automated methods for mitosis detec-

tion in the literature have been summarized by Mathew et al. (2020). Automation of

nuclear atypia scoring received less research attention compared to mitosis detection.

This is mainly because there were not as many public datasets or open contests available

for this task. The complexity of the slide images and subjective nature of assessment

criteria are other possible reasons for this trend. Results reported in the existing atypia

scoring methods are also not enough to meet the requirements of clinical usage. These

factors indicate the need for continued research on this task, mainly focused on tapping

the potential of deep learning since deep learning algorithms like CNNs are found to be

highly effective for medical image analysis.

Digital images captured from hotspot regions in IHC slides can be used to automate

molecular subtyping of breast cancer. Figure 1.2 shows the digitized IHC hotspot im-

ages of the four biomarkers involved in molecular subtyping of breast cancer. These

images can be analyzed using computational methods to predict the status of each

biomarker for a patient and determine the molecular subtype of the cancer. Targeted

treatment based on the identified subtype of the cancer increases the possibility of a

better outcome. This also avoids over-treatment and reduces the financial burden and

psychological trauma associated with cancer treatment.

7



Figure 1.2: Immunohistochemistry (IHC) slide image samples of biomarkers used for
molecular subtyping of breast cancer, (a) Estrogen receptor (ER) , (b) Progesterone
receptor (PR), (c) Human epidermal factor receptor 2 (HER2), (d) Antigen Ki67.

1.3 Motivation and Problem Statement

Currently, female breast cancer is the leading cause of cancer worldwide (Sung et al.,

2020). Breast cancer mortality rate is also high with around 0.68 million deaths in the

year 2020. Early-stage diagnosis and treatment targeting the specific molecular sub-

type of breast cancer has the potential to reduce the mortality rate significantly. The

routine manual pathology procedures followed for cancer grading and molecular sub-

typing have inherent challenges related to pathologists’ disagreement, time-delay of the

procedure, and human-labor involved. Apart from the challenges found through the

study of literature (Roux et al., 2013; Malon et al., 2012), the interactions with pathol-

ogists provided insights about the challenges they face in their routine clinical practice.
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The manual evaluation of breast cancer grading factors namely mitotic count and atypia

score are testified by them as laborious and error-prone procedures. Similarly, molec-

ular subtyping also involves manual counting of nuclei that express certain biomarker

presence. In this case, there is a requirement to evaluate a large number of hotspot re-

gions (∼40 hotspots per patient) in the pathology slides to determine the subtype of the

cancer.

Improved availability of digitized glass slide images through public and custom

datasets and advancements in artificial intelligence have inspired several research efforts

on automating various pathology procedures (Niazi et al., 2019). However, the study of

the existing literature revealed that the current methods for automating the assessment

of breast cancer grading factors, mainly mitosis count and atypia score, are not giving

performance required for routine clinical application. Moreover, it is observed that the

potential of deep learning has not been fully exploited in the existing methods. In the

case of molecular subtyping, there are no methods found to automate this procedure

using IHC slide image analysis.

1.3.1 Problem Statement

Automated assessment of breast cancer grading factors has the potential to make this

pathology procedure more accurate, faster, and cost-effective. Although there are sev-

eral methods for automated mitosis detection reported in the last decade, the perfor-

mance of these methods are not sufficient to meet the requirements of clinical usage.

Deep learning algorithms require a large number of labeled samples to train them. La-

beled datasets with sufficient sample size is a constraint for application of advanced

deep learning algorithms for mitosis detection. Moreover, in the available datasets there

is a large class-imbalance between the target classes of mitotic and non-mitotic figures

present in the tissue images. These limitations pose barriers for the use of advanced

deep neural networks for the task of mitosis detection. There is a research need to

address these limitations and exploit the potential of advancements in deep learning
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algorithms for automated mitosis detection.

H & E-stained histopathology slide images are structurally complex and large in

dimension. Direct application of deep learning algorithms for such images is found

to be less effective due to factors like computational complexity, and insufficiency of

labeled training samples. The existing methods for nuclear atypia scoring (the second

component of breast cancer grading) have failed to exploit the potential deep learning

algorithms due to these factors. There are only few methods available for this clinically

significant task and the performance of those feature-based learning methods show the

need for continued research on this problem.

Molecular subtyping of breast cancer involves a significant amount of manual work

by pathologists in analyzing around 40 IHC slide images per patient and evaluating

various classes of nuclei, membrane etc. These factors cause time-delay and errors in

the manual procedure. Even though there are methods to assess individual biomarkers

involved in molecular subtyping, such methods do not lead to molecular subtyping since

it requires patient-level evaluation of all four biomarkers. A consolidated method that

evaluates all the four biomarkers (ER, PR, Ki67, & HER2) patient-wise is required to

automate the procedure for molecular subtyping of breast cancer.

Research Objectives:

The expected outcome of this thesis work is the development of novel deep learning

based solutions for automated analysis of breast cancer histopathology images. An-

choring on this, the following specific objectives are identified:

1. To develop a method for automated detection of mitosis in H & E-stained histopathol-
ogy images that can address the class-imbalance and sample size limitation in the
datasets to enable the use of advanced deep learning algorithms for this task.

2. To develop a deep learning-based framework for automated atypia scoring of
breast cancer to effectively utilize the potential of current and future deep learning
algorithms.

3. To develop a deep learning-based framework for automated molecular subtyping
of breast cancer using IHC image analysis of the four biomarkers’ status in tumor
tissues.
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1.4 Major Contributions

The focus area of the research is application of deep learning for automated analysis

of histopathology images of breast cancer. The main contributions of this thesis are

summarized below:

• A novel mitosis detection method is proposed that applies an advanced convolu-
tional neural network (CNN) architecture namely DenseNet for the first time to
address this task. Applying advanced CNNs for mitosis detection was constrained
by the limited sample size of the datasets and class imbalance problem in the
data samples. In the proposed method, two different datasets are combined after
suitable preprocessing to normalize the variations and create sufficient training
samples. Class imbalance problem of the target classes is addressed by augmen-
tation of the minority class samples in a context-preserving manner. The positive
impact of combining datasets and the augmentation techniques is experimentally
verified. This approach may be applied in other similar domains where multiple
small datasets are available from different sources, but they are not large enough
to train data hungry algorithms like CNNs independently.

• A novel deep learning-based framework is proposed for nuclear atypia scoring of
breast cancer. The framework consists of three major phases namely preprocess-
ing, deep learning, and postprocessing. The original three-class problem of slide
level atypia scoring is reformulated as a six-class problem of nuclei classification
for the effective use of deep learning algorithms. Subsequently, a CNN is used
to classify the six classes of nuclei present in slide images. Nuclei-level analysis
using the CNN approximates the manual procedure and forms a key factor in the
performance. The results obtained for performance metrics precision, recall, and
f1 score are improved by 13.93%, 9.89%, and 11.90% over the nearest state-of-
the-art method. In addition, the problem of pathologists’ disagreement and the
challenges in automated nuclear atypia scoring are analyzed in detail.

• A novel classifier framework for automated molecular subtyping of breast can-
cer is proposed. The four protein biomarkers involved in molecular subtyping
are analyzed using independent processing pipelines having preprocessing, deep
learning, and post-processing stages. Consolidation of individual biomarker as-
sessment contributes to the final determination of molecular subtype. This way
the framework emulates the manual procedure of molecular subtyping through
computational image analysis, at the same time reduces the human-labor and
time-delay involved in the manual procedure. As a pioneering attempt for au-
tomated molecular subtyping based on IHC images, the result obtained for the
proposed method is highly encouraging. The framework nature of the solution in
the case of atypia scoring and molecular subtyping enables the use of different
algorithms in the various stages of the framework to improve the results further.
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1.5 Organization of this Thesis

Rest of the thesis is organized as follows:

Chapter 2 is the literature survey carried out as part of this thesis work which encom-

passes the related works on the three tasks namely mitosis detection, nuclear atypia

scoring, and molecular subtyping.

Chapter 3 presents a new automated mitosis detection method developed for H & E-

stained histopathology images.

Chapter 4 presents a novel framework for nuclear atypia scoring of breast cancer using

H &E images. The challenges in automated nuclear atypia scoring and the problem of

pathologists’ disagreement in atypia scoring are illustrated in detail.

Chapter 5 presents a novel framework developed for molecular subtyping of breast

cancer through IHC image analysis.

Chapter 6 concludes the thesis by summarizing the findings of the thesis.
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CHAPTER 2

LITERATURE SURVEY

In this chapter, the literature study carried out as part of the thesis work is presented.

The chapter is divided into four major sections. Initially the literature on breast cancer

grading and related challenges are presented. This is followed by the review of works

related to the three objectives of the research work. Organization of this chapter is

outlined in Figure 2.1.

Figure 2.1: Organization of the literature survey



2.1 Breast Cancer Grading & Related Challenges

Studies on varying degrees of breast malignancy and their correlation with prognosis

had started nearly a century ago (Greenough, 1925). Combining the outcome of all

such studies and based on their own experiments, Bloom and Richardson (1957) for-

mulated a breast cancer grading system. This was based on three factors: the tubular

arrangement of cells, varying size and shape of nuclei (atypia), and frequency of mi-

totic figures. Elston and Ellis (2002) modified the Bloom-Richardson grading system

to make the criteria more objective and well-defined to create the present NGS (Ta-

ble 1.1). Pienta and Coffey (1991) studied the correlation of nuclear morphometry with

breast cancer progression and concluded that even though nuclear morphometry has

prognostic relevance, it cannot indicate the recurrence chances of the disease. The rela-

tion between cancer stage and the histologic grade was studied by Henson et al. (1991)

on 22,626 cases of breast cancer to conclude that these two factors can jointly improve

the prognosis of breast cancer. They also recommended the creation of a combined

prognostic index using cancer stage and histologic grade.

Inter-observer variability in manual pathology procedure is a challenge in clinical

practice (Nicholson et al., 2004; Eaden et al., 2001). This issue in the context of breast

cancer grading was studied by Robbins et al. (1995) and they observed 80% agreement

among the pathologists. Malon et al. (2012) studied agreement among pathologists for

mitosis detection and compared pathologists’ observation with an automated system. It

was found that the automated method gave an encouraging performance, suggesting the

viability of automated methods in such tasks. Inconsistency in nuclear atypia scoring

by different pathologists is studied by Dunne and Going (2001), and they concluded

that the subjective nature of atypia scoring criteria is the root cause for the scoring

inconsistency. For the assessment of nuclear atypia, concordance between pathologists’

independent interpretation and a reference interpretation was found to be as low as

48% in a study conducted by Elmore et al. (2015). With the advancement of digital

pathology, increased use of automated methods is considered as a solution to reduce
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pathologists’ disagreement, human errors, and workload (Fuchs and Buhmann, 2011).

Efforts to automate grading of tumors based on cellular morphometric and textural

parameters started towards the end of the last century (Einstein et al., 1998; Wolberg

et al., 1995; Kaman et al., 1984). In earlier days, the methods looked at tumor grad-

ing as a single task in totality rather than focusing on individual parameters of grading

system. Wavelet-based multiscale image analysis is used to extract chromatin texture

feature descriptors in the semi-automated method proposed by Weyn et al. (1998). Fur-

ther, a KNN classifier is used to classify the tumors. Kronqvist et al. (1998) introduced

optimal thresholds for various morphometric features such as the means of nuclear area,

diameter, shortest axis, etc., that are used commonly in the grading of tumors. They

showed that these thresholds could be used in automated grading systems based on

Bloom-Richardson specifications. Cosatto et al. (2008) used the conventional approach

of segmenting the nuclei and the resultant nuclei outlines are used to extract a set of

textural and morphological features. These features are applied to classify the nuclei

according to the grade using an SVM as the classifier. This method used a custom set

of handpicked tumor tissue regions to train the model.

An automated grading system considering all the parameters of NGS individually

is proposed by Dalle et al. (2008). This method is claimed to be the first such method

in the literature. Individual parameter scores are computed using conventional image

processing and feature extraction techniques, and finally these scores are combined to

predict the overall grade of the tumor. A custom dataset of digitized slide images col-

lected from six patients is used in this method. The results of the automated assessment

showed a moderate level of matching with pathologists’ evaluation. A general classi-

fication for low and high-grade breast cancer based on a large set of extracted features

is proposed in the method by Doyle et al. (2008). This method does not follow the

NGS specification for grading. A similar classification method is proposed by Naik

et al. (2008) using graph-based extraction of nuclear features along with SVM. Dalle

et al. (2009) used distance transform and morphological operations on the binary image
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obtained by thresholding the gamma corrected R channel of tissue image to select can-

didate nuclei for atypia scoring. Then the nuclei are segmented using polynomial curve

fitting. Size, shape, and texture features are extracted from segmented nuclei to build a

Gaussian model for grade differentiation.

2.2 Automated Mitosis Detection

The existing methods for automated mitosis detection can be broadly categorized as the

following based on the approach adopted. i) Methods using handcrafted features, ii)

Methods using deep learning, iii) Combination methods, which combine handcrafted

features and deep learning. The following subsections discuss the methods reported

under these categories.

Figure 2.2: Typical workflow of methods using handcrafted features.

2.2.1 Methods using Handcrafted Features

Manual extraction of features from data and making machine learning algorithms to

learn from these features for pattern recognition or classification is a very conventional

and time-tested approach. A general structure of mitosis detection methods that adopted

this pattern is presented in Figure 2.2. First, the input image is processed to identify the

candidate cells/nuclei. Candidate cells consist of mitotic, non-mitotic and mimics. Sub-

sequently, features are extracted from the candidate cells to train a classifier to discrim-

16



Table 2.1: Summary of the handcrafted feature based mitosis detection methods pre-
sented in this study.

Method Approach Dataset

Huang and Lee (2012)
Exclusive Independent
Component Analysis MITOS

Khan et al. (2012) Gamma-Gaussian Mixture Model (GGMM) MITOS
Sommer et al. (2012) SVM, Random Forest (RF) MITOS

Irshad (2013)
Laplacian of Gaussian (LoG),
Active Contour Model (ACM),
Decision Trees (DT)

MITOS

Tek (2013) LoG, Cascaded AdaBoosts MITOS

Veta et al. (2013)
ACM, LoG
Linear Discriminant Classifier CUSTOM

Irshad et al. (2014a) Multi-spectral spatial features, SVM MITOS

Lu and Mandal (2013)
Linear Discriminant Analysis,
Bayesian Modeling, SVM MITOS

Irshad et al. (2013) SIFT, SVM, RF, DT MITOS
Paul and Mukherjee (2015) RF MITOS-ATYPIA

Nateghi et al. (2017)
Maximum-likelihood estimation (MLE),
Complete local binary pattern (CLBP), SVM

MITOS
MITOS-ATYPIA

Tashk et al. (2013) CLBP, SVM, MLE MITOS
Roullier et al. (2011) Multi-resolution graph-based analysis CUSTOM
Irshad et al. (2014b) Multilayer Perceptron, DT , SVM MITOS
Nateghi et al. (2014) SVM, GGMM, MLE MITOS
Tashk et al. (2015) CLBP, SVM, RF MITOS

inate mitotic cells from the rest. While this is the general pattern observed, individual

methods may deviate from this by small to large margins. For candidate cell extraction

and classification, one or more of the standard algorithms or its variants are generally

used.

As part of the MITOS 2012 contest, Huang and Lee (2012) proposed an algorithm

named as exclusive independent component analysis (XICA) for mitosis detection.

XICA finds independent bases for patterns in the training set. The similarity between

the relative residuals computed from the test pattern and base patterns are measured

to classify the test patterns. Inter-observer variability in manual detection of mitosis is

studied in the work by Malon et al. (2012) and automated analysis is positioned as a po-

tential alternative to manual detection and counting. The method proposed by Sommer

et al. (2012) uses a random forest algorithm for nuclei segmentation and SVM classi-
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fier with the Gaussian kernel to classify the candidate nuclei. For training the SVM,

texture, shape and statistical features are applied. Multi-channel statistics and morpho-

logical features are used by Irshad (2013) for mitosis detection. The candidate cells are

segmented using LoG, contour model, and thresholding. Further, a set of 143 features

are used for classifying cells as non-mitotic and mitotic. Deviating from the general pat-

tern, a method without object level segmentation was proposed by F. Boray Tek (Tek,

2013). Features based on color, morphology, Laplacian, and shape are used with the

Adaboost classifier in this method. Veta et al. (2013) followed the common approach of

segmentation of nuclei and feature extraction in their method for mitosis detection. Nu-

clei segmentation is done using the Chan-Vese level set method (Chan and Vese, 2001)

and followed by a linear discriminant classifier for classification. Multispectral anal-

ysis of histopathology images is used in the methods Irshad et al. (2014a) and Irshad

et al. (2014b). Compared to RGB images, multispectral images provide more chemical

and anatomic features at tissue level to train the learning algorithms. Lu and Mandal

(2013) proposed a three-stage method using multispectral images. The three stages are

discriminative image generation by linear discriminant analysis, segmentation of candi-

date cells with Bayesian modeling and hybrid gray-scale morphological reconstruction,

and classification of candidate cells using a multi-classifier framework. Scale-invariant

feature transform (SIFT) features from H & E images are employed to train SVM and

decision trees by Irshad et al. (2013). Relative-entropy maximized scale space is applied

by Paul and Mukherjee (2015) for cell segmentation and followed by random forest for

classification of mitotic and non-mitotic cells. Method by Beevi et al. (2016) employed

localized active contour model and bio-inspired optimization to identify the candidate

cells. These cells are classified using the random kitchen sink algorithm. Pixel level

and object-level features are used by Tashk et al. (2013) in their method. Pixel level

features are used to train a maximum likelihood estimation system whereas the object

level features are used to train an SVM.
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Figure 2.3: Typical workflow of methods using deep learning.

2.2.2 Methods using Deep Learning

The application of deep learning in medical systems is one of the top research trends

nowadays. There has been widespread adoption of deep neural networks (DNN) in

addressing several medical image analysis tasks (Litjens et al., 2017; Anwar et al.,

2018). Several methods that apply deep learning for diagnostic tasks related to different

types of cancers are already available in the literature (Amin et al., 2020; Zhao et al.,

2019; Kadam et al., 2019; Wang et al., 2019). Not only cancer, but for many other

diseases deep learning is being applied. Classification of Alzheimer’s disease (Ramzan

et al., 2020), detection of genetic disorders (Gurovich et al., 2019), etc. are just a

few instances of a growing trend. In many cases, deep learning methods exceeded

the performance of conventional methods. For mitosis detection, several deep learning

methods started appearing in literature lately. In this section, the deep learning based

methods in literature for mitosis detection are reviewed.

Convolutional neural networks (CNN) (Wu, 2017) are the most popular class of

deep learning algorithms used in medical image analysis. Figure 2.3 depicts the typical

workflow of a typical CNN architecture used for detection or classification problems.

Input image or a selected part (sub-image) of it goes through a series of convolution and

pooling layers that learn the pattern in the input image to predict the class it belongs to.

Cireşan et al. (2013) proposed a CNN based method for mitosis detection. In this

method, each pixel is classified by considering a patch centered on that pixel. The
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Table 2.2: Summary of the deep learning-based mitosis detection methods.
Method Approach Dataset

Cireşan et al. (2013)
Convolutional Neural
Network (CNN) MITOS

Albarqouni et al. (2016) CNN AMIDA

Chen et al. (2016b)
Deep Regression
Network (DRN) MITOS

Chen et al. (2016a) Cascaded CNN MITOS-ATYPIA

Wollmann and Rohr (2017)
Deep Residual
Hough Voting AMIDA

Li et al. (2018) CNN MITOS-ATYPIA

Wahab et al. (2017) CNN
MITOS,
TUPAC

Cai et al. (2019) Regional CNN
MITOS-ATYPIA,
TUPAC

Romo-Bucheli et al. (2017) CNN AMIDA
Das and Dutta (2019) CNN, Haar Wavelets MITOS-ATYPIA

sliding window based classification of each pixel in the HPF image is computationally

intensive during training and testing. Considering the unavailability of a large dataset

for deep learning, Albarqouni et al. (2016) proposed a framework by incorporating a

crowd-sourcing layer called AggNet into CNN. Crowd-sourced image annotations are

used to train the proposed CNN model. A deep regression network (DRN) with fully

convolutional kernels was proposed by Chen et al. (2016b). A pre-trained model is

used to offset the small number of samples in the dataset. A cascaded deep neural net-

work with two stages was proposed by Chen et al. (2016a). The first stage is a coarse

model to detect the candidate cell and the second stage differentiates the mitotic cells

from its close mimics and non-mitotic cells. Computation time is significantly reduced

by limiting the search space to the candidate cells. Mitosis detection from whole slide

images was proposed by Romo-Bucheli et al. (2017). This method validates the posi-

tive correlation between mitotic activity and Oncotype DX risk score of breast cancer

patients. Wollmann and Rohr (2017) used a deep residual network and Hough voting

for mitosis detection. Three deep neural networks, each with different roles, are used

in the method by Li et al. (2018). The networks include a detection network (DeepDet)
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Table 2.3: Combination methods using handcrafted features & deep learning.
Method Approach Dataset

Malon et al. (2008)
Support Vector Regression (SVR),
CNN

CUSTOM

Malon and Cosatto (2013) CNN, SVM MITOS
Wang et al. (2014) CNN, RF MITOS
Beevi et al. (2017) Deep Belief Network, RF MITOS-ATYPIA
Beevi et al. (2019) CNN, RF MITOS-ATYPIA

Saha et al. (2018) CNN, ANN
MITOS
MITOS-ATYPIA
AMIDA

to detect the candidate cells, a verification network (DeepVer) to verify the candidates

and eliminate false positives, and a deep segmentation network (DeepSeg) to segment

and provide bounding boxes. Wahab et al. (2017) addressed the class imbalance prob-

lem by augmentation of mitotic samples and under-sampling of non-mitotic samples.

A modified regional convolutional neural network (RCNN) with a ResNet backbone is

used by Cai et al. (2019) for mitosis detection. Wavelet decomposition of the image

patches (81 × 81 pixels) and using those for training a custom CNN is the approach

adopted by Das and Dutta (2019) in their method. Deep learning methods for mitosis

detection are summarized in Table 2.2.

2.2.3 Combination Methods

Some of the methods in literature combine hand-crafted features and deep learning for

mitosis detection. Often it is the case that one complements the other to give an im-

proved performance. The combination approach is first used by Malon et al. (2008)

to detect various cellular structures like signet ring cells, mitosis, and epithelial cells.

In this method, support vector regression (SVR) is used to choose the candidate el-

ements, and the candidates are used to train the CNN. The same authors proposed

another method (Malon and Cosatto, 2013) exclusively for mitosis detection. In this

the CNN output is combined with color, texture, and shape features to train the SVM
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classifier. Wang et al. (2014) used a light-weight CNN and a random forest classifier

trained with hand-crafted features for mitosis detection. Use of a simple CNN results

in reduced computation time for this method. Saha et al. (2018) proposed mitosis de-

tection from whole slide images using a CNN and a set of 55 handcrafted features. A

five-layer CNN with two fully connected layers is used in this. Transfer of weights

from a pre-trained CNN model VGGNet is used by Beevi et al. (2019). Color variation

in the image samples caused by staining differences is mitigated using color normal-

ization. The authors reported better performance and computational efficiency over the

existing methods that use raw patches. Combination methods for mitosis detection are

summarized in Table 2.3.

2.3 Automated Nuclear Atypia Scoring

Open grand challenge MITOS-ATYPIA organized along with the International Con-

ference on Pattern Recognition (ICPR 2014) turned out to be a landmark event in the

research trajectory of automated nuclear atypia scoring. A public dataset of 600 la-

beled slide images, captured using two different scanners at 20× magnification, was

shared with the research community to develop automated methods for atypia scoring.

Most of the nuclear atypia methods reported since then used this dataset for training

and evaluation. This has facilitated the performance comparison of various methods

and tracking the progress of the art. One of the initial methods based on the MITOS-

ATYPIA dataset is proposed by Khan et al. (2015). Regional covariance descriptors

at the image level have been used in this method. The geodesic geometric mean of

the regional covariance descriptors, computed for each non-overlapping region in the

image, is defined as the global covariance descriptor for the image. Then, a geodesic

kNN classifier based on Riemannian manifold of symmetric positive definite (SPD)

matrices is used to assign nuclear atypia scores from the global covariance descriptors.

The method proposed by Lu et al. (2015) first segmented the nuclei in the image us-
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ing Laplacian of Gaussian (LoG) based processing of the blue-ratio image computed.

Image processing techniques are then used to extract 142 textural and morphological

features. An SVM is trained using these features to classify images according to the

nuclear atypia score. The MITOS-ATYPIA dataset is used to develop this method as

well. Maqlin et al. (2015) applied a restricted Boltzmann machine (RBM) with a deep

neural network for nuclear atypia scoring. A contra divergence algorithm is used to

train RBM in each layer of the model independently. The stacked RBMs thus form a

deep belief network (DBN). The DBN is fine-tuned with the use of a backpropagation

algorithm. The method used a subset of only 80 slide images from the MITOS-ATYPIA

dataset. Multi-scale descriptors computed from segmented nuclei are the basis of the

method proposed by Moncayo et al. (2015). These descriptors are clustered by the k-

means algorithm and used as atoms of a learned dictionary. Histogram based features

of these descriptors are utilized to train an SVM or a bank of binary classifiers to grade

each atom in the dictionary using the score labels associated. This method is developed

and evaluated using breast cancer images from ’The Cancer Genome Atlas’ (TCGA)

database. Wan et al. (2017) adopted the approach of nuclei segmentation followed by

feature extraction at pixel, object, and semantic levels to train multiple SVMs that clas-

sify nuclear atypia according to the grade. A hybrid active contour method consisting

of boundary and region information is used for nuclei segmentation. Semantic features

are extracted using a CNN. A custom dataset of H & E images is used for developing

this method.

Several learning algorithms are available for breast cancer diagnosis and classifica-

tion (Tariq et al., 2020; Houssein et al., 2020). Recently, deep learning algorithms like

CNNs have attracted much attention (Ting et al., 2019) due the superior performance

observed for many tasks. However, for nuclear atypia scoring CNNs are scarcely uti-

lized. A hybrid CNN model with multiple image resolutions is used by Xu et al. (2017)

for atypia scoring. This model consists of three single resolution CNNs that work on

different image resolutions 10×, 20×, and 40× to independently score nuclear atypia.

Finally, the individual scores are combined using plurality voting. Fisher discriminant
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Table 2.4: Summary of the major works in literature for automated atypia scoring
Method Approach Dataset

Das et al. (2018)
Region covariance descriptors,
Dictionary learning MITOS-ATYPIA

Das et al. (2020a)
Kernel-based fisher analysis,
Batch mode active learning MITOS-ATYPIA

Das et al. (2019)
Riemannian manifold,
Fisher discriminant MITOS-ATYPIA

Lu et al. (2015)
Laplacian of Gaussian,
Texture features, SVM MITOS-ATYPIA

Khan et al. (2015)
Regional covariance descriptors,
Geodesic kNN classifier MITOS-ATYPIA

Rezaeilouyeh et al. (2016)
Deep learning,
Shearlet coefficients MITOS-ATYPIA

Xu et al. (2017)
Deep learning,
Multi-resolution CNNs MITOS-ATYPIA

analysis on Riemannian manifold is used in the method by Das et al. (2019), for nu-

clear atypia scoring. This method also uses the geodesic mean of region covariance

descriptors for the kernel-based fisher analysis. Recently, a variant of this method with

batch mode active learning (Das et al., 2020a) is found to give superior performance

over the kernel-based Fisher discriminant analysis. The same authors proposed another

method (Das et al., 2018) based on sparse coding and dictionary learning. This method

also used the Riemannian manifold on region covariance descriptors. The dictionary

learning task is mapped to a highly discriminative high-dimensional Hilbert space re-

sulting in the superior performance of the method. This method has reported the best

result for nuclear atypia scoring so far. In the method proposed by Gandomkar et al.

(2019), nuclear atypia scoring is based on the cytological criteria estimated by patholo-

gists (nuclei size, nucleoli size, etc.) as well as the features such as first-order statistics

features, Haralick features, etc., extracted using image processing. Scores assigned by

two independent regression models trained on cytological features and extracted fea-

tures are combined by a third regression model to predict the final atypia score. In the

CNN-based method, Rezaeilouyeh et al. (2016) combined handcrafted features such as

phase and magnitude of shearlet coefficients with the original image and used as the in-
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put to a CNN. The additional features provided are found to give an improved accuracy

compared to the sole image input to CNN. Table 2.4 summarizes the major works on

automated nuclear atypia scoring from the literature.

2.4 Automated Analysis of Molecular Biomarkers

Automated molecular subtyping of breast cancer is a patient-level procedure that re-

quires the samples of all the biomarkers (ER, PR, Ki67, and HER2) from the same

patient. Currently there are no methods in the literature that perform a collective assess-

ment from all these biomarkers to predict the cancer subtype for a patient. However,

there are several methods that assess one or two of these biomarkers using image anal-

ysis techniques. Such methods are summarized in this section of the literature study.

2.4.1 ER and PR

According to a recent cohort study (Al-Thoubaity, 2020), the most common subtype of

breast cancer is Luminal A (58.5%). This subtype is characterized by positive status

of hormone receptors ER and PR. Many researchers have attempted to automate the

analysis of these hormone receptors. Responses of these biomarkers to IHC reagents

are more-or-less identical and hence the method for automated analysis can be similar

for both. As a result, many methods in the literature have addressed the automated as-

sessment of ER and PR together. An early study on the feasibility of image analysis for

hormone receptor status prediction was carried out by Mofidi et al. (2003) with the help

of edge-based features in a semi-automated way. The obtained results highly correlated

with the manual assessment of hormone receptors as well as the objective measurements

like percentage of positive nuclei. ImmunoRatio (Tuominen et al., 2010) is a publicly

available application for performing quantitative analysis of ER and PR. Vijayashree

et al. (2015) compared manual and automated quantification of hormone receptors ER
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and PR in the case of breast carcinoma. Manually evaluated HScore (McCarty et al.,

1986) and Allred Score (Allred et al., 1998) are found to correlate with the result of

auto-evaluation by ImmunoRatio. Method by Oscanoa et al. (2016), segmented the

nuclei in ER images using the features such as shape and size. This is followed by

the fuzzy C-means algorithm to classify them into ER +ve and ER -ve. This method

used the publicly available Stanford University TMA dataset (SU, 2001). The method

gave sensitivity 95.7% and specificity 93.2%. In one of the earlier methods proposed

by Rexhepaj et al. (2008), a fully automated algorithm is applied to quantify both ER

and PR biomarker responses. The images that are scanned from tissue microarrays of

breast cancer are used as the dataset. Optimal thresholds of ER and PR are determined

using the random forest classifier for survival analysis. As a deviation from commonly

used IHC image analysis, Chaudhury et al. (2014) applied the features extracted from

breast tissue MRI images to predict ER status. They used textural kinetic features from

various tumor subregions in MRI images for ER classification. Chang et al. (2016) also

used dynamic contrast-enhanced MRI images for determination of ER and HER2 sta-

tus. In the method proposed by Mouelhi et al. (2014), ER status is evaluated using

color deconvolution and morphological operation. The nuclei present in the IHC im-

ages of tumor regions are segmented and separated to estimate the number of positive

and negative nuclei. A CNN based cell classification method for ER from whole slides

images was proposed by Jamaluddin et al. (2018). This method detected the tumor

cells in the whole slide images of breast cancer patients and classified them into four

classes such as weak, moderate, and strong cells with respect to ER response on IHC

staining. Abubakar et al. (2019) analyzed that quantitative measures of the molecular

biomarkers combined with other factors such as cancer grade, lymph node involve-

ment, tumor size, and age provided more prognostic information than categorical status

of these biomarkers in Luminal breast cancers. A deep learning framework for ER and

PR scoring was proposed by Saha et al. (2020). The framework contains a segmentation

component followed by a scoring component. The segmentation component takes IHC

biomarker images of ER/PR as the input and segments the nuclei using a deep CNN.
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These nuclei are then passed to the scoring component that classifies the nuclei as im-

munopositive or immunonegative. H-Score (McCarty et al., 1986) of a slide image is

computed using the counts of weak, moderate, and intermediate nuclei.

2.4.2 HER2

The biomarker HER2 accelerates the growth and division of cells in tumor sites lead-

ing to an uncontrollable growth of tumors. While the hormonal receptors ER and PR

are present in the tumor cell nuclei, HER2 is found in the cell membrane (Perez et al.,

2014). As a result, the IHC response of HER2 is visible as brownish circular layers

attached to the cell membrane around the nuclei. IHC analysis results in three possible

states: ‘HER2 negative’, ‘HER2 positive’, and ‘HER2 equivocal’. The equivocal status

indicates that HER2 status is not clearly identified by IHC analysis and further a fluo-

rescent in situ hybridization (FISH) analysis is required for such cases. A comparative

study of HER2 score computation using FISH and IHC was conducted by Yaziji et al.

(2004). The study suggested IHC as an efficient approach for evaluating HER2. Lloyd

et al. (2010) studied the reliability of image analysis algorithms for the assessment of

ER and HER2. They used two commercially available algorithms for this analysis and

the results were compared with manual scoring by pathologists. It is found that the re-

sults of the algorithmic analysis matched with the manual scoring by pathologists. They

observed that the quality assurance of the region selection process for image analysis

has an influence on the accuracy of the results. Final suggestion is to use algorithmic

analysis as a supplement to manual evaluation. Comparative study between IHC image

analysis and FISH scoring by Ayad et al. (2015) suggested IHC image analysis as a po-

tential alternative to costly and time-consuming FISH test provided the performance of

equivocal cases is refined further. A multistate method for HER2 scoring from FISH im-

ages was proposed by Raimondo et al. (2005). The method used various techniques like

top hat transform, distance transform, and marked watershed transform in the method

pipeline. Considering the cost effectiveness of IHC testing and data availability, image
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analysis based IHC acquired more prominence in the research community. A web ap-

plication named ImmunoMembrane was developed by Tuominen et al. (2012) for the

assessment of HER2 from IHC images. Based on the intensity and completeness of

cell membranes, a quantitative score is generated for HER2 images under analysis. The

samples are classified into one of the scoring classes as per American society of clinical

oncology (ASCO) guidelines (Wolff et al., 2007). Method by Hall et al. (2008) used a

membrane isolation algorithm followed by quantitative analysis of the separated mem-

brane to assess HER2 score from the IHC image. Results of the automated method are

found to be similar to that of manual assessment and FISH test. The authors suggest

that image analysis based HER2 scoring as an alternative to manual assessment and

FISH test especially for the cases in equivocal range. Skaland et al. (2008) used basic

image processing techniques like color deconvolution, thresholding, segmentation etc.,

to segment membrane bound IHC stain for HER2 scoring. The segmented membrane

regions are quantitatively analyzed to assign scores for HER2 response. The result of

the automated scoring is correlated with modified FISH scores. Consequently, the au-

thors suggested IHC based automated scoring as a cost-effective supplementary tool

for HER2 scoring. A deep learning-based method for HER2 scoring was proposed by

Vandenberghe et al. (2017). The nuclei in the HER2 response images are detected us-

ing color deconvolution and watershed algorithm. Image patches of size 44 × 44 are

extracted based on the nuclei to train and test a deep learning algorithm. The CNN

used in this method consists of three convolution layers and one fully connected layer

for the classification of nuclear patches. The results obtained by this method showed

83% matching with the assessment of a pathologist. In another deep learning method

proposed by Pitkäaho et al. (2016), the image patches of size 128 × 128 extracted

from HER2 images are used to train a CNN. An HER2 slide image is assigned with a

score based on the classification pattern of patches extracted from it by the CNN clas-

sifier used. Saha and Chakraborty (2018) proposed a deep learning framework named

Her2Net for segmenting the cell membranes from IHC images of breast cancer and

HER2 scoring based on the segmented membranes. The CNN consists of convolution
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and deconvolution segments along with the trapezoidal long short-term memory (TL-

STM) units to improve the segmentation performance.

2.4.3 Ki67

Antigen Ki67 is found in cells under the various stages of division (Gerdes et al., 1991).

The number of nuclei with Ki67 presence is an indicator of tumor growth rate. Hence,

Ki67 is also one of the biomarkers that has an impact on the prognosis and treatment

plan of breast cancer. Moreover, Ki67 proliferation index is an essential factor in molec-

ular subtyping of breast cancer. Automated assessment of Ki67 status from IHC images

has been attempted by many researchers in the past. Abubakar et al. (2016) developed

an automated protocol for Ki67 scoring based on the features provided in the Ariol

system for microscopy image analysis. The protocol involved the detection of nuclei

present in IHC images and training classifiers using these nuclei. The automated proto-

col showed a good correlation with computer assisted visual scoring done on the same

set of tissue microarray. Automated quantification of Ki67 from the IHC images of

nasopharyngeal carcinoma was proposed by Shi et al. (2016). The method pipeline in-

volves the preprocessing of images, feature extraction, clustering based segmentation of

immunopositive nuclei, separation of touching nuclei, and quantification. The result of

automated quantification matched with the manual process by pathologists. A compar-

ison of Ki67 labeling index by visual assessment and digital image analysis is carried

out by Zhong et al. (2016). This study showed a perfect correlation with the results ob-

tained by both approaches on a cohort study of 155 breast cancer cases. Comparison of

Ki67 hotspot selection from whole slide images (WSI) of meningiomas using manual,

semi-automated, and automated approaches is done by Swiderska et al. (2015). The

results of all the three approaches have shown a good level of agreement.

An integrated dictionary learning based framework for automated Ki67 counting

in neuroendocrine tumor images is proposed by Xing et al. (2013). The framework

consists of three stages. The detection and segmentation of cells in Ki67 images are
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Table 2.5: Summary of the works related to IHC image analysis to assess the different
cancer biomarkers

Biomarker Method Approach Dataset

ER

Rexhepaj et al. (2008) Random forest classifier Custom TMA dataset

Tuominen et al. (2010)
Color deconvolution,
Adaptive thresholding Custom IHC dataset

Mouelhi et al. (2014)
Color deconvolution,
Morphological operations Custom IHC dataset

Oscanoa et al. (2016)
Feature based,
Fuzzy C-means Public TMA dataset

Jamaluddin et al. (2018)
Adaptive thresholding,
Deep learning Custom WSI images

Saha et al. (2020) Deep learning Custom IHC dataset

PR
Rexhepaj et al. (2008)

Feature based,
Random forest Custom TMA dataset

Tuominen et al. (2010)
Color deconvolution,
Adaptive thresholding Custom IHC dataset

Saha et al. (2020) Deep learning Custom IHC dataset

HER2

Skaland et al. (2008)
Color deconvolution,
Thresholding Custom IHC dataset

Tuominen et al. (2012)
Colour Deconvolution
based segmentation Custom TMA dataset

Pitkäaho et al. (2016) Deep learning Warwick dataset

Vandenberghe et al. (2017) Deep learning
AstraZeneca BioBank,
Custom images

Saha and Chakraborty (2018) Deep learning Warwick dataset

Ki67

Tuominen et al. (2010)
Color deconvolution,
Adaptive thresholding Custom IHC dataset

Konsti et al. (2011)
Color deconvolution,
Segmentation Custom TMA dataset

Xing et al. (2013) Dictionary learning Custom IHC dataset

Niazi et al. (2014)
Graph cuts,
Difference of Gaussians Custom IHC dataset

Abubakar et al. (2016)
TMA specific
classifier algorithms Public TMAs dataset

Shi et al. (2016)
Clustering of local
correlation features Custom IHC dataset

Saha et al. (2017) Deep learning Custom IHC dataset
Lakshmi et al. (2019) Deep learning Custom IHC dataset

Note: No methods are currently found in literature for automated molecular subtyping of breast
cancer through IHC image analysis.

performed in stage 1. A dictionary-based learning is used to segregate tumor and non-

tumor cells in stage 2. In stage 3, the tumor cells are further classified into immunopos-

itive or immunonegative for Ki67 indexing using a color histogram-based classifier. A

method to assess Ki67 expression and study its prognostic value for breast cancer is
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proposed by Konsti et al. (2011). IHC stained tissue microarray images (TMA) of 1931

patients are used to conduct the study. The color deconvolved TMA images are thresh-

olded to obtain hematoxylin and diaminobenzidine masks. These masks are merged by

pseudocoloring and the extent of Ki67 response is measured. An algorithm based on

perceptual clustering for hotspot detection in Ki67 response images is proposed by Ni-

azi et al. (2014). IHC images of neuroendocrine cancer are used in this method. Graph

cuts and difference of Gaussian are applied to detect the cells from Ki67 images. Pathol-

ogists’ way of hotspot detection is mimicked by particle swarm optimization along with

message passing clustering. For the first time, Saha et al. (2017) exploited the potential

of deep learning for hotspot detection and proliferation scoring of Ki67 in breast cancer

images. The method uses a gamma mixture model with the expectation maximiza-

tion for seed point detection. This is followed by seed-based patch extraction for deep

learning. The patches are classified into Ki67 immunopositive or immunonegative by

the CNN used. The results obtained for precision, recall, F-score score are 0.93, 0.88,

and 0.91 respectively for patch level classification. Slide level or patient level Ki67 pro-

liferation status is not reported in the method. Lakshmi et al. (2019) used U-Net based

deep learning architecture for the segmentation of immuno- positive and negative tumor

nuclei from Ki67 images of bladder cancer. Connected component analysis is applied

to estimate Ki67 proliferation index from segmentation output. Table 2.5 summarizes

the recent methods in the literature for assessment of individual biomarkers related to

breast cancer.

2.5 Summary

The review of the existing literature led to many valuable observations and identifica-

tion of research gaps in automation of mitosis detection, nuclear atypia scoring, and

molecular subtyping of breast cancer. They are summarized below.

Research on automated mitosis detection has been active for over a decade. How-
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ever, the performances of the existing methods are still far from the requirements for

clinical usage. The diversity in size, shape, and textural characteristics of mitotic cells

along with their close similarity with apoptotic cells make this problem a challenging

one. The potential of deep learning in medical image analysis has not been exploited

fully for this task. The major reasons for this is the lack of sufficiently large datasets

required for advanced deep learning algorithms and the class imbalance between the nu-

clei of the target classes that affects the learning by deep learning algorithms. Research

efforts are needed to address these issues to improve the performance of automation.

Despite several methods reported, the performance of automated atypia scoring

achieved so far is not yet sufficient to apply in clinical practice. Many methods re-

ported high performance on small custom datasets that make the reliability of such

methods questionable and comparison with methods that use public datasets difficult.

Among all the methods reported using the publicly available MITOS-ATYPIA dataset,

the method by Das et al. (2018) has shown the best performance so far with precision

0.7694, recall 0.7971, and F1 score 0.7815 for combined image sets from both scanners.

These results are not sufficient for applying automated atypia scoring in clinical prac-

tice, and also point to the need for further research. Another important observation from

the literature review is about the use of deep learning for atypia scoring. The potential

of deep learning algorithms like CNNs are not sufficiently explored for automated nu-

clear atypia scoring in spite of the revolutionary changes brought by such algorithms in

several medical image analysis tasks (Litjens et al., 2017; Pang et al., 2020).

In the extensive survey carried out on molecular biomarker assessment, it is ob-

served that the existing methods focus on quantification and status prediction of one

or at the most two biomarkers of breast cancer that are required for molecular subtyp-

ing. Some of these methods are developed using proprietary or public tissues microar-

ray (TMA) datasets. Other methods used custom IHC slide image datasets obtained

from pathology labs. None of these datasets contains images of all the four biomarkers

required molecular subtyping at a patient-level. Consequently, there are no methods
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found in the literature to assess all the four biomarkers to perform the higher-level task

of determining the molecular subtype of breast cancer. The novel deep learning-based

framework proposed in this thesis work aims to address this research gap.

The following chapters 3, 4, and 5 elaborate the proposed methods to address the

major research gaps identified for mitosis detection, nuclear atypia scoring, and molec-

ular subtyping of breast cancer respectively.
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CHAPTER 3

AUTOMATED MITOSIS DETECTION IN

HISTOPATHOLOGY IMAGES

There are three parameters in breast cancer grading namely mitosis count, nuclear
atypia, and tubule formation. Among them, mitotic cell counting is the most challeng-
ing task for pathologists where they have to identify and count the mitotic cells which
typically will range from 0 – 5 in a high-power field view among the hundreds of other
non-mitotic figures. The two major challenges in developing effective deep learning-
based methods for mitosis detection are lack of sufficiently large datasets, and class
imbalance between mitotic and non-mitotic cells in slide images. In this chapter, a new
approach and a method based on that are proposed to address these challenges. High
training data requirement of the advanced deep neural network is met by combining
two datasets from different sources after a color-normalization process. Class imbal-
ance is addressed by the augmentation of the mitotic samples in a context preserving
manner. Finally, an advanced classifier CNN is used to classify the candidate cells
into the target classes. We have used the publicly available datasets MITOS-ATYPIA
and MITOS for the experiments. The proposed method outperforms most of the recent
deep learning-based methods that are based on independent datasets and at the same
time offers adaptability to combination of datasets from different sources.

3.1 Introduction

In the process of cancer treatment, grading plays a crucial role. Grade of malignant tu-

mor indicates how much they resemble the parent tissue, i.e. degree of differentiation.

Well differentiated tumors have a better prognosis as they are less aggressive than the

poorly differentiated tumors. Aggressiveness indicates how fast the tumor is growing

and how likely it can spread to other parts of the body. Mitotic count is a predominant

objective parameter in breast cancer grading as per Nottingham Grading System (NGS)

(Table 1.1). In NGS, a pathologist observes the H & E-stained histology slides through



a microscope and manually assigns scores to each of the parameters. Such a manual

grading procedure is laborious and error-prone due to a large number of cells per high

power field (HPF) and varying appearance of the cells under mitosis (Paul and Mukher-

jee, 2015). These aspects lead to high inter-observer variability (Fuchs and Buhmann,

2011) in pathological findings. Moreover, in developing and under-developed coun-

tries, pathology services are scarcely available in rural areas. These countries face an

acute shortage of experienced pathologists, which is a hindrance to early diagnosis of

cancer. Consequently, cancer death rates are high in such countries (Bray et al., 2018).

In such a context, automated detection methods can help in faster diagnosis and accu-

rate grading to decide the appropriate treatment plan, even from distant places. This can

effectively bring down cancer death rates. Automatic mitosis detection is one such step

towards developing a completely automated cancer grading system for breast cancer.

3.1.1 Challenges in Automated Mitosis Detection

Automating mitosis detection through histopathology image analysis has the potential

to overcome these challenges associated with manual process. This can also make the

procedure faster and easily accessible. Automated mitotic detection has attracted a lot of

research interest in the recent past, driven by some of the open challenges organized by

scientific agencies (Mathew et al., 2020). Results of the reported methods have shown

gradual improvement over the years. However, the performances of these methods are

often specific to the datasets used and they may not perform the same way with a new

dataset. This is primarily due to the variations across the datasets resulting from staining

differences and acquisition setting used. Automated mitosis detection has got a set of

challenges to address. Mitotic cells vary in their size, shape, and texture based on the

phase of the cell division such as prophase, metaphase, anaphase etc. Such variations

make it difficult for the algorithms and even human observers to distinguish them from

dead cells (apoptotic cells) and other cellular structures that mimic the appearance of

mitotic cells. Figure 3.1 demonstrates the variations among the mitotic cells and their
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Figure 3.1: Challenges in mitosis detection related to appearance of cells. (a) Shape
and size variations among mitotic cells, (b) Non-mitotic cells or structures that resem-
ble mitotic cells in appearance.

visual similarity with other cellular structures. Another problem is that typically in HPF

images mitotic cells are far less in number compared to non-mitotic cells. This causes

class imbalance problem in learning based approaches. In addition to that, staining

variations, make and configuration of the acquisition devices etc., introduce differences

in nature of the images from different datasets that adversely impact the performance

of the detection methods. As a result, a method that works well on one dataset may not

perform the same way on another dataset. Methods that are resistant to such dataset

variations are needed for usage in clinical practice. Class imbalance between the target

objects and lack of sufficiently large training dataset are major challenges for deep

learning-based mitosis detection methods.

In this chapter, a new deep learning-based method for mitotic cell detection from H

& E-stained histopathology images of breast cancer is proposed. An advanced deep

convolutional neural network (CNN) is used as a major component in the method

pipeline. In this patch-based approach, the HPF images are divided into small-sized

non-overlapping image patches to train the model. Data augmentation is applied on the
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mitotic patches to remove the acute class imbalance between mitotic and non-mitotic

samples used in training. A data augmentation technique referred to as context preserv-

ing data augmentation (CPDA) is applied for patch-based training of the model. The

public dataset MITOS-ATYPIA (ICPR, 2014) is used as the base dataset in the pro-

posed method. To meet the high data requirement of the deep learning algorithm used,

the MITOS-ATYPIA dataset is combined with the MITOS dataset. The color variations

in the image samples from these two datasets are reduced by a color-normalization pro-

cess. The model trained with the combined dataset gave improved performance over

the model trained with the base dataset alone.

Rest of this chapter is organized as follows. In Section 3.2, the method proposed

for mitosis detection is explained in detail. Section 3.3 elaborates the experiments con-

ducted, presents the observed results, and compares the results with the state-of-the-art

methods in literature. This section is concluded with a discussion on the highlights of

the proposed method in the context of observed results.

3.2 Methodology

In this section, the proposed method for mitosis detection is explained in detail. Fig-

ure 3.2 gives an overview of the proposed method. The upper block is the training

pipeline which consists of preprocessing stages and CNN training, whereas the lower

block shows the testing pipeline using the trained model. The four major stages in the

proposed method are, i) Image color normalization, ii) Candidate cell detection, iii)

Context preserving data augmentation, iv) CNN training & evaluation. An input HPF

image passes through all these stages in the process of detecting mitotic cells. First two

stages are common for training and testing pipelines. In the third stage, image patches

are extracted in both pipelines, whereas augmentation is performed only for training.

The individual stages are elaborated in the following subsections.
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Figure 3.2: A graphical outline of the proposed method that involves a training
pipeline and a testing pipeline. In the training pipeline, context preserving data aug-
mentation (CPDA) is applied for the mitotic cell patches. The output of the training
pipeline is a trained CNN model employed in the testing pipeline to classify the cell
images.

3.2.1 Image Color Normalization

One of the major challenges in pathology image analysis is the color variations in the

images resulting from factors like non-uniform staining, scanner make and configu-

ration, illumination etc. Hence, as a pre-processing step, histopathology images are

color-normalized to mitigate these variations and to transform these images to a com-

mon color level. There are many color normalization techniques in literature (Khan

et al., 2014; Li and Plataniotis, 2015; Vahadane et al., 2016). A normalization tech-

nique known as Reinhard normalization (Reinhard et al., 2001) is applied to normalize

the HPF images from different scanners and datasets. This method converts the color

characteristics of an HPF image to that of a desired reference H & E image used. Fig-

ure 3.3 shows the color normalization of HPF images from two different scanners Ape-

rio (images a & b) and Hamamatsu (images c & d). The color characteristics of the

images procured using these two scanners are visibly different. Color normalization of
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Figure 3.3: Sample outputs of the Reinhard color normalization of H & E im-
ages. Images (a, b, c, & d) are original images from two different scanners of the
MITOS-ATYPIA dataset (ICPR, 2014) and (e, f, g, & h) are the corresponding color-
normalized images.

these images result in uniformity of color as shown in Figure 3.3 (e, f, g, & h). The

output images have a uniform color pattern compared to the input images. The illus-

trated image samples are part of the same dataset but captured using different scanners.

Images from two different datasets are found to have more color variations and hence

the normalization process is an effective step in such cases also.

3.2.2 Candidate Cell Detection & Segmentation

The next step in mitotic cell detection is to detect all the candidate cells in the HPF

images. The set of candidate cells are identified by nuclei segmentation of the normal-

ized HPF images from the previous step. Candidate cell detection helps to avoid the

processing of unwanted regions like necrosis, fat globules, and empty regions in the

slide images where target cells are not present. Nuclei are the most prominently visible

component of a cell. So, the candidate cell detection is based on the detection of the

nuclei.
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Figure 3.4: Candidate cell segmentation of HPF images. Images a, b, c are the normal-
ized HPF images and d, e, f are the corresponding segmentation output.

We have used a nuclei detection and segmentation method specifically for H & E

histopathology images, proposed by Al-Kofahi et al. (2009). This method consists of

three major stages namely i) Image binarization, ii) Nuclei seed detection and Initial

segmentation, and iii) Segmentation refinement with α-Expansions and Graph Color-

ing. H & E staining of tumor tissues results in differential color binding where the nu-

clei are seen in dark purple color and cytoplasm and other cell structures in pink color.

Through a color-deconvolution process on the H & E image, a nuclear channel image

IN(x, y) is extracted. IN(x, y) is a grayscale image with nuclei appearing with different

intensity compared to the remaining pixels. IN(x, y) is further processed through the

three stages to segment the nuclei. First, IN(x, y) is binarized using the minimum error

thresholding algorithm (Fan, 1998) and the fast max-flow/min-cut algorithm (Boykov

and Kolmogorov, 2004a). In the second stage, a multi-scale Laplacian-of-Gaussian
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based approach is used to detect the nuclei seeds and obtain an initial segmentation.

This is further refined using α-Expansions (Boykov and Kolmogorov, 2004a) and a

graph coloring algorithm in the final stage to give a more accurate segmentation of the

nuclei present in H & E images.

Once the nuclei present in the image are segmented, patches are extracted based on

the presence of cells and labeled as mitotic or non-mitotic using the ground truth anno-

tations in the dataset. HPF image regions without the presence of any cells are excluded

in this process. Figure 3.4 shows the output of the candidate cell segmentation on three

sample HPF images. The number of candidate cells in HPF images varied from a few

dozens to a few hundreds. Out of these, only a few cells (1–5) normally belong to the

mitotic class. This is the reason behind severe class imbalance between the two target

classes. Our proposed method relies on detection rather than accurate segmentation of

nuclei due the patch-extraction used in the following step. Table 3.1 shows the results

of the nuclei detection algorithm (Al-Kofahi et al., 2009) on the datasets used in our

method. The detection rate is computed only for mitotic cells since the datasets contain

ground-truths for this class alone. The average detection rate is 98.60% which indicates

that the algorithm is effective in detecting most of the mitotic nuclei present in the HPF

images.

Table 3.1: Nuclei detection rate (mitotic) given by the detection algorithm (Al-Kofahi
et al., 2009) used in the proposed method.

Dataset fold Detection rate
Fold 1 97.28
Fold 2 98.89
Fold 3 98.45
Fold 4 100.0
Fold 5 98.38
Average 98.60
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3.2.3 Context Preserving Data Augmentation

Deep learning algorithms require large amount of data samples for training since the

algorithm learns the discriminating features of the target class objects through these

samples. Often, the dataset may not be as large as required or there can be class im-

balance between the target classes. In the proposed method, a patch-based approach

is used where patches of a desired size (96 × 96 pixels in this case) are cropped from

the HPF images to use for training. In this way, a large number of image patches are

extracted from the images in the dataset. However, the class-imbalance between mitotic

and non-mitotic cells in the HPF images causes non-mitotic patches to out-number the

mitotic patches by a huge margin. This can negatively impact the feature learning by

CNNs in the training phase.

Figure 3.5: (a) Representation of conventional context non-preserving data augmenta-
tion (CNDA), (b) Context preserving data augmentation (CPDA) used in the proposed
method.
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Normally data augmentation techniques like translation, rotation, flipping

etc. (Shorten and Khoshgoftaar, 2019), are used to counter shortage of training sam-

ples and class-imbalance. In conventional augmentation of the image patches, oper-

ations like translation, rotation etc., result in no-data regions typically having zero as

pixel values. This leads to the loss of context information of the target object and

disables an unfairly large number of neurons in the neural network to negatively im-

pact the learning process. This can cause misclassification in testing since test samples

are not augmented, and hence free from such no-data regions or zero pixels. In the

proposed method, the extraction of the image patches is combined with a data augmen-

tation technique referred to as context preserving data augmentation (CPDA). In the

case of CPDA, cropping of image patches and data augmentation is combined in such a

way that for a target object (mitotic cell), multiple patches are cropped. For each patch,

the crop window is adjusted around the mitotic cell to create the effect of translation in

multiple directions. Figure 3.5(a) demonstrates conventional translation based augmen-

tation and Figure 3.5(b) shows the representation of context preserving augmentation.

In this way, CPDA performs data augmentation for the mitotic image patches by pre-

serving the context in the original image. The effect of CPDA on the performance of

the method in comparison with the context non-preserving augmentation is discussed

in the results section (Section 3.3.4).

3.2.4 CNN Training and Evaluation

Deep learning, especially convolutional neural networks (Gu et al., 2018), are widely

used in pathology image analysis (Srinidhi et al., 2020) these days. A deep convolu-

tional neural network forms the backbone of the proposed method by classifying the

patches containing tumor cells as mitotic or non-mitotic. Many of the recent CNNs

are experimented to identify the one that performs better for this task. Result of this

comparative study is given in Section 3.3.4. The outcome of the study indicates that

DenseNet (Huang et al., 2017) is the suitable architecture among the candidate CNNs
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considered. DenseNet is a proven CNN architecture for image analysis tasks. It is made

of multiple dense blocks in which each layer is connected to every subsequent layer

within the dense block in a feed forward manner. Dense blocks are separated by transi-

tion layers consisting of convolution and max-pooling operations. DenseNet has several

advantages such as resistance to vanishing gradient problem, less trainable parameters,

low computational requirement etc., over its contemporary architectures. DenseNet ar-

chitecture has three different configurations such as DenseNet121, DenseNet169, and

DenseNet201. In the comparative study, it is observed that DenseNet121 gives the best

results among these three configurations. Moreover, the number of trainable parameters

is much less in DenseNet121, which significantly reduces the computations and hence

the training time.

In the proposed method, DenseNet121 architecture is configured as a binary clas-

sifier. This architecture consists of 121 layers of trainable weights. The number of

trainable parameters in this network are 5,245,568. For the intermediate layers ReLU is

used as the activation function and Softmax is used for the final layer. Categorical cross

entropy is the loss function used in this model. Adam optimizer with a learning rate of

0.0003 is used for weight optimization. The other hyperparameters used in the model

are, batch size = 32, dropout = 0.3, and EPOCHs = 100. For finalizing the model hyper-

parameters, one random train-test division of MITOS-ATYPIA (ICPR, 2014) dataset is

used.

Mitosis detection is posed as a binary classification problem in the proposed method.

Every image patch is to be classified as mitotic or non-mitotic. An image patch is la-

beled as mitotic if there is at least one mitotic nucleus present in it and non-mitotic oth-

erwise. Class imbalance between the two classes is addressed using data augmentation

as described in the previous section. For training, every mitotic sample is augmented

at a ratio of 1:20 using CPDA and other additional conventional techniques to match

the total number of non-mitotic samples. For testing, a similar procedure is followed

as in case of training except that data augmentation is not done on test image patches
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to retain the class imbalance. Retention of the original class imbalance in HPF images

while testing is essential to get a realistic performance measure of the model.

3.3 Experimental Results & Discussion

3.3.1 Dataset

The most commonly used dataset for mitosis detection is MITOS-ATYPIA (ICPR,

2014) released as part of the MITOS-ATYPIA grand challenge. This dataset contains

labeled image data for two tasks related to breast cancer grading i.e., mitosis detec-

tion and nuclear atypia scoring. For mitosis detection, there are 2400 training images

captured at 40× magnification using two scanner models Aperio Scanscope XT (1200

samples, 1539 × 1376 pixels each) and Hamamatsu Nanozoomer 2.0-HT (1200 sam-

ples, 1663 × 1485 pixels each). These images were captured randomly from pathology

slides of breast cancer patients and analyzed by two expert pathologists to label the

mitotic cells. Among the training images, 760 images have at least one mitotic cell

present. Out of these, 80% of the images are utilized in training and the remaining for

testing to decide the model hyperparameter values. From the training set, image patches

of dimension 96 × 96 pixels that contain the mitotic cells are extracted and augmented

to match the number of non-mitotic image patches. The patch size is finalized based on

the experiments on different patch sizes. A total of 44,180 image patches are created

to train the neural network with equal share of mitotic (with augmentation) and non-

mitotic (without augmentation) samples. Non-overlapping image patches are extracted

by covering all the candidate nuclei detected in segmentation and used in testing. This

has helped to further reduce the class imbalance between target classes, compared to

patch extraction by centering every candidate nucleus.

There is another public dataset MITOS (ICPR, 2012) with 100 HPF images (70 for

training & 30 for testing). Since the number of training images are less, this dataset
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is not found to be suitable to train DenseNet independently. Instead, this dataset is

used to supplement the MITOS-ATYPIA dataset and to increase the number of train-

ing and testing samples. Hence two sets of experiments are conducted, first one with

MITOS-ATYPIA dataset and the second one with a combined dataset created by merg-

ing MITOS and MITOS-ATYPIA datasets.

3.3.2 Experiment Setup

The proposed method can be logically divided into two phases. One is the pre-processing

phase that includes color normalization, candidate cell detection, and patch creation

with data augmentation. This phase is performed using an Intel Xeon processor with 64

GB RAM and common python/matlab libraries. Second phase of the method is training

and testing the deep CNN used i.e, DesneNet121. For this phase, a Tesla V100 GPU

with 32 GB RAM and python framework Keras with Tensorflow as the backend are

used.

Cross validation is considered as a preferred approach to validate the generalizabil-

ity of a deep learning model when there is deficiency of data samples. For the proposed

method, a 5-fold cross validation is adopted. The entire dataset is randomly divided

into five disjoint sets of equal size. Five different train/test data folds are created using

these disjoint sets such that each set is used exactly once as the test set and remaining

sets combinedly as the training set. This process is equivalent to conducting the con-

ventional training, validation, and testing five times with mutually exclusive random

test sets of unseen data each time. This ensures that every sample in the dataset appears

in the test set exactly once. As a result, 5-fold cross validation is a better way to assess

the model and especially useful when the dataset is small with class imbalance present.

All possible mitotic and non-mitotic patches of size 96 × 96 pixels are extracted from

the training set of every fold. Mitotic patches are augmented to match the number of

non-mitotic patches using the techniques described before.

47



Cross validation experiments are carried out with three different compilations of the

dataset while the process pipeline and CNN configuration are kept the same. The three

dataset compilations are as follows.

i) MITOS-ATYPIA with CPDA: In this the mitotic samples are augmented by the pro-

posed context preserving data augmentation (CPDA) as described in the methodology

(Section 3.2.3).

ii) Combined dataset with CPDA: This dataset is formed by combining MITOS-ATYPIA

and MITOS datasets. MITOS is a small dataset of 70 training images and 30 test

images, suitable in conventional machine learning methods but not large enough to

train advanced CNNs. In this compilation also the mitotic samples are augmented with

CPDA.

iii) Combined dataset without CPDA: The mitotic samples in the combined dataset are

augmented in the conventional context non-preserving manner (CNDA) as described in

Section 3.2.3.

3.3.3 Evaluation Metrics

Accuracy is not considered to be a suitable metric when there exists class imbalance in

the test samples (Buda et al., 2018; Chawla, 2009). In this binary classification problem,

the positive class of mitotic cells are far less compared to non-mitotic cells and mimics.

Hence, most of the existing methods for mitosis detection have used Precision, Recall,

and F1 Score as the metrics for evaluation. For a fair comparison with the existing

methods, the performance of the proposed method is captured using the same set of

metrics. The definitions of these metrics are given in Appendix A.
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Table 3.2: Result of the experiments carried out to choose the suitable CNN architec-
ture for the proposed method.

CNN Architecture Precision Recall F1 Score
VGG16 (Simonyan and Zisserman, 2014) 48.99 70.19 57.71
ResNet50 (He et al., 2016) 46.29 75.00 57.25
ResNet101 (He et al., 2016) 55.56 55.29 55.42
NasNetLarge (Zoph et al., 2018) 45.37 73.08 55.99
DenseNet169 (Huang et al., 2017) 48.23 72.12 57.80
DenseNet201 (Huang et al., 2017) 51.85 80.77 63.16
DenseNet121∗ (Huang et al., 2017) 73.05 60.64 66.27
*Used in the proposed method

3.3.4 Results

The results of the experiments conducted with the three different dataset compilations

are presented here. Since a CNN forms the mainstay of the proposed method, selec-

tion of an appropriate CNN architecture was a crucial decision to make. For this pur-

pose, experiments are carried out using many of the state-of-the-art CNN architectures.

One random train-test split of the combined dataset was used in these experiments. Ta-

ble 3.2 presents the results of the experiments for choosing the CNN. It was found that

DenseNet architectures fared better in this comparative study. This has been the moti-

vation for choosing a DenseNet architecture for the proposed method. Even though the

DenseNet201 variant has given a higher recall value, it is computationally more expen-

sive with nearly three times trainable parameters compared to DenseNet121. Hence,

the DenseNet121 variant is chosen for the proposed method. If the additional compu-

tational complexity is ignored, DenseNet201 can also be a good choice for the CNN

classifier to get better results.

Table 3.3 shows the results of 5-fold cross validation on the MITOS-ATYPIA dataset

with the CPDA approach for augmentation. This gives mean values of 57.73, 60.94, and

59.29 for precision, recall, and F1 score respectively. Fold 1 is found to give the best re-

sults among the 5 folds. However, the average score of all folds is the reliable indicator

of how well the model can perform on random unseen data.

49



Table 3.3: Result obtained using five-fold cross validation of base dataset MITOS-
ATYPIA with CPDA.

Fold Precision Recall F1 Score
Fold 1 64.67 71.04 67.71
Fold 2 31.25 75.01 44.11
Fold 3 70.56 59.77 64.72
Fold 4 68.53 58.68 63.22
Fold 5 53.62 40.21 45.96
Average 57.73 60.94 59.29

Table 3.4: Result obtained using 5-fold cross validation of combined dataset with
CPDA.

Fold Precision Recall F1 Score
Fold 1 73.05 60.64 66.27
Fold 2 32.01 88.88 47.06
Fold 3 70.34 57.51 63.28
Fold 4 60.25 69.23 64.42
Fold 5 57.14 52.17 54.54
Average 58.56 65.69 61.91

In the next set of experiments, the impact of supplementing the base dataset MITOS-

ATYPIA with images from the MITOS dataset captured in a different setting is stud-

ied. Table 3.4 shows the results of the 5-fold cross validation of this combined dataset.

Average values of precision, recall, and F1 score are 58.56, 65.69, and 61.91 respec-

tively. Compared to the previous results of the MITOS-ATYPIA dataset, here the results

show improvements for all the three measures. This shows that the proposed method

continues to give improved performance as the dataset gets bigger with more samples,

even when the additional samples are from a different dataset altogether. It also indi-

cates that the performance of the model can improve further if more training samples

are added. In that way, the proposed method offers a general framework for mitosis

detection that is more resilient to dataset variations resulting from staining differences

and acquisition setting.

In Figure 3.6, the learning pattern of DenseNet121 is shown graphically. Training

loss, training accuracy, validation loss, and validation accuracy are plotted against the

training EPOCHs for the base dataset (Figure 3.6(a)) and the combined dataset (Fig-
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Figure 3.6: Learning pattern of the CNN using (a) base dataset and (b) combined
dataset.

ure 3.6(b)). It is noticeable from the validation curves that the learning is smoother

(less fluctuations) in case of combined dataset especially in the second half of training.

This indicates improved stability of the model trained with the combined dataset. The

effectiveness of a classification system at various thresholds is normally captured us-

ing receiver operating characteristic (ROC) curves and area under ROC curves (AUC)

for each class. However, in classification problems with large class imbalance be-

tween positive and negative classes ROC curves give an over-optimistic representation

of the performance. In such cases precision-recall plots give a realistic representation

of the classification performance for each class (Saito and Rehmsmeier, 2015; Davis

and Goadrich, 2006). The severe class imbalance between mitotic and non-mitotic cells

has been the motivation to consider precision-recall curves over ROC curves. Figure 3.7

shows the precision-recall curves obtained for all the five folds of cross-validation. The

average precision (AP) obtained for all thresholds is shown for each class. These plots

show a balancing effect of precision and recall for the positive class of mitotic cells and

are in line with the results shown in Table 3.4. For the negative class of non-mitotic

figures, the effectiveness of the system is much better even though its significance in

this problem is low.

Confusion matrix gives a detailed picture of the classification with respect to the

four possible outcomes for input samples such as true positive (TP), true negative (TN),
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Figure 3.7: Precision-Recall curve and average precision (AP) obtained for the mitotic
and non-mitotic cell classification using different folds of the combined dataset (a)
Fold 1, (b) Fold 2, (c) Fold 3, (d) Fold 4, and (e) Fold 5.

Figure 3.8: Representative confusion matrices obtained for the combination of
datasets MITOS and MITOS-ATYPIA (a) Fold 1, (b) All folds combined. Mitosis is
the positive class and non-mitosis figures constitute the negative class in this binary
classification problem.

false positive (FP), and false negative (FN) to which each test sample is mapped. In Fig-

ure 3.8, confusion matrix obtained for the fold 1 (Figure 3.8(a)) and the combined ma-

trix for all five folds are presented (Figure 3.8(b)). In both cases, the model is effective
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Table 3.5: Comparison of context preserving data augmentation (CPDA) and conven-
tional context non-preserving data augmentation (CNDA) in each fold of 5-fold cross
validation.

CV–Fold Augmentation Precision Recall F1 Score

Fold 1
CNDA 76.47 50.32 60.70
CPDA 73.05 60.64 66.27

Fold 2
CNDA 23.52 74.07 35.71
CPDA 32.01 88.88 47.06

Fold 3
CNDA 65.81 51.70 57.91
CPDA 70.34 57.51 63.28

Fold 4
CNDA 63.06 53.36 57.81
CPDA 60.25 69.23 64.42

Fold 5
CNDA 58.88 32.60 41.95
CPDA 57.14 52.17 54.54

Average CNDA 57.55 52.41 54.86
CPDA 58.56 65.69 61.91

in classifying the negative class of non-mitotic cells as indicated by the high value of TN

and relatively low value of FP. However, the effectiveness of mitotic cell classification is

moderate with a high proportion of FNs. These figures suggest the challenging nature

of the mitotic detection problem. Even though the strategies like combining datasets

and augmentation yielded positive results, the need for further research is visible from

these outcomes.

The impact of context preserving data augmentation technique applied in the pro-

posed method is studied in a separate set of experiments. Table 3.5 presents the compar-

ison of CPDA approach with the CNDA using 5-fold cross validation on the combined

dataset. The dataset folds and experimental setup were kept the same for the two sets

of experiments, one with CPDA and other with CNDA. It is observed that the CPDA

approach clearly gives superior performance over CNDA. Recall values and F1 scores

are consistently better for all the folds in cross-validation when CPDA is used. Average

values of precision, recall, and F1 score using CPDA show significant improvement

over the corresponding values using CNDA.

The result of the proposed method is compared with the deep learning methods that
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Table 3.6: Comparison of the proposed method with the state-of-the-art deep learning
methods based on MITOS-ATYPIA dataset. (A: Aperio scanner images, H: Hama-
matsu scanner images, M: MITOS dataset).

Method Precision Recall F1 Score
Deep ResNet (Li et al., 2018) 43.10 44.30 43.70
Deep Cascade Network (Chen et al., 2016a) 41.10 47.80 43.70
RCNN (Cai et al., 2019) 53.00 66.00 59.50
DCNN + Wavelets (A) (Das and Dutta, 2019) 54.40 57.60 55.90
DCNN + Wavelets (H) (Das and Dutta, 2019) 57.40 62.20 59.70
DCNN + Wavelets (A-H Avg.) (Das and Dutta, 2019) 55.94 59.94 57.87
Proposed method (A&H) 57.73 60.94 59.29
Proposed method (A&H&M) 58.56 65.69 61.91

used the MITOS-ATYPIA dataset for a fair comparison. The compared methods have

used either a single train-test split of the dataset (Li et al., 2018; Chen et al., 2016a) or

cross validation (Cai et al., 2019; Das and Dutta, 2019). Evaluation of the model with

a single train-test split may not reflect a realistic performance since only a fraction of

the dataset is used for testing. Possibility of biased results is high in this case due to

over-fitting or a bias in the test sample selection. The five-fold cross validation carried

out is equivalent to the creation of five train-test splits and evaluation of the model

with each of them. This approach makes sure that every sample in the dataset appears

once as a test sample in any one of the folds. It also eliminates the possibility of biased

results due to over-fitting. The final result is computed by averaging the results of all the

folds. Comparison of the proposed method with the other deep learning-based methods

is given in Table 3.6. It can be seen from the table that the proposed method gives

better performance over the existing methods on the base dataset MITOS-ATYPIA.

The values of metrics Precision, Recall, and F1Score are improved by 3.2%, 1.7%,

and 2.5% respectively over the state-of-the-art method. Using the combined dataset, the

results show further improvement of 4.7%, 9.6%, and 6.9%.
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3.3.5 Discussion

There are various factors which make automated mitosis detection a challenging task.

The major ones are varying shape and size of mitotic nuclei, their similarity with apop-

totic cells, class imbalance between mitotic and non-mitotic samples in HPF images,

staining variations in slide preparation, limited size of the datasets etc. Here, the impact

of the two strategies applied to overcome the dataset size limitation and class imbalance

are discussed.

3.3.5.1 Impact of Combining Datasets

Most of the methods in literature have used shallow CNN architectures (Chen et al.,

2016a; Cai et al., 2019; Das and Dutta, 2019) due to the limited dataset size and class

imbalance. These problems have been bottlenecks for using very deep CNNs in mitosis

detection due to poor learning by the networks. Moreover, all existing methods in the

literature are independently trained on each dataset and tested on unseen samples from

the same dataset. Such a trained model is less likely to give similar performance on

test samples from a new dataset and less useful for implementation in clinical practice.

A recommended model would be the one which is more resilient to variations across

datasets resulted by slide preparation, image acquisition setup etc. Instead of training

independent models for each new dataset, a model that continues to improve the per-

formance in sync with constant addition of new training samples to a single training

pool is more suitable in practice. The proposed method is first of its kind to adopt this

paradigm for mitosis detection. Color normalization (Reinhard et al., 2001) in the first

stage brings the images from different datasets to a common color level to alleviate the

variations related to staining and acquisition. An advanced deep learning architecture

capable of continued learning from new data samples introduced in the dataset is cho-

sen. The experimental results testify this. The base dataset (ICPR, 2014) has 760 HPF

images with at least one mitotic cell in each. The result obtained using this dataset is

given in Table 3.3. Adding another 100 images from (ICPR, 2012) to this base dataset
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gives notable improvement in the results as shown in Table 3.4. This improvement

points to the prospects of combining smaller datasets with appropriate normalization

techniques to create a large dataset to meet the data requirement of deep neural net-

works. Methodologies like deep learning and research problems that require a large

dataset may consider this approach to create sufficient data to train the algorithms. Such

methods will be more generalizable and better accommodative to unseen test data as re-

quired in clinical application. In mitosis detection and many related pathology image

analysis tasks, the possibility of creating a large dataset from a single facility is remote,

considering the manual effort required from pathologists to acquire and annotate slide

images.

3.3.5.2 Impact of Context Preserving Augmentation

Class imbalance is a serious hurdle for adoption of deep learning approaches in many

image analysis tasks (Johnson and Khoshgoftaar, 2019; Wang and Yao, 2012). It is

the skewed distribution of target class samples in the dataset, leading to poor or biased

learning. In the case of mitosis detection, the class imbalance between the positive class

(mitosis) samples and negative class (non-mitosis) samples is huge. In an HPF image at

40× magnification typically there are 0 – 5 mitotic cells whereas non-mitotic cells may

go up to a few hundreds. This severe class imbalance necessitated heavy augmentation

of the mitotic samples to match the number of non-mitotic samples present in large

numbers. The context preserving image data augmentation (CPDA) applied in this work

made a positive impact on the performance. The conventional augmentation, based on

geometric transformations (Shorten and Khoshgoftaar, 2019), leads to loss of original

context of the mitotic nuclei in the augmented patches and turn-off a large number of

neurons in the neural network in the training stage. As a result of CPDA, the contextual

information of the mitotic nuclei is preserved in the augmentation process. Results

in Table 3.5 shows the impact of CPDA compared to the conventional augmentation

that does not care about preserving the context of the target object. However, CPDA in
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its original form is suitable only for patch-based approaches where the actual training

images are extracted patches from images of high dimensions. Many of the pathology

image analysis tasks follow the pattern of patch-based processing.

3.4 Summary

In this chapter, a new deep learning-based method for automated mitosis detection in H

& E-stained histopathology images of breast cancer is proposed. The method involves

multiple stages such as color normalization of slide images, detection of candidate cells,

and patch-based training of an advanced CNN to classify mitotic and non-mitotic cells.

Class imbalance between the two target classes necessitated heavy augmentation of

mitotic samples to match the number of non-mitotic samples to train the CNN. The

augmentation is carefully done in a context preserving way to yield improved results.

The base dataset is extended by merging another dataset acquired in a different setup

altogether to address the data insufficiency. The proposed method shows adaptability

to the additional dataset by giving better performance compared to the base dataset.

This shows that the model continues to improve from the new training samples in spite

of the variations in the images acquired from different settings. The effort to apply

an advanced CNN like DenseNet on a skewed dataset for mitosis detection has shown

encouraging results. The scope for future improvements to the proposed method is by

applying strategies such as enhancing the dataset further, compensating for the class

imbalance in the model design, and use of better CNNs.
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CHAPTER 4

AUTOMATED NUCLEAR ATYPIA SCORING OF

BREAST CANCER

In this chapter, a novel deep learning-based framework for automated nuclear atypia
scoring of breast cancer is proposed. The framework consists of three major phases
namely preprocessing, deep learning, and postprocessing. The original three-class
problem of slide level atypia scoring is reformulated as a six-class problem of nuclei
classification to enable the effective use of deep learning algorithms to address this
task. Subsequently, a deep convolutional neural network (CNN) is used to classify the
six classes of nuclei present in slide images. The output of this classifier is processed to
predict the nuclear atypia score of the input slide image. The publicly available slide im-
age dataset MITOS-ATYPIA is used for the experiments. The proposed method gives
a performance that exceeds the state-of-the-art by a significant margin with the results
0.8766, 0.8760, and 0.8745 for the metrics precision, recall, and F1 score respectively.
The improvements in these metric values by 13.93%, 9.89%, and 11.90% over state-
of-the-art method vindicate the effectiveness of the proposed framework in automated
atypia scoring of breast carcinoma.

4.1 Introduction

Nuclear atypia (also known as nuclear pleomorphism) is an integral factor of breast

cancer grading as per Nottingham Grading System (NGS) (Elston and Ellis, 2002). Nu-

clear atypia refers to the degree of morphological distinction of malignant tumor nuclei

from normal nuclei. Compared to the parent tissue cells which are generally uniform

in appearance, tumor cells show large variations in their features such as size, shape,

number of nucleoli, and chromatin distribution (Stierer et al., 1991; Kristiansen, 2018).

These variations are valuable indicators of the aggressiveness of cancer and hence the

assessment of these variations forms an important parameter of breast cancer grading

and prognostication (Pienta and Coffey, 1991). Unlike the mitosis count parameter,



Figure 4.1: Sample slide images to demonstrate complexity and structural diversity
within histopathology slide images. Major portions of the slide images are occupied
by (a) stroma, tumor cells, and lymphocytes, (b) tumor cells, necrosis, stroma, and fat
globules. A closer view of different regions is given in Figure 4.8.

which is objective and has well-defined criteria, nuclear atypia scoring is largely subjec-

tive (Dunne and Going, 2001) mainly due to practical difficulty in measuring multiple

contributing factors in a uniform way. This subjectivity makes manual atypia scoring

prone to errors, intra- and inter-observer variations, and low reproducibility (Frierson Jr

et al., 1995). Fully automated or computer-assisted atypia scoring can solve these prob-

lems associated with manual scoring (Gandomkar et al., 2019; Das et al., 2020b).

4.1.1 Challenges in Automated Nuclear Atypia Scoring

H & E-stained histopathology slide analysis is the universally accepted and cost-effective

procedure for nuclear atypia scoring and breast cancer grading. When it comes to the

automation of this procedure through image analysis, there are several challenges exist-

ing. The major challenges found from the literature and experienced during the devel-

opment of this work are discussed in this section.
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4.1.1.1 Complexity of Histological Slide Images

Conventionally nuclear atypia scoring is performed at 20× magnification of the histol-

ogy slide, representing a relatively larger field-of-view through the microscope. The

slide images captured at this magnification have an amalgamation of diverse structures

such as malignant tumor cells, lymphocytes, stroma cells, necrotic cells, hemorrhages,

lipids, etc. However, only the malignant tumor regions and morphological attributes of

tumor cells are considered for atypia scoring. In fully automated methods, the other

cellular structures are irrelevant and often lead to performance degradation since an ac-

curate delineation of the tumor regions from the rest is difficult. Figure 4.1 shows sample

slide images from two different subsets of the public dataset MITOS-ATYPIA (ICPR,

2014) used in most of the automated atypia scoring methods in the literature. Most parts

of the images are occupied by tumor cells, lymphocytes, stroma (connective tissues),

necrosis, and fat globules. Multiple clusters of these components are spread across the

image unevenly to make the overall structure highly complex.

4.1.1.2 Inter-class Similarity and Intra-class Variations

Deep learning algorithms require large amounts of training data. This is because the

discriminative features of the target classes are learned from the labeled training sam-

ples presented to the algorithm, and more training samples lead to improved learning

by the model. The MITOS-ATYPIA dataset contains slide images from two differ-

ent slide scanners namely Aperio Scanscope XT and Hamamatsu Nanozoomer 2.0-HT.

Images from these two scanners vary in their color intensity levels due to staining vari-

ations and make/configuration of the scanners. In many cases, similarity between slide

images that belong to different atypia score classes is high as evident from the level

of pathologists’ disagreement in atypia scoring (Dunne and Going, 2001). Figure 4.2

demonstrates instances of inter-class similarity present in the slide image dataset used

for nuclear scoring. Figure 4.2(a) and Figure 4.2(b) are extracted samples of tumor re-

gions from image subset A10. Even though visually both the images look very similar
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Figure 4.2: Inter-class similarity of slide images. From subset A10: (a) Score 2 slide
image, (b) Score 3 slide image; From subset A11: (c) Score 2 slide image, (d) Score 3
slide image.

they are labeled as score 2 and score 3 respectively. In the same way Figure 4.2(c)

and Figure 4.2(d) are samples from subset A11 and labeled as scores 2 and 3. These

two samples also look very much identical but annotated with different atypia scores.

Such scenarios are extremely challenging in both manual and automated atypia scoring.

Intra-class variation is another problem in automated atypia scoring. The appear-

ance of the malignant tumor images of the same atypia score may have large varia-

tions. Figure 4.3 illustrates intra-class variations present in the tumor regions of slide

images from different subsets of the MITOS-ATYPIA dataset. All the samples in this

figure are labeled with nuclear atypia score 2. But the variations in color intensity, mor-
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Figure 4.3: Intra-class variations in score 2 type slide images from different subsets
(A03, A04 etc.) of the MITOS-ATYPIA dataset. These samples vary substantially in
appearance even though they all have the same atypia score of 2.

phology of tumor cells, texture, etc., are apparent to even a non-expert observer. Most

of the existing methods for automated nuclear atypia scoring are based on the hand-

crafted features extracted from these images. It is challenging to design a generalized

model based on handcrafted features to capture these levels of intra-class variations and

classify the unseen image samples accurately. This may be the reason behind the poor

performance of handcrafted feature-based methods in the literature. In general, these

challenges apply to other similar histopathology image analysis tasks as well. In the

proposed framework these challenges are addressed by reformulating the problem and

with the effective use of deep learning.

Apart from a few earlier methods, significant research on nuclear atypia scoring

happened after the grand challenge MITOS-ATYPIA (2014), which released a large

public dataset of 600 slide images of 20×magnification for this task. Since then, several
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methods have been published for solving this clinically relevant problem. However, the

existing methods have not achieved the performance level required for application in

clinical practice. This can be partly attributed to the challenging nature of the problem.

It is also observed that the potential of advanced deep learning algorithms is not fully

exploited to address this problem. In its original form, the dataset is not suitable to

apply high performing deep learning algorithms like CNNs. The reasons for this are the

high dimension of the slide images (Aperio:1539 × 1376, Hamamatsu:1663 × 1485),

the structural complexity of the images, and the availability of only image-level atypia

score in the dataset as ground truth. Computationally it is not feasible to feed such high

dimensional images to CNNs directly. Even if it was feasible, the structural diversity

within the images cannot be discriminatively learned by the CNNs with the limited

number of slide images per scanner, after reserving a fraction for testing.

Nuclear atypia scoring is a three-class problem where each slide image is assigned

with an atypia score of 1, 2, or 3. In the proposed framework, this is reformulated

as a six-class problem through additional labeling and preprocessing of the training

slide images. Six major nuclei classes are defined to categorize all nuclei present in

slide images. This includes three-classes of cancerous nuclei that are used for nuclear

atypia scoring (scoring classes) and another three classes that are not involved in the

scoring process (elimination classes). In the absence of these elimination classes, nuclei

of such types might end up being classified into any one of the scoring classes and

affect the accuracy of scoring. A set of preprocessing steps are used to transform the

dataset in a manner that becomes suitable to train an advanced CNN to classify all nuclei

into appropriate classes. In the post-processing stage, the nuclei that are classified into

scoring classes are used for atypia score prediction. Rest of the nuclei classified into

elimination classes are ignored since they are not required for atypia scoring as per the

pathology procedure.

The major contributions of this chapter are as follows:

• A novel framework is proposed for automated nuclear atypia scoring of breast
cancer that closely resembles the pathologists’ way of manual nuclear atypia scor-
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ing. The framework has a futuristic design that provides flexibility to plug newer
and better algorithms in its major phases such as preprocessing, deep learning,
and post-processing to further improve atypia scoring performance.

• The intrinsic three-class problem of slide level nuclear atypia scoring is reformu-
lated as a six-class problem of nuclei classification in the deep learning phase
of the framework. This reduces complexity and makes it appropriate for the
deep learning algorithm to learn the features that accurately discriminate different
types of nuclei.

• The method proposed in this chapter follows this framework. The result obtained
for this method is significantly improved over the state-of-the-art methods for
automated atypia scoring. This performance testifies to the effectiveness of the
proposed approach.

The rest of the chapter is organized as follows. The proposed framework and the

method based on this framework are explained in Section 4.2. Experimental setup, re-

sults, and related discussions are presented in Section 4.3. Finally, the chapter is con-

cluded with a summary of the proposed method and the outlook on the clinical usage

of automated nuclear atypia scoring.

4.2 Proposed Framework

In the three-class problem of nuclear atypia scoring, a slide image from the tumor region

is assigned a score of 1, 2, or 3 by a pathologist based on the features of malignant

nuclei present. However, there are other types of non-malignant cells/nuclei present in

slide images that are ignored by pathologists in the manual procedure. The proposed

framework adopts the approach of segregating these two categories of nuclei (malignant

& non-malignant) and using only malignant nuclei for atypia scoring. To achieve this

objective, the problem is formulated as a six-class nuclei classification problem where

the first three classes correspond to nuclei of score 1, 2, and 3. These classes are together

referred to as scoring classes. The remaining three classes are nuclei of lymphocytes,

necrotic cells, and stroma cells which are non-malignant. These classes are referred to

as elimination classes since these are not involved in atypia scoring.
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Figure 4.4: Overview of the proposed framework for automated nuclear atypia scor-
ing. Three major phases in the framework are: (a) Image preprocessing, (b) Deep
learning, (c) Post-processing. (Post-processing is involved only in the slide level eval-
uation of nuclear atypia score.)

The proposed framework for nuclear atypia scoring is outlined in Figure 4.4. This

framework consists of three major phases namely i) Image preprocessing, ii) Deep

learning, and iii) Post-processing. The image preprocessing phase is common to both

training and evaluation. In this phase, color normalization and nuclei detection are

performed on the input slide images. Color normalization is aimed at mitigating the

color variations introduced in the slide images due to the staining differences or acqui-

sition setup. Further, all the nuclei present in the slide images are detected. The deep

learning phase of the framework starts with further preprocessing specific to training of

the deep CNN used. Here, the three-class problem of nuclear atypia scoring is trans-

formed into a six-class nuclei classification problem. This is done through class-wise

extraction of nuclei regions from the training slide images. This process is explained

in Section 4.2.2. The framework offers flexibility to use any suitable CNN classifier

algorithm in the deep learning phase. The chosen CNN is trained to accurately classify

the six classes of nuclei. For the prediction of slide level atypia score, all the nuclei

detected in any given test slide are extracted as fixed size image patches and fed to the
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trained CNN model. In the post-processing phase, nuclear patches that are classified

into scoring classes are used to predict the atypia score corresponding to the input slide

image. All the nuclei that are classified into any of the elimination classes are ignored

as in the case of manual atypia scoring. Overall, the framework is designed in a generic

manner that in each phase such as preprocessing, deep learning, and post-processing, it

is possible to choose any existing or new algorithms suitable for the task. A concrete

method pipeline is implemented based on this framework (the proposed method). In the

following sections, the proposed method is explained in detail.

4.2.1 Image Preprocessing

Color normalization and nuclei seed detection are the major steps in the preprocessing

phase of the proposed framework. There are several specialized algorithms available

in literature to perform these tasks for H & E-stained histopathology images. In this

section the algorithms applied in the preprocessing phase of the proposed framework

are briefly discussed.

Color normalization of slide images

One of the challenges in histopathology image analysis is the color variations in

the slide images. This is mainly due the variation in concentration of stains used and

the configuration of scanners that are used for digitizing the slides. Tissue staining is a

manual process and when done by different people, there is a possibility of stain varia-

tion causing color changes in the slide images. Such variations are counter-productive

in CNN-like algorithms which tend to learn pathologically irrelevant color features.

Color normalization is a common preprocessing step used to solve this problem (Onder

et al., 2014). In the MITOS-ATYPIA dataset, there are slide images from two different

makes of the scanners, and images from these scanners show substantial color varia-

tion necessitating color normalization. There are several color-normalization methods

available for histopathology images in literature (Reinhard et al., 2001; Khan et al.,
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Figure 4.5: Color normalization of slide images. (a, b, and c) are the unnormalized
images and (d ,e , and f) are the corresponding normalized images.

2014; Li and Plataniotis, 2015; Vahadane et al., 2016). The classic color normalization

technique proposed by Reinhard et al. (2001) based on lαβ color space is applied in

the proposed method. The method computes mean and standard deviation of a refer-

ence H & E image in lαβ space and matches the color statistics of the source image to

this. Figure 4.5 shows the sample slide images from the MITOS-ATYPIA dataset which

are captured using Aperio and Hamamatsu scanners. The images a, b, and c show vis-

ible color variations, which distracts the deep learning algorithms that are expected to

learn morphological and textural features for atypia scoring. The images d, e, and f

in Figure 4.5 show the corresponding normalized versions of a, b, and c. Color normal-

ization is observed to perform contrast enhancement of over-exposed images as in the

case of Figure 4.5(c). Normalized image Figure 4.5(f) has better contrast and visible

texture than the original image.
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Figure 4.6: Nuclei seed detection in slide regions of different nuclei classes. (a, b, c,
and d) are the slide regions of lymphocytes, score 2, score 3, and necrosis classes re-
spectively, (e, f, g, and h) are corresponding nuclei detected.

Nuclei seed detection

Once the slide images are color-normalized, the next preprocessing step is to detect

all the nuclei in the slide images. The nuclei detection and segmentation algorithm

by Al-Kofahi et al. (2009) is used to detect the nuclei seed points. In this method,

color deconvolution is used to separate hematoxylin and eosin components from the

slide images. In H & E staining, hematoxylin attaches with the nucleoli to give them

dark-purple color whereas eosin binds with cytoplasm and surrounding structures to

give shades of pink. Color deconvolution helps to focus on nuclei spots in the image.

Using graph-cut based binarization (Boykov and Kolmogorov, 2004b), the foreground

is extracted from the hematoxylin component image (nuclear channel). Laplacian-of-

Gaussian filtering with distance map-based adaptive scale selection is used to detect

the nuclei seed points. These seed points are used to segment the nuclei using region

adjacency graph coloring. In the proposed method, segmenting the nuclei has little rel-

evance since only the nuclei seed points are required to extract image patches centered

on the nuclei. Figure 4.6 shows the results of applying nuclei seed detection on slide im-
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age extracts of different classes. This algorithm successfully detects all types of nuclei

present in the slide image.

4.2.2 Deep Learning Stage

The deep learning phase of the proposed framework starts with a preprocessing step

specific to the training of CNN. This step implements nuclear atypia scoring as a six-

class problem. It involves class-wise region extraction for all the six classes of nuclei

followed by nuclear patch extraction. A slide image captured at 20× normally contains

several hundreds of nuclei. Class-wise region extraction helps to avoid the need to label

every nucleus in the slide image individually with an appropriate class label for training

the CNN. The fixed size nuclear image patches extracted from class regions are used

to train the chosen deep CNN. Training specific preprocessing and CNN training are

shown in Figure 4.7 and explained below.

Figure 4.7: Training specific preprocessing and CNN training in the deep learning
phase of the proposed framework.

Class-wise region extraction & training patch creation

The most impactful factor behind the performance of the proposed framework is the six-

class model designed for nuclear image patch classification. Atypia scoring is based on
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the malignant tumor nuclei that are classified into three classes namely score 1, score 2,

and score 3 according to their morphological features. However, a slide image typically

contains several different types of non-malignant cells as well. These cells include

lymphocytes, stroma cells, necrosis, etc., which are ignored by the pathologist in the

routine atypia scoring procedure. In a three-class model, nuclei of such cells can get

classified into one of these three classes and adversely affect the scoring accuracy. In

deep learning-based methods, this problem is more prominent as the algorithms tend to

classify any nuclei into one of the three classes. To counter this problem, the six-class

classifier is designed where the first three classes are referred to as the scoring classes

(SC) which include the three types of malignant tumor nuclei of scores 1, 2, and 3. The

remaining three classes referred to as elimination classes (EC) are lymphocytes, stroma

cells, and necrotic cells that form the major population of non-malignant cells/nuclei

present in slide images. Figure 4.8 shows the sample region crops from slide images for

all the six classes. Apparently, scoring class nuclei have clear discriminative features

from the elimination classes. Hence a six-class model can potentially segregate the

elimination class nuclei and the scoring class nuclei. Any other unlisted categories of

non-malignant nuclei are more likely to be classified into one of the elimination classes

rather than scoring classes due to their close similarity. This will not impact atypia

scoring since elimination classes are ignored in the final scoring process.

The major challenge in formulating nuclear atypia scoring as a classification prob-

lem with more than three classes is that the MITOS-ATYPIA dataset has only an image-

level score label (1, 2, or 3) for every slide image. This limitation is overcome by adding

six new class-wise region labels in the training images (3 SCs + 3 ECs). Under the su-

pervision of a senior pathologist, regions corresponding to all the six classes of nuclei

are marked in the training images. Since nuclei of every class are normally present

in clusters, region marking is fairly effortless and one time activity required only for

training set. This way of region marking saved the mammoth task of labeling every

nucleus in the slide image into one of the six identified classes. The marked regions

in the training images are extracted for further processing. The region crops may vary
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Figure 4.8: Samples of class-wise region crops from the slide images for the six-
class classifier model designed. Scoring classes (SC) of nuclear atypia: (a) Score 1,
(b) Score 2, (c) Score 3; Elimination classes (EC): (d) Lymphocytes, (e) Stroma, (f)
Necrosis.

in their dimensions depending on the extent and distribution of the nuclei in slide im-

ages. Fixed-size image patches are extracted from these region crops based on detected

nuclei seeds to train the CNN. Hence, the size variation of region crops is immaterial.

Image patch size is an important parameter that has a significant impact on the perfor-

mance of deep CNNs. Based on a set of experiments conducted with different patch

sizes, it was found that a patch size of 64× 64 gives the best classification performance

for the chosen CNN. The selection of patch size is explained further in Section 4.3.2.1.

Class imbalance exists between slide images in the MITOS-ATYPIA dataset. The pro-

portion of slide images that belong to score 2 class is very high compared to the other

two classes. This results in class imbalance between extracted nuclear image patches

as well. Among the scoring class patches, score 1 type patches are far less in number

compared to score 2 type image patches. Hence, a set of basic rotation and flipping
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Table 4.1: Performance comparison of different deep CNNs considered for the six-
class classifier in the proposed framework.

CNN Architecture Precision Recall F1 Score Accuracy
MobileNetV2
(Sandler et al., 2018) 0.8418 0.8403 0.8406 0.9517

Resnet50
(He et al., 2016) 0.8645 0.8644 0.8644 0.9548

VGG16
(Simonyan and Zisserman, 2014) 0.8681 0.8641 0.8646 0.9547

Resnet101
(He et al., 2016) 0.8728 0.8682 0.8692 0.9561

DenseNet121
(Huang et al., 2017) 0.8875 0.8857 0.8858 0.9619

operations are applied on the extracted patches of lower proportion classes to equalize

the training samples in all the classes.

Selection and configuration of deep CNN

The major functional engine in the proposed framework is a deep learning-based classi-

fier that accurately classifies the nuclear image patches into one of the six classes. The

CNN classifier used in the deep learning stage has a great impact on the performance of

nuclear atypia scoring. The framework offers flexibility to apply any high-performing

CNN classifier into the process pipeline to improve the overall nuclear atypia scoring.

Experimented are conducted with a set of popular classifier CNNs such as VGG16 (Si-

monyan and Zisserman, 2014), Resnet (He et al., 2016), DenseNet (Huang et al., 2017),

and MobileNetV2 (Sandler et al., 2018). The candidate CNNs are separately trained

using nuclear image patches of dimension 64 × 64 extracted from region crops of

all the six classes (ECs and SCs) and tested with unseen test data. Table 4.1 presents

the performances of the various CNN models trained this way. It is observed that

DenseNet (Huang et al., 2017) gives the best performance for all the four measures

precision, recall, F1 score, and accuracy.

DenseNet is a popular CNN architecture for image classification. It is a sequential
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concatenation of multiple dense blocks separated by translation layers. Unlike the con-

ventional CNNs in which the information flow (feature map) is sequential from layer

to layer, DenseNet introduced additional information flow within the dense blocks. A

dense block is made of multiple layers such that the output of every layer is connected

to all subsequent layers in the same block in a feed-forward manner. This architec-

ture facilitates feature reuse and reduction in trainable parameters. Apart from these,

DenseNet has other advantages like low computational requirement, immunity to van-

ishing gradient, etc., compared to other recent architectures. Original DenseNet archi-

tecture is designed for an image dataset of 1000 classes. The DenseNet121 configura-

tion is customized to suit the requirement of the proposed method. The input image size

is configured to 64 × 64 after experimenting with multiple input sizes. Output classes

are fixed to six as there are six classes in the problem formulation. ReLU activation

function (Nair and Hinton, 2010) is used in the intermediate layers and Softmax for the

final classification layer. Categorical cross-entropy is the loss function used. For weight

optimization, Adam optimizer (Kingma and Ba, 2014) is used with a learning rate of

3e-4. Other hyperparameters used in the CNN model are: dropout rate = 0.3, batch

size = 32, EPOCHs = 125. The model parameters are finalized by a set of experiments

carried out with a random split of the MITOS-ATYPIA dataset. Later, the performance

and consistency of the model are evaluated by five-fold cross-validation.

4.2.3 Postprocessing and Atypia Scoring

Once the trained CNN model is ready, slide-level prediction of nuclear atypia score is

performed in a fully automated way using the test set of slide images. Algorithm 1

and Algorithm 2 are followed in this process. Every test slide image goes through the

preprocessing stage described earlier to obtain the color-normalized form and the cor-

responding nuclei seed image. Further processing for slide level nuclear atypia scoring

is illustrated in Figure 4.9. Using the nuclei seed points, patches of dimension 64 × 64

are extracted irrespective of the classes, and fed to the trained CNN model. The model
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Figure 4.9: Slide level of evaluation of nuclear atypia score. Input to the evaluation
pipeline is the preprocessed test instances consisting of color-normalized slide images
and nuclei seeds detected. Output is the nuclear atypia score of the input slide image.

classifies every input nuclear image patch into one of the six classes. Samples classified

into elimination classes (i.e., lymphocytes, necrosis, and stroma) are ignored as they are

not involved in the scoring of nuclear atypia. A plurality voting scheme with priority-

based tie-breaking (Algorithm 2) is applied to the scoring classes (score 1, 2, and 3)

of nuclear image patches to assign the final nuclear atypia score for the slide image.

In the case of equal votes obtained by two dominating score classes, the final score is

assigned by giving preference to the higher score class. For example, if the number of

nuclear patches in classes ’score 3’ and ’score 2’ are equal, and greater than ’score 1’,

the final score assigned to the parent slide image is 3. This is in line with the pathology

procedure in practice. The elimination classes are defined for the CNN model to filter

out all the non-malignant nuclei in the slide image that are irrelevant in the process of

nuclear atypia scoring. In the absence of the elimination classes in the model, such

nuclei present in the slide would have been classified into one of the scoring classes

and adversely impact the performance of the model. In this way, the proposed method

approximates a human
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Algorithm 1 Atypia score computation
1: procedure ATY PIA SCORE COMPUTE(SlideImage (I))
2: Patchsize ← 64
3: Iseeds← nucleiSeedDetection(I)
4: I[n]← imagePatchExtraction(I , Iseeds, Patchsize)
5: [C1, C2, C3, .., C6]← patchClassPrediction(I[n])
6: NAScoreI ← majorityVoting([C1, C2, C3])
7: return NAScoreI
8: end procedure

Algorithm 2 Plurality voting
1: procedure MAJORITY V OTING(PatchCounts ([C1, C2, C3]))
2: if (C3 ≥ C2 AND C3 ≥ C1) then
3: NAScore← 3
4: else if (C2 > C3 AND C2 ≥ C1) then
5: NAScore← 2
6: else
7: NAScore← 1
8: end if
9: return NAScore

10: end procedure

pathologist’s way of nuclear atypia scoring by looking only at the malignant tumor

nuclei for atypia scoring. In Figure 4.10, samples of the voting pattern observed for

different test images from both slide scanners are presented. The vote support for each

class is given in brackets. In most of the cases, the voting majority of the winning class

is large enough to clearly discriminate from the other two classes. In slide images, the

total number of malignant cells/nuclei show variations as seen in these pie charts. A

low total indicates that a major part of the image is dominated by non-malignant cells

like lymphocytes, stroma cells, etc. A high number of malignant cells indicates the

domination of tumor regions in the slide image.

4.3 Experimental Results & Discussions

The experiments on the proposed method have been carried out using the public dataset

MITOS-ATYPIA. Most of the recent methods have used the same dataset for experi-
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Figure 4.10: Instances of plurality voting-based prediction of nuclear atypia score
from Aperio and Hamamatsu scanner image sets. (GT: Ground truth score).

ments and validation. This simplifies the performance comparison with these methods.

In this section, first the details of the dataset, experimental setup, validation approach,

and metrics are discussed. This is followed by the presentation of experiments, result

comparison with existing methods, and a discussion on various aspects related to nu-

clear atypia scoring that are observed during this work.
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4.3.1 Dataset & Experimental Setup

The MITOS-ATYPIA (ICPR, 2014) dataset is the only known large-scale public dataset

exclusively for breast cancer atypia scoring. Most of the methods published after its re-

lease in the year 2014 have used this dataset. The dataset consists of 300 labeled slide

images each from two different scanner models Aperio Scanscope XT and Hamamatsu

Nanozoomer 2.0-HT. The slide images are captured at a magnification of 20×. Every

image in the Aperio scanner set has a dimension of 1539 × 1376 pixels, whereas the

Hamamatsu scanner images have a dimension of 1663× 1485 pixels. The ground truth

label assigned to each slide image is an integer value of 1, 2 or 3 which corresponds to

the nuclear atypia score of that image. The scores are assigned by experienced patholo-

gists. Due to the commonly observed problem of pathologists’ disagreement in nuclear

atypia scoring, labeling of the MITOS-ATYPIA dataset was done in two stages. Ini-

tially, two pathologists independently assigned scores to every image in the dataset. If

both gave the same score to an image, that is assigned as the final score for that image.

In case of disagreement in the scores assigned for any image, a consensus score is as-

signed based on the opinion of a third pathologist. On analyzing the initial scoring by

two pathologists it is found that out of the 22 subsets of images from both scanners to-

gether, eight subsets had more than 25% disagreement between the two pathologists. A

senior pathologist who screened these subsets found that even the final scores assigned

to images of the two subsets A11 and H11 are highly contentious and recommended ex-

cluding these subsets. Based on the recommendation, these subsets are excluded from

the dataset. The dataset finally had 265 images each from both scanners, making a total

of 530 labeled slide images.

Nuclear image patch extraction and augmentation

To design the CNN model parameters, a random split of the Aperio scanner image set

is used with 80:20 ratio for training and testing. Image patch size 64 × 64 is found

to give the best classification accuracy for the six-class CNN. The MITOS-ATYPIA

dataset has class imbalance among slide images of the three score classes, with score

78



1 and score 3 class images are proportionately less compared to score 2 class images.

This is reflected in the extracted nuclei image patches as well. In a slide image there are

approximately 200-300 nuclei present. On extracting the score 2 class nuclear patches

from the Aperio scanner image set, the total number crossed 20,000 without any aug-

mentation. Some samples are randomly removed from this set to round the number of

score 2 class patches to 20,000. The number of such patches obtained for other classes

are below 20,000. To equalize the number of training samples across all the classes,

score 1, score 3, and the three elimination class image patches are augmented using

rotation and flipping operations. That way 20,000 image patches are created per class

to make a total of 1,20,000 training patches from the Aperio scanner image set. In

the experiments conducted with slide images from both scanners together, nuclei im-

age patches from both Aperio and Hamamatsu scanners are merged class-wise to create

40,000 samples per class. For the six classes together, a total of 2,40,000 nuclear image

patches are used for training the CNN. The nuclei patch extraction and augmentation

steps are automated using matlab scripts that take input as the slide image and nuclei

seeds obtained from the nuclei seed detection stage of the proposed pipeline.

Five-fold cross validation

Since the MITOS-ATYPIA dataset contains images from two different scanners, most

of the existing methods in literature have reported results based on three sets of ex-

periments based on i) Aperio scanner images, ii) Hamamatsu scanner images, and iii)

combination of both. For a fair comparison of the results, the same set of experiments

are conducted for the proposed method also. Five-fold cross validation is performed in

all the three sets of experiments to evaluate the consistency of the model. In each case,

the corresponding dataset is split into five disjoint sets using Mersenne twister random-

ization algorithm (Matsumoto and Nishimura, 1998) to ensure that there is no bias in

the splitting of the dataset. The five data folds are created from these splits, with one

unique split forming the test set every time and remaining splits in the training set. This

way every split becomes a test set exactly once to make sure that every slide image in
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the dataset appears exactly once as a test image in any one of the five folds.

Hardware and software setup

The primary hardware used for training and evaluation of the proposed method is Tesla

V100 GPU with 32 GB GPU memory. Both Matlab and Python libraries are used for

the implementation of different stages. For deep learning, Keras Python library with

Tensorflow as the backend is used.

Evaluation metrics

Class imbalance exists in the MITOS-ATYPIA dataset among the three scoring classes.

The ratio of score 1, score 2, and score 3 class images in the dataset is 1:8:2. For

training the CNN, data augmentation is applied to reduce the class-imbalance between

the samples of different classes. But for the evaluation, class imbalance in the test

set is retained to get the realistic performance of the proposed method. When there

is a class imbalance, the appropriate metrics for evaluation of a classification system

are precision, recall, and F1 score. These metrics are primarily used to measure the

performance of the proposed method and for comparison. Apart from these, accuracy

is also used for comparison with the existing methods. The details of these metrics are

provided in Appendix A.

4.3.2 Results and Analysis

Several analyses and experiments are conducted to design the model and evaluate the

performance consistency of the proposed method. This subsection presents the outcome

of the experimental analyses carried out and the observations. Initially, the performance

of the six-class CNN model is presented briefly. This is followed by a detailed evalu-

ation of the proposed method for slide image-level automated nuclear atypia scoring.

The results are compared with state-of-the-art methods for automated nuclear atypia

scoring.
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Figure 4.11: Result of experiments carried out to decide the input patch size to be used
for the CNN.

4.3.2.1 Selection of Patch Size for CNN

Image patch size has a significant impact on the performance of a CNN model based

on patches extracted from a high-dimensional image. Appropriate patch size primarily

depends on the task and nature of the dataset used. A practical approach to identify a

suitable patch size for the model is to do it empirically. Experiments are conducted for

this purpose on a random split of the dataset using different patch sizes such as 32, 48,

64, 80, and 96. DenseNet CNN is separately trained with nuclear image patches of these

sizes and atypia scoring performance is evaluated. The results showed that a patch size

of 64 × 64 consistently gives the best performance on all the metrics considered. Fig-

ure 4.11 shows the performance pattern of nuclear atypia scoring with different patch

sizes. On every metric, the performance shows an upward trend from patch size 32, and

it peaks at 64, after which a diminishing trend is observed. On subjective analysis of

the reason behind this pattern, it is observed that a desirable patch size has to correctly

balance two aspects. One is that the patch size should be large enough to accommodate
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Table 4.2: Performance of the nuclear image patch classifier model on different sub-
sets of the MITOS-ATYPIA dataset.

Image subset Precision Recall F1 Score Accuracy
Aperio images (A) 0.8728 0.8695 0.8655 0.9565
Hamamatsu images (H) 0.8616 0.8584 0.8568 0.9528
Combined images (A & H) 0.8667 0.8701 0.8645 0.9547

even the largest nuclei (typically score 3 type nuclei) along with the cytoplasm and other

immediate adjacent structures (context of the nuclei). On the other hand, if the patch

size is too large, the patches extracted automatically during the testing process are likely

to have more class overlapping (presence of different class nuclei in an image patch),

causing more misclassifications. The empirically chosen patch size of 64 is observed to

balance these two aspects to give the peak performance at this patch size.

4.3.2.2 Performance of the CNN Classifier

Effectiveness of the DenseNet model in classifying the six classes of nuclear image

patches is evaluated using five-fold cross-validation on Aperio, Hamamatsu and the

combined image sets. Table 4.2 shows the nuclear patch-level classification performance

of the six-class CNN model. For training the CNN, nuclear image patches of dimen-

sion 64 × 64 are extracted from region crops of all the six classes. These nuclear im-

age patches are extracted from manually annotated non-overlapping class-wise region

Figure 4.12: Learning pattern of the six-class CNN classifier (DenseNet) used in the
proposed method for images sets from (a) Aperio scanner, (b) Hamamatsu scanner.
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crops. The CNN classifier performance indicates how well the model can discriminate

between nuclei belonging to different classes. The loss/accuracy graph in Figure 4.12

shows the learning pattern of the six-class CNN classifier for Aperio and Hamamatsu

scanner image sets. The curves show a usual learning pattern with a few subtle dif-

ferences between the two scanner image sets. Validation loss and accuracy pattern of

Hamamatsu scanner images looks slightly better than that of the Aperio scanner image

set. However, loss and accuracy show higher degree of fluctuations in the case of the

model trained on Hamamatsu scanner images. On the contrary, the slide level evalu-

ation of the model trained with Hamamatsu scanner images showed noticeably lower

performance despite the higher validation accuracy observed in training. This indicates

a slight over-fitting of the model to the Hamamatsu training set.

4.3.2.3 Evaluation and Comparison of Nuclear Atypia Scoring

The ultimate objective of the proposed framework and the method is to perform au-

tomated nuclear atypia scoring from histopathology slide images. Every step in the

method pipeline such as image normalization, region crop extraction (for training), nu-

clear image patch classifier, etc., contributes to this final objective. This subsection

presents how far the objective is achieved and how the proposed method fares in com-

parison with the state-of-the-art. To comply with the convention followed in most of the

existing methods, three sets of experiments are conducted to evaluate the performance

of slide image-level nuclear atypia scoring on i) Aperio scanner images, ii) Hamamatsu

scanner images, iii) the combined set of images from both scanners. Five-fold cross-

validation is performed in each of these cases, and average results are presented. The

performance of the proposed method is compared with the recent methods reported in

literature.

In the slide level evaluation, all nuclear image patches are extracted from the slide

images in a fully automated way without any class consideration. So, these patches may

have overlapping classes and more challenging scenarios than in the training phase. Per-
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Table 4.3: Results of the proposed method and comparison with the state-of-the-art
methods using Aperio scanner images.

Method Precision Recall F1 Score Accuracy
Xu et al. (2017) 0.7352 0.6646 0.6879 0.8000
Rezaeilouyeh et al. (2016) 0.2500 0.3333 0.2857 0.7500
Khan et al. (2015) 0.7851 0.7020 0.7197 0.8293
Lu et al. (2015) 0.4455 0.4551 0.4476 0.7800
Das et al. (2019) 0.8237 0.7196 0.7463 0.8533
Das et al. (2020a) 0.7623 0.7853 0.7901 0.8533
Das et al. (2018) 0.8328 0.8501 0.8409 0.9062
Proposed method 0.8867 0.8860 0.8835 0.9261

Table 4.4: Results of the proposed method and comparison with the state-of-the-art
methods using Hamamatsu scanner images.

Method Precision Recall F1 Score Accuracy
Xu et al. (2017) 0.6899 0.6925 0.6838 0.7973
Rezaeilouyeh et al. (2016) 0.2492 0.3333 0.2852 0.7475
Khan et al. (2015) 0.7831 0.6507 0.6832 0.8189
Lu et al. (2015) 0.4234 0.3333 0.4023 0.7576
Das et al. (2019) 0.8225 0.6926 0.7196 0.8516
Das et al. (2020a) 0.7684 0.7971 0.7815 0.8649
Das et al. (2018) 0.7729 0.7889 0.7803 0.8784
Proposed method 0.8568 0.8511 0.8504 0.9007

formance comparison of slide image-level nuclear atypia scoring using Aperio scanner

images is presented in Table 4.3. The metrics precision, recall, F1 score, and accuracy

are used for the comparison. Sometimes precision and recall have a balancing effect

between them. Hence F1 score, the harmonic mean of precision and recall, is consid-

ered as the reliable single metric indicator. For all the metrics the proposed method

gives significant improvement over the state-of-the-art methods on Aperio scanner im-

age set. The quality of the Aperio scanner images is found to be better with a balanced

color expression. This has a positive impact on the results. In Table 4.4, the results of

the proposed method on Hamamatsu scanner images are presented and compared with

existing methods. In this case also the proposed method gives significant improvement

over the existing methods on all the four metrics considered. Images from this scanner

are characterized by their over-color expression (Figure 4.5(b)) and considered more
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Table 4.5: Results of the proposed method and comparison with the state-of-the-art
methods using combined Aperio and Hamamatsu scanner images.

Method Precision Recall F1 Score Accuracy
Xu et al. (2017) 0.6683 0.7649 0.7065 0.7987
Rezaeilouyeh et al. (2016) 0.2496 0.3333 0.2824 0.7487
Khan et al. (2015) 0.7676 0.6771 0.7085 0.8329
Lu et al. (2015) 0.4572 0.4340 0.4346 0.7705
Das et al. (2019) 0.8254 0.7656 0.7214 0.8530
Das et al. (2018) 0.7694 0.7971 0.7815 0.8658
Proposed method 0.8766 0.8760 0.8745 0.9174

challenging. There is a consistent performance decline for the Hamamatsu image set

in all the listed methods compared to the corresponding result of the Aperio image set.

However, the performance decline for the proposed method is around 3% whereas the

existing best method (Das et al., 2018) has nearly 6% decline. This indicates that the

proposed method shows more resistance to color variations in the slide images from

different sources or scanners.

Finally, Table 4.5 presents and compares the performance of the proposed method

on the combined dataset from both scanners (i.e., the MITOS-ATYPIA dataset). There-

fore, this can be considered as the final verdict on the performance of automated nuclear

atypia scoring. As one would expect, the result values on the combined image set lie

between the results of the individual scanner image sets (e.g., F1 score on Aperio set:

0.8835, Hamamatsu set: 0.8504, combined set: 0.8745). In the proposed method, the

combined result is consistently above the average of individual results, pointing to the

possible effect of an increase in the number of training samples in the combined dataset.

The result values of the proposed method have exceeded the state-of-the-art methods by

a significant margin. The F1 score of the proposed method has 11.90% improvement

over the best method in the literature (Das et al., 2018). The corresponding precision

and recall values of the proposed method are also improved by 13.93% and 9.89% re-

spectively.

The receiver operating characteristic (ROC) graph is a commonly adopted way to
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Figure 4.13: ROC curve and AuC for the three scoring classes of tumor cells for im-
age set (a) Aperio, (b) Hamamatsu, (c) Combined MITOS-ATYPIA dataset.

show the effectiveness of classification systems. In the ROC graph, the true positive

rate (TPR) is plotted against the false positive rate (FPR) at all classification thresholds

to obtain the curves for each class. The area under the ROC curve (AUC) is an aggre-

gate measure of classification performance at all possible thresholds. Figure 4.13 shows

the ROC graphs for the proposed method with the three image sets. For each scanner

image set, ROC curves of the three atypia classes are plotted and corresponding AUC is

shown. The maximum value of AUC is 1.0 which represents a perfect classifier. AUC

is threshold-invariant and scale-invariant that makes it a desired measure for classifica-

tion systems. The final AUC is obtained by averaging class-wise AUCs and compared

with the state-of-the-art methods in Table 4.6. Consistent with the improvements in
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Table 4.6: Comparison of average area under ROC curve (AUC) with state-of-the-art
for different scanner image sets.

Method Aperio images Hamamatsu images Combined images
Xu et al. (2017) 0.5913 0.5986 0.5954
Rezaeilouyeh et al. (2016) 0.5922 0.5969 0.5945
Khan et al. (2015) 0.7564 0.7532 0.7554
Lu et al. (2015) 0.6123 0.6106 0.6114
Das et al. (2019) 0.8642 0.8639 0.8644
Proposed method 0.9209 0.8977 0.9162

precision, recall, F1 score, and accuracy presented before, AUC values obtained for the

proposed method are also improved substantially over the existing methods.

4.3.3 Discussion

In this subsection, some of the analyses conducted during the development of the pro-

posed method and the observations from those are discussed.

4.3.3.1 Pathologists’ Disagreement and Labeling Discrepancies

Inter-observer variability and reproducibility are two common issues in manual pathol-

ogy procedures (Robbins et al., 1995; Frierson Jr et al., 1995; Dalton et al., 2000). Even

between pathologists who are experts in the domain, there can be disagreements on the

measurements or scores assigned to specimens under analysis. Often this is resolved by

plurality voting of a group of pathologists who perform independent evaluations. For

the images in the MITOS-ATYPIA dataset, score labels are independently assigned by

two senior pathologists. For the cases where there is no consensus between these two

pathologists, a third pathologist’s opinion is taken to assign a final score. Slide images

in the dataset are grouped into 11 subsets. The criteria for this subset grouping are un-

specified, but images in a subset share similar visual appearance as if they are collected

from the same biopsy slide, and perhaps from the same patient as well. The degree

of disagreement between the two senior pathologists in the initial score they assigned

87



Table 4.7: Degree of disagreement between the two pathologists in the first level scor-
ing of the MITOS-ATYPIA Aperio scanner images. The subsets A10 and A14 show
no disagreement whereas A18 shows scoring disagreement between the two patholo-
gists for 50% of the images.

Data subset A03 A04 A05 A07 A10 A11 A12 A14 A15 A17 A18
Pathologists’ disagreement 4% 31% 7% 25% 0% 28% 14% 0% 13% 5% 50%

to each slide image in the dataset is analyzed with respect to these subsets. Table 4.7

shows the result of this analysis on the Aperio scanner image set.

Subset A18 had the highest disagreement of 50% between the two pathologists. The

third pathologists labeled all images in this subset with the same final score of 2. Co-

hen’s Kappa score (Cohen, 1960), a metric for inter-annotator agreement, for the first

two pathologists is computed as 0.62 which is moderate (value 1.0 for perfect agree-

ment). When the independent scoring by two senior pathologists shows such a high

degree of disagreement, there is a strong possibility of error in the final score assign-

ment as well. In our case, all the subsets with a disagreement ≥ 25% are screened by

a senior pathologist. In this screening, the final score labels assigned to the subsets

A04, A07, and A18 are found to be reasonable with minor discrepancies, whereas final

score labels of images in the subset A11 are found to remain contentious. Figure 4.2(c)

and Figure 4.2(d) shows the similarity between extracts from two slide images of sub-

set A11 labeled with score 2 and score 3 respectively. These two tumor regions are

hardly differentiable even for an experienced pathologist. On the recommendation of

this senior pathologist, A11 and the corresponding subset H11 of Hamamatsu scan-

ner are removed from the dataset. The remaining 20 subsets are used in the proposed

method for experiments. The observation is that the performance of automated meth-

ods can be negatively impacted if the models are trained with datasets having labeling

discrepancies. This will be counterproductive for the research efforts put on the related

tasks.
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Table 4.8: Comparison of the proposed method with the initial scoring of the MITOS-
DATASET by two independent pathologists.

Evaluator Precision Recall F1 Score Accuracy
Pathologist 1 0.9452 0.9360 0.9379 0.9574
Pathologist 2 0.8973 0.8990 0.8980 0.9078
Proposed method
(Aperio images) 0.8867 0.8860 0.8835 0.9261

Proposed method
(Hamamatsu images) 0.8568 0.8511 0.8504 0.9007

Proposed method
(Combined set) 0.8766 0.8760 0.8745 0.9174

4.3.3.2 Nuclear Atypia Scoring: Man vs. Machine

Comparing the performance of automated nuclear atypia scoring with the scoring by

human pathologists can give some interesting insights. Considering the practical diffi-

culties of getting all slide images freshly assessed by a pathologist, the initial scoring

of the MITOS-ATYPIA dataset by two senior pathologists is taken as samples for com-

parison with the proposed method. Reference for this comparison is the final score

assigned to the images with the help of the third pathologist. Table 4.8 shows the result

of this comparison. Apparently, the results of the proposed method have not surpassed

the human pathologists, but they are close. Comparing the nearest results, the difference

between scoring by pathologist 2 and the proposed method on Aperio scanner images is

in the range 1%-2%. If the possible image annotation discrepancies are eliminated, the

proposed method stands a good chance to beat human pathologists. Apart from that, by

improving the algorithms in different phases of the framework, i.e., by using better nor-

malization, nuclei detection, and deep learning algorithms, the results of the proposed

method can be further improved. With the current performance, the proposed method

is quite useful as an assistive tool to reduce the workload of pathologists, by using pre-

diction probability to selectively review the method’s prediction and make corrections

if required.

One of the notable features of the proposed method is that it nearly emulates the
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routine manual procedure followed by a pathologist for nuclear atypia scoring with

help of the vision capability of a deep learning algorithm. In manual atypia scoring,

pathologists focus on the malignant cells in the tumor region and ignore the cells like

lymphocytes, stroma cells, etc. By classifying nuclei as scoring classes and elimination

classes, the method considers only malignant tumor cells for atypia scoring and ignores

the rest. In clinical practice, a pathologist does a subjective assessment of the size,

shape, and extent of tumor nuclei to assign the atypia score. In the automated method,

size and shape variations of different nuclei classes are learned by the deep learning

algorithm from nuclear image patches to classify the nuclei. The plurality voting fol-

lowed in the proposed method approximates the assessment of the extent of each type of

tumor nuclei by a pathologist. Overall, an effective approximation of the routine pathol-

ogy procedure can be considered as the major factor behind the excellent performance

improvement in the proposed method.

4.3.3.3 Future Prospects for the Proposed Framework

The proposed framework for nuclear atypia scoring offers flexibility in each of its ma-

jor phases namely preprocessing, deep learning, and postprocessing. The preprocessing

phase is aimed at color normalization and nuclei detection in H & E histopathology im-

ages. There are several existing methods for these operations. Moreover, research is

still going on to develop better algorithms. The proposed method used two well-known

methods (Reinhard et al., 2001; Al-Kofahi et al., 2009) in this phase. These methods

can be replaced with better performing algorithms to create a method pipeline that can

further improve the atypia scoring performance. As mentioned before, the backbone of

the proposed framework is the deep CNN which accurately classifies the nuclear image

patches. Deep learning is an aggressively researched area and new algorithms are quite

frequently proposed in literature. Deep learning phase of the proposed framework is

envisaged to fit any CNN classifier as the algorithm in this phase. The method uses

DenseNet (Huang et al., 2017) for this purpose after comparing the performance with
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several existing CNNs (Table 4.1). In future, if this CNN is replaced with a better one,

the performance of nuclear atypia scoring is bound to improve from what is achieved

by the proposed method. The postprocessing phase is for the prediction of slide level

atypia score using the output of CNN classifier. CNN outputs the distribution of nuclear

image patches into the six classes. A plurality voting scheme with priority based tie-

breaking is used (Algorithm 2) on the scoring classes to predict the final atypia score.

It is possible to replace this algorithm with any other scheme or algorithm that does

the final atypia scoring more accurately. In a nutshell, the formulation of slide level

nuclear atypia scoring as a nuclei classification problem in this framework and effective

utilization of suitable algorithms at different phases resulted in the excellent perfor-

mance improvement in nuclear atypia scoring. The flexibility in the framework makes

it promising for further development of automated nuclear atypia scoring.

4.4 Summary

Manual nuclear atypia scoring is tedious, error-prone, and has low reproducibility due

to its subjective nature. Automating this pathology procedure through image analysis

has been attempted by many in recent years. It is a challenging task to mathematically

model the histopathology images due to their structural complexity and diversity. The

attempts towards this in the existing methods have not resulted in great performance

or generalizable solutions. In this chapter, a novel deep learning-based framework for

automated nuclear atypia scoring is presented. This framework offers the flexibility to

apply different algorithms in its various phases to create new method pipelines with

potential for performance improvement. The intrinsic three-class problem of slide level

nuclear atypia scoring is reformulated as a six-class problem of nuclei classification in

the deep learning phase of the framework. This formulation aids the effective use of

deep CNNs to classify all the nuclei present in slide images. This classification is uti-

lized in the post-processing phase for accurate prediction of atypia score. The proposed
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method follows this framework and gives results that are significantly above the state-

of-the-art. The flexible nature of the framework in its deep learning phase is highly

relevant considering the rapid advancements happening in deep learning. Any existing

or emerging deep CNN with better classification performance can be easily configured

in the framework to improve the results. The proposed framework and the strategy

adopted in it are capable of taking automated nuclear atypia scoring closer to applica-

tion in routine clinical practice.
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CHAPTER 5

AUTOMATED MOLECULAR SUBTYPING OF

BREAST CANCER

In this chapter, a deep learning-based classifier framework for automated molecular
subtyping of breast cancer is proposed. IHC slide images of the four biomarkers are
separately processed by the proposed framework. In the preprocessing stage, the non-
informative background regions from the images are separated. The patches extracted
from the foreground regions are classified into target classes using convolutional neu-
ral networks (CNN) models trained for this purpose. Classification results are post-
processed to predict the status of all the four biomarkers. The predictions for the
individual biomarkers are finally consolidated as per clinical guidelines to determine
the subtype of the cancer. The proposed system is evaluated for the performance of
biomarker status predictions and patient-level subtype classification. In both these as-
pects, the results obtained are promising. The F1 score values obtained for ER, PR,
HER2, and Ki67 status assessment are 1.00, 1.00, 0.90, and 0.86 respectively. For
patient-level molecular subtype classification, our method obtained an F1 score of 0.89.

5.1 Introduction

Breast cancer has several classifications (Malhotra et al., 2010) based on different fac-

tors such as histological, molecular, functional etc. Invasive ductal carcinoma (IDC),

a histological subtype of breast cancer constitutes 80% of all the breast cancer cases

(Weigelt et al., 2010). A therapeutically relevant classification of breast cancer is the

molecular subtyping. Molecular subtype of breast cancer is determined based on the

expression of protein biomarkers namely estrogen receptor (ER), progesterone receptor

(PR), human epidermal growth factor receptor 2 (HER2), and antigen Ki67 in tumor

tissues. The common molecular subtypes of breast cancer are Luminal A, Luminal B,

HER2-enriched, and Triple-negative/Basal-like (Prat et al., 2015; Tsang and Tse, 2020).



Table 5.1: Molecular subtypes of breast cancer and their characteristics (Table created
from Eliyatkın et al. (2015))

Molecular
Subtype Biomarker response Prognosis Targeted therapies

Luminal A
ER+, PR+/-,
HER2-, low Ki67 Good Hormone therapy

Luminal B
ER+, PR+/-,
HER2+, high Ki67 Intermediate Hormone therapy

HER2 Enriched ER-, PR-, HER2+ Worse HER2 targeted therapies
Triple -ve ER-, PR-, HER2- Worse Under investigation

The biomarkers ER and PR are hormonal receptors that promote cell growth and repli-

cation in the presence of the hormones estrogen and progesterone respectively. Hence,

tumor cells with ER or PR grow and multiply aggressively in the presence of these

hormones. HER2 is another protein receptor found in the cell surface and facilitates

cell growth. Some tumor cells produce HER2 in large amounts and cause accelerated

growth of tumors. Over-production of one or more of these protein receptors are trig-

gered by the underlying genetic mutations that lead to abnormal cell proliferation and

tumor formation. The antigen Ki67 is normally present in cells that are in the different

stages of division. Hence, it is possible to estimate the cell proliferation rate by the IHC

analysis of Ki67. Combining the responses of these four biomarkers (ER, PR, HER2,

and Ki67), the molecular subtype of breast cancer is determined. Table 5.1 shows four

major molecular subtypes of breast cancer and the characteristics of these subtypes with

respect to biomarker response, prognosis, and treatment approach. Molecular subtyping

of breast cancer requires assessment of all the four biomarkers for a patient.

Automated molecular subtyping of breast cancer involves processing of IHC

biomarker images of ER, PR, HER2, and Ki67 (Figure 1.2) from the same patient. The

extensive search in the existing literature shows that there are no such automated meth-

ods available currently for immunohistochemistry based molecular subtyping of breast

cancer. A dataset that contains IHC images of ER, PR, HER2, and Ki67 collected

patient-wise is not known to exist in the public domain. This can be a reason for the

non-existence of prior automated methods for molecular subtyping of breast cancer. In
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this work, the attempt is to automate this procedure using a patient-level dataset pre-

pared by a collaborating medical research institute.

Deep learning algorithms are proven to be effective in several medical image anal-

ysis tasks including pathology image analysis (Litjens et al., 2017; Niazi et al., 2019).

When there are sufficient labeled samples to train the models, deep learning algorithms

like CNNs are quite effective in learning the inherent features from the training sam-

ples. The models trained in this way can classify unseen samples accurately. In this

chapter, a novel classifier framework is proposed to analyze IHC images of all the four

biomarkers collected from each patient to predict the molecular subtype of breast can-

cer. Status of each biomarker is predicted using a separate CNN based process pipeline.

Due to the high dimension of IHC images, a patch-wise approach is adopted to train the

CNN models. The process pipelines predict the status of the biomarkers as ER +ve/-ve,

PR +ve/-ve, Ki67 low/high, and HER2 +ve/-ve/equivocal. Finally, the status of the four

biomarkers are combined to predict the molecular subtype of breast cancer. Accurate

determination of molecular subtype helps oncologists to decide the targeted treatment

plan for a patient.

The major contributions of this work are as follows:

• A novel deep learning-based classifier framework is proposed for molecular sub-
typing of breast cancer using immunohistochemistry image analysis. Currently
there is no such method found in literature.

• Our method resembles the manual pathology procedure for molecular subtyping
in a manner that the biomarker statuses are computed separately for all the four
biomarkers involved (ER, PR, HER2, & Ki67) and then combined as per clinical
guidelines to determine molecular subtype.

• The proposed method provides high performance in slide level and patient-level
prediction of biomarker status for all four biomarkers and that results in accurate
molecular subtyping. This automated approach has the potential to reduce the
workload, time-delay, and cost associated with the manual pathology procedure
for molecular subtyping.

The remaining sections of this chapter are organized as follows. The detailed ex-

planation of the deep learning-based framework proposed for molecular subtyping is
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presented in Section 5.2. The experimental analysis carried out to validate the proposed

method is presented in Section 5.3. Finally, the chapter is concluded with a discussion

on the future prospects and clinical application of automated molecular subtyping.

5.2 Methodology

Automated molecular subtyping of breast cancer requires the determination of all the

four biomarker responses from digitized IHC slide images. For this purpose, the slide

images of each biomarker are processed separately. In the proposed method, assess-

ment of each biomarker’s response is modeled as a classification problem. The target

classes are defined by the biomarker responses that are essentially required for molec-

ular subtyping. The final status of hormone receptors ER and PR are either positive or

negative (ER+/- and PR +/-). For Ki67, the assessment is done to check whether Ki67

presence is low or high based on the extent of nuclei showing positive Ki67 response.

HER2 response evaluation results in three outcomes namely Positive, Negative, and

Equivocal.

The methodology has two major parts namely i) Training pipeline, ii) Evaluation

pipeline. In the training pipeline, four separate CNN classifier models are trained to

classify the image patches extracted from IHC images of ER, PR, HER2, and Ki67.

Evaluation pipeline processes the unseen IHC images of these biomarkers from a breast

cancer patient to predict the status of each biomarker and the molecular subtype of the

cancer in a fully automated way.

5.2.1 Training Pipeline

The training pipeline uses the training set of IHC images to train four independent CNN

models i.e., one for each biomarker. The stages involved in the training pipeline of the

proposed method is shown in Figure 5.1. It has two major stages namely, a) Image patch
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Figure 5.1: Training pipeline of the proposed framework for molecular subtyping. a)
ER, PR, & Ki67 images are used to train three binary CNN classifier models sepa-
rately for each biomarker. b) For HER2, a three-class CNN model is trained to classify
each region patch into one of the output classes.

extraction b) Training the CNN.

5.2.1.1 Image Patch Extraction & Augmentation

Normally, IHC slide images have large spatial dimensions with plenty of background or

non-informative regions present. Feeding such large images to CNN-like algorithms is

computationally expensive. Hence, for training the deep learning models an approach

of cropping small size image patches containing relevant information is adopted. In this

stage, the image patches of fixed dimension are extracted from the slide images. Due

to the inherent nature of the biomarkers, the process pipeline for ER, PR, & Ki67 are

slightly different from the one used for HER2 images.

In the case of ER, PR, & Ki67, the problem is formulated as a binary classification

of nuclear image patches. For this, nuclei-centric patches of dimension 96× 96 of both

positive and negative classes are extracted from the training images. Class-wise label-
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ing of the nuclei performed under the supervision of a senior pathologist is used for the

extraction. Varying size of the nuclei is a challenge in deciding an appropriate patch

size. In this case, the patch size is determined by considering the average pixel area per

nucleus in the IHC images such that a sufficiently large portion of one nucleus or the

complete nucleus is included in all the patches extracted. Simple rotations of 90◦, 180◦,

and 270◦ are applied on the extracted patches to equalize the negative and positive class

samples used for training. Being a membrane-bound receptor, color response for HER2

is visible in the cell membrane. The color intensity and the completeness of the brown-

ish boundary formed around nuclei are considered by pathologists in manual evaluation

of HER2 response. Taking this into consideration, larger image patches of dimension

224 × 224 are extracted using the class-wise rectangular region labeling provided for

HER2 images. HER2 response is formulated as a three-class problem where each patch

is classified as positive, negative, or equivocal. Since the slide images of the equivocal

class are less, a sliding-window based extraction of the patches along with the rotation

operations is applied to create sufficient augmented samples for training.

5.2.1.2 Training of CNN Models

The proposed automated molecular subtyping framework has used convolution neural

network (CNN), a powerful class of deep learning algorithms as the backbone. CNNs

have been quite effective in several medical image analysis tasks including pathology

image analysis (Litjens et al., 2017). The popular CNN architecture namely DenseNet

(Huang et al., 2017) is customized to use in the proposed framework. DenseNet is a

powerful classifier with less learnable parameters and a competitive training time. It is

resilient to the vanishing gradient problem and supports feature reuse. These advantages

and the prior experience with DenseNet are the motivation to choose this as the deep

learning algorithm for classification of IHC image patches. However, the framework

allows flexibility to replace the CNN module with any other classifier CNNs.

The original version of DenseNet is tested on benchmark datasets namely CIFAR-
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Table 5.2: Parameters used for DenseNet CNN
Configuration Value/Function
Loss function Categorical cross entropy
Learning rate 3e−4

Optimizer Adam
Training Batch size 32
Dropout rate 0.3
No. of training EPOCHs 100

10, CIFAR-100, and ImageNet that contain 10, 100, and 1000 classes respectively.

Its base variant DenseNet121 is customized as a binary classifier for ER, PR, and Ki67.

Since HER2 has three target classes, the CNN is configured as a three-class classifier for

image patch classification. The other custom configurations applied for DenseNet121

are shown in Table 5.2. The output of the training pipeline consists of four CNN models

for ER, PR, Ki67, and HER2 image patch classification. These models are employed in

the evaluation pipeline of the framework to achieve automated molecular subtyping.

5.2.2 Evaluation Pipeline

The evaluation pipeline of the proposed method is a fully-automated end-to-end work-

flow that takes all the four types of IHC images from the same patient and predicts the

molecular subtype of breast cancer under investigation. Multiple stages involved in this

pipeline are preprocessing, image patch classification, post-processing, and the molec-

ular subtyping. Figure 5.2 shows the evaluation pipeline of the proposed method. The

various stages in this pipeline are explained in the following sections.

5.2.2.1 Pre-processing of IHC Images

IHC slide images normally contain plenty of background regions that are irrelevant in

pathology analysis. Processing such regions may consume the computational resources

unnecessarily and affect the performance. In the preprocessing stage, such background
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Figure 5.2: Evaluation pipeline of the proposed framework for automated molecular
subtyping.

regions in the slide images are detected and excluded to focus on the objects/regions of

interest that are primarily nuclei and cell membranes. The multi-otsu thresholding algo-

rithm by Liao et al. (2001) is used to detect the background regions from IHC images

of all four biomarkers. A binary image is obtained as an output to separate the fore-

ground and the background. Further, morphological opening and closing operations

are used to remove tiny non-cellular elements from the foreground. Figure 5.3 shows

sample IHC images of the four biomarkers and the corresponding binary images show-

ing foreground (in white) and background (in black). These binary images are used

to extract only the nuclei and membrane region patches from IHC images for further

processing. Subsequently, all foreground image patches of size 96 × 96 are extracted

from the ER, PR, and Ki67 images. From the membrane-bound HER2 images, patches

of size 224 × 224 are exacted as done in the training pipeline. Data augmentation is

not done for these test samples to retain the class imbalance between samples in the

evaluation process.

5.2.2.2 Image-patch Classification

The next stage is the classification of the patches from the biomarker images using the

corresponding CNN models created in the training pipeline. In the case of ER, PR,
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Figure 5.3: Extraction of foreground regions from the biomarker images to facilitate
image patch extraction based on objects/regions of interest only: (a) Original IHC im-
ages of ER, PR, Ki67 & HER2; (b) Masks of detected foreground (white)/background
(black); (c) Overlay of masks over the images.
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and Ki67, each image patch is classified into a positive or negative class that indicates

the biomarker response of the nucleus region included in the patch. HER2 patches

are classified as positive, negative, or equivocal response classes using the three-class

CNN model trained for this purpose. For each biomarker, the classification outputs are

captured at slide level and patient level for further processing. The result of patch-level

classification is fed to the post-processing stage for biomarker status predictions.

5.2.2.3 Post-processing for Biomarker Status Prediction

In this stage, the results of image patch classification obtained from the previous stage

are processed to make prediction of biomarker status for all four biomarkers. The pre-

dictions are made at slide image level and patient level. In the slide image level pre-

diction, the biomarker status of every slide image is predicted whereas in patient level

prediction, the 10 slide images available for each biomarker per patient is considered to

predict the biomarker status of ER, PR, Ki67, and HER2 for a patient.

Algorithm 3 Slide level assessment of biomarker status
1: procedure IHC BIOMARKER STATUS(SlideImage (Im), Biomarker model (Bm))
2: Output:Biomarker response status
3: Bg ← BackgroundDetector(Im)
4: Impatch← ForegroundPatchExtractor (Im,Bg , Bm.PatchSize)
5: Pred← Bm.CnnPrediction(ImPatch)
6: if (Bm.name = Er or Pr) then
7: Bm.status = ErPrStatusCompute(Pred)
8: else if (Bm.name = HER2) then
9: Bm.status = Her2StatusCompute(Pred)

10: else
11: Bm.status = Ki67StatusCompute(Pred)
12: end if
13: return Bm.status
14: end procedure

102



Algorithm 4 Determination of ER/PR status
1: procedure ERPRSTATUSCOMPUTE(Pred)
2: Frac = Pred[‘+ve’]/(Pred[‘+ve’] + Pred[‘-ve’])
3: if (Frac ≥ 0.30) then
4: return ‘+ve’
5: else
6: return ‘-ve’
7: end if
8: end procedure

Algorithm 5 Determination of HER2 status
1: procedure HER2STATUSCOMPUTE(Pred)
2: if (Pred[‘+ve’].Count ≥ Pred[‘Eqv’].Count) and
3: (Pred[‘+ve’].Count ≥ Pred[‘-ve’].Count) then
4: return ‘+ve’
5: else if (Pred[‘Eqv’] ≥ Pred[‘-ve’] then
6: return ‘Eqv’
7: else
8: return ‘-ve’
9: end if

10: end procedure

Algorithm 6 Determination of Ki67 status
1: procedure KI67STATUSCOMPUTE(Pred)
2: Frac = Pred[‘+ve’]/(Pred[‘+ve’] + Pred[‘-ve’])
3: if (Frac ≥ 0.14 and Pred[‘+ve’].Count > 20) then
4: return ‘High’
5: else
6: return ‘Low’
7: end if
8: end procedure

The major steps involved in slide level biomarker evaluation is presented in Al-

gorithm 3. In the case of ER and PR, a proportion threshold value is used to assign

biomarker status (Algorithm 4). If the proportion of the positive patches classified by

the respective CNN models is greater than or equal to 0.30, the biomarker status is as-

signed as positive (ER +ve/PR +ve). Otherwise, it is assigned as negative (ER -ve/PR

-ve). The threshold value of 0.30 is derived from the Allred scoring system (Allred

et al., 1998; Harvey et al., 1999) used for ER and PR. For HER2, a plurality voting

strategy is applied (Algorithm 5) for the patches that are classified into the three classes
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namely positive, negative, and equivocal. The Ki67 status used for molecular subtyping

involves two subjective levels of Ki67 as low or high. A commonly used clinicopathol-

ogy criteria in manual procedure is a threshold level of 14% positive Ki67 cells for

assigning the Ki67 status. In the automated approach, the number of nuclei in each

class are not counted, rather the image patches extracted based on the nuclei region ob-

tained after background detection are used. The proposed method combined the 14%

criteria with a threshold value for the number of positive class patches for Ki67 status

prediction (Algorithm 6). Empirically it is found that the optimal threshold count value

that gives the best prediction results is 20. This is further discussed in the experimental

results section (Section 5.3.2.2).

5.2.2.4 Molecular Subtyping

The final stage in the proposed classification framework is the determination of the

molecular subtype of breast cancer for a patient under evaluation. The input to this stage

is the individual status of all four biomarkers involved i.e., ER, PR, Ki67, and HER2.

Once the patient’s level biomarker statuses are obtained from the previous stage, the

molecular subtype of the cancer is determined in a rule-based manner using the criteria

specified in Table 5.1. The cancer type is classified into one of the classes from Luminal

A, Luminal B, HER2 Enriched, or Triple Negative. These are the most commonly used

molecular subtypes of breast cancer.

5.3 Experimental Results & Discussion

In this section, initially the dataset and experimental setup used for the development

and validation of the proposed method are described. Subsequently, the experimental

analysis carried out to validate the proposed method and the results are discussed.
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5.3.1 Dataset and Experimental Setup

The major challenge in developing a fully automated method for molecular subtyping

is the availability of a suitable dataset. At present, there are no public datasets which

contain IHC images of all the four biomarkers from the same patients. Such a dataset

is an essential requirement since molecular subtyping is a patient-level procedure. The

IHC image dataset used for development of the proposed method is collected from the

Department of Pathology, Kasturba Medical College, Mangalore, India. It consists of

800 IHC images of dimension 1920×1440 collected from 20 breast cancer patients. All

the images are captured at 40×magnification of the microscope. For each patient, there

are 10 IHC images per biomarker that makes a total of 40 images per patient consid-

ering the four biomarkers (ER, PR, Ki67, and HER2) needed for molecular subtyping.

Molecular subtypes of all the 20 patients, determined manually by the pathologists,

are known and are used as the ground-truths for automated evaluation. In addition,

slide-level and patient-level status of all four biomarkers are determined by a set of ex-

perienced pathologists and these are used to validate the proposed automated method in

each level.

For the validation of the proposed method, a four-fold cross validation is used at

each level of evaluation. The dataset of 20 patients is divided into four splits of five

patients each. Four cross validation folds are created from these splits by taking one

split at a time as test set and the remaining three splits together as the training set. Since

there are 10 slide images per biomarker for every patient, the test set of every fold

contains 50 slide images per biomarker and the training set contains 150 slide images

per biomarker. The use of cross validation ensured that every patient sample appears in

the test set once in any one of the four folds. This way the attempt is to make sure that

the obtained results are not influenced by any bias in the selection of the test set. Image

patches are extracted from the slide images to train the CNN. The details of training

patches used for each biomarker is shown in Table 5.3. Basic augmentation techniques

like translation and rotation are applied to equalize the number of samples in each class
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Table 5.3: Details of the training image patches used to train CNN models used in the
proposed method

Biomarker Patch Size Patches Per Classes
ER 96 × 96 Positive: 40,000, Negative: 40,000
PR 96 × 96 Positive: 40,000, Negative: 40,000
Ki67 96 × 96 Positive: 40,000, Negative: 40,000

HER2 224 × 224
Positive: 13,500, Negative: 13,500,
Equivocal: 13500

of a biomarker.

The hardware configurations used for training and testing of the proposed method

are IBM Power9 CPU, 2 Tesla V100 GPUs with 32GB GPU-RAM for each. The soft-

ware frameworks used for the implementation primarily include Keras and Tensorflow.

5.3.1.1 Evaluation Metrics

There exists a class-imbalance in the dataset starting from the patient level with respect

to the samples of different molecular subtypes. For example, the number of patient

samples that belong to the molecular subtype Luminal A is seven whereas Luminal

B has only 3 samples. This imbalance at the highest level is inherited to individual

biomarkers, slide images, and extracted image patches. Hence, the evaluation metrics

Precision, Recall, and F1 Score are used to evaluate the proposed method. These are

the most commonly used metrics for classification problems with class imbalance. The

details of these metrics are provided in Appendix A.

5.3.2 Results and Discussion

The evaluation of the proposed classifier is performed at four different levels as follows.

a) Image patch classification using CNN: The four trained CNN models are evaluated

for their effectiveness in classifying image patches extracted from the slide images of

different biomarkers.
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b) Slide level biomarker status prediction: Biomarker status prediction for individual

slide images is evaluated at this level.

c) Patient level biomarker status prediction: Every patient sample has 10 slide images

per biomarker. Patient level biomarker status prediction considers all these 10 images

of each biomarker to predict the patient level biomarker status.

d) Patient level molecular subtype classification: At this final level, biomarker predic-

tions are consolidated based on the clinical guidelines to classify each patient sample

into one of the four molecular subtypes.

At each level the same four-fold fold cross validation strategy is used. In this section

the results of the various experiments are discussed.

Table 5.4: Result of the biomarker image patch classification by the DenseNet CNN
used in the proposed method.

Biomarker Fold Precision Recall F1 Score
Fold 1 0.9698 0.9673 0.9676
Fold 2 0.9805 0.9796 0.9796
Fold 3 0.9727 0.9698 0.9703
Fold 4 0.9432 0.9435 0.9430
Average 0.9666 0.9651 0.9651

ER

Std. Dev. 0.0162 0.0153 0.0156
Fold 1 0.9837 0.9838 0.9837
Fold 2 0.9897 0.9896 0.9896
Fold 3 0.9919 0.9915 0.9916
Fold 4 0.9284 0.9207 0.9179
Average 0.9734 0.9714 0.9707

PR

Std. Dev. 0.0302 0.0340 0.0354
Fold 1 0.9940 0.9940 0.9940
Fold 2 0.9975 0.9975 0.9975
Fold 3 0.9970 0.9970 0.9970
Fold 4 0.9894 0.9893 0.9893
Average 0.9945 0.9945 0.9945

Ki67

Std. Dev. 0.0037 0.0038 0.0038
Fold 1 0.9565 0.9551 0.9539
Fold 2 0.9796 0.9786 0.9785
Fold 3 0.8155 0.8054 0.7957
Fold 4 0.8034 0.7548 0.7494
Average 0.8888 0.8735 0.8694

HER2

Std. Dev. 0.0922 0.1102 0.1138
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5.3.2.1 Results of Image-patch Classification

Four different CNN models are trained to classify image patches extracted from the

biomarker images. These models are evaluated using four-fold cross-validation. Re-

sults of the cross-validation of ER, PR, Ki67, and HER2 image-patch classification are

shown in Table 5.4. The binary classifiers used in case of ER, PR, and Ki67 classify

each image patch into Positive and Negative classes with respect to the biomarker re-

sponse. HER2 patches are classified into three classes such as Positive, Negative, &

Equivocal as followed in clinical procedure. The results of ER, PR, & Ki67 show that

the respective CNN models are highly effective in classifying the image patches. The

HER2 classifier gives a moderate performance with an average F1 score of 0.8694. The

shortage in number of training slide images for the Equivocal class is thought to be the

reason for this. The deviation in results across the folds is high for HER2 compared to

other three biomarkers.

The performances of the four CNN models on the test set are graphically repre-

sented in Figure 5.4. In this, Fold 1 performance of the cross validation is captured for

each biomarker. Confusion matrices in Figure 5.4(a, d, g, j) portray the number of test

samples in the true classes and the predicted classes. The numbers in the major diago-

nal show the correct classifications and the rest are misclassifications. These numbers

are used for metrics such as Precision, Recall etc. The class imbalance in the test set

is visible in these diagrams. Also, the dominating numbers across the major diagonals

indicate effectiveness of the CNN models for all four biomarkers. Receiver operating

characteristic curve (ROC) is used to represent the effectiveness of a classifier system

at various threshold levels. In the ROC curve, true positive rate (TPR), also known as

Sensitivity, is plotted against false positive rate (FPR) i.e., 1 - Specificity. Area un-

der the ROC curve (AUC) is the numerical value that indicates the effectiveness of a

classifier model. AUC value ranges from 0 to 1 where the value 1 indicates a perfect

classifier model. Figure 5.4(b,e,h,k) shows the ROC curves plotted for the CNN model

of the four biomarkers. The curves and the AUC values represent the effectiveness
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Figure 5.4: Graphs of patch level classifications for Fold 1. Row 1: ER, Row 2: PR,
Row 3: Ki67, Row 4: HER2.
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of the CNN models by differentiating different classes of IHC image patches. In the

datasets with class imbalance, the precision-recall (PR) curve is another method to cap-

ture the effectiveness of the classifier. PR curves show a more realistic performance of

the model (Davis and Goadrich, 2006; Saito and Rehmsmeier, 2015) than ROC curve

for imbalanced datasets. Figure 5.4(c,f,i,l) are the corresponding PR curves obtained for

the CNN models of the biomarkers ER, PR, Ki67 and HER2. Average precision (AP)

value, the weighted mean of precision values obtained at different probability thresh-

olds, summarizes the effectiveness of the PR curve. It can be observed in the graphs that

the PR curves portray a more realistic performance of the model than the ROC curves

after considering both majority and minority classes in the imbalanced test set. In the

case of Ki67, the test set is nearly balanced and hence both ROC and PR curves of the

Ki67 model show a similar pattern. Overall high values of AUC and AP indicate that

all the CNN models are effective in classifying the IHC biomarker image patches.

5.3.2.2 Results of Slide Level Biomarker Status Prediction

In this set of experiments, the result of image patch classification (i.e., number of

patches per class) is processed for each slide image to predict biomarker status at slide

level. The prediction algorithm used for each biomarker is explained under the method-

ology section (Section 5.2.2.3). The slide level prediction performance is evaluated us-

ing the ground-truth labels provided for each slide image and the results are summarized

in Table 5.5. There are 50 test slide images per biomarker in each fold. Considering all

the four folds of cross-validation, the complete set of 200 slide images are evaluated for

every biomarker.

The ER and PR slide images that belong to the two target classes (+ve or -ve) are

predicted using a threshold for the proportion of positive patches obtained in the patch-

level prediction. Biomarker responses of hormone receptors ER and PR are similar

in nature and that can be observed in their comparable results as well. Slide level

evaluation of ER and PR slide images gives near-perfect results with the average F1
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Table 5.5: Result of the slide image classification to target biomarker status classes.
Biomarker Fold Precision Recall F1 Score

ER

Fold 1 1.0000 1.0000 1.0000
Fold 2 1.0000 1.0000 1.0000
Fold 3 1.0000 1.0000 1.0000
Fold 4 1.0000 1.0000 1.0000
Average 1.0000 1.0000 1.0000
Std. Dev. 0.0000 0.0000 0.0000

PR

Fold 1 1.0000 1.0000 1.0000
Fold 2 0.9473 0.9423 0.9413
Fold 3 1.0000 1.0000 1.0000
Fold 4 1.0000 1.0000 1.0000
Average 0.9868 0.9856 0.9853
Std. Dev. 0.0264 0.0289 0.0294

Ki67

Fold 1 1.0000 0.8200 0.9011
Fold 2 1.0000 0.9615 0.9804
Fold 3 0.9322 0.9322 0.9322
Fold 4 0.9442 0.9400 0.9358
Average 0.9691 0.9134 0.9374
Std. Dev. 0.0360 0.0635 0.0326

HER2

Fold 1 0.9107 0.6875 0.7033
Fold 2 1.0000 1.0000 1.0000
Fold 3 0.7731 0.7470 0.7442
Fold 4 0.8253 0.7857 0.7766
Average 0.8773 0.8051 0.8060
Std. Dev. 0.0996 0.1361 0.1327

scores of 0.9658 and 1.00 respectively. The patch level classification by combining all

slides in the test set gives results less than 1 for ER and PR (0.9651 for ER and 0.9707

for PR). The consolidation of patch-level classification using the proportion threshold

has resulted in improved results for the slide level prediction.

In the case of Ki67, the slide level prediction is more complex. Here the slide images

are classified as Ki67 Low/High. In the manual pathology procedure, this is done using

a threshold 14% on the proportion of Ki67 +ve nuclei. In the proposed method, this

is approximated using the proportion of Ki67 +ve image patches in the slide images.

In addition to the base criteria of 14% Ki67+ve patches, experiments are conducted

with an additional criterion on the count of +ve patches per slide image. The graph
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Table 5.6: Result of applying different threshold criteria for Ki67 slide level status
prediction as Ki67 High/Low. (PPP : Positive patch percentage, PPC: Positive patch
count)

Criteria Precision Recall F1 Score
PPP: 14%,
PPC: Not applied 0.8575 0.8950 0.8550

PPP: 14%,
PPC: 24 0.9784 0.8865 0.9226

PPP: 14%,
PPC: 20 0.9691 0.9134 0.9374

PPP: 14%,
PPC: 18 0.9606 0.9238 0.9370

Figure 5.5: Determination of optimal value for minimum positive patch count (cnt)
per slide in Ki67 status prediction. Precision (pr) peaked when cnt is kept as 24, Re-
call (re) peaked for cnt value 18, and F1 score (fs) showed maximum value for cnt
value 20.

shown in Figure 5.5 shows the results of these experiments. The slide level prediction

results are plotted with varying count threshold for Ki67 +ve patches. It is observed that

the precision, recall, and F1 score values are maximum when the minimum Ki67 +ve

patch count is kept at 24,18, and 20 respectively. Table 5.6 shows the quantitative results

obtained for different criteria applied for Ki67 status prediction. The result obtained

using the additional count parameter shows significant improvement over the results
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obtained using only the proportion criteria of 14%.

The status prediction of HER2 slide images is also similar to ER and PR except that

there are three target classes involved namely positive, and negative, and equivocal. A

simple plurality voting among the patches of these three classes is used to predict the

slide level biomarker status. In manual evaluation by a pathologist, HER2 equivocal

status is assigned when the biomarker is showing neither truly positive nor negative re-

sponse characteristics. In the deep learning-based automated approach, the same reason

can cause more misclassifications. The results of HER2 prediction at patch level as well

as slide level is comparatively low due to this reason. In addition, the shortage of image

samples in the equivocal class also affected the feature learning by the CNN.

Table 5.7: Result of patient level biomarker status prediction.
Biomarker Fold Precision Recall F1 Score

ER

Fold 1 1.0000 1.0000 1.0000
Fold 2 1.0000 1.0000 1.0000
Fold 3 1.0000 1.0000 1.0000
Fold 4 1.0000 1.0000 1.0000
Average 1.0000 1.0000 1.0000
Std. Dev. 0.0000 0.0000 0.0000

PR

Fold 1 1.0000 1.0000 1.0000
Fold 2 1.0000 1.0000 1.0000
Fold 3 1.0000 1.0000 1.0000
Fold 4 1.0000 1.0000 1.0000
Average 1.0000 1.0000 1.0000
Std. Dev. 0.0000 0.0000 0.0000

Ki67

Fold 1 1.0000 0.8000 0.8889
Fold 2 1.0000 1.0000 1.0000
Fold 3 0.6400 0.8000 0.7111
Fold 4 1.0000 1.0000 1.0000
Average 0.9100 0.9000 0.9000
Std. Dev. 0.1800 0.1155 0.1364

HER2

Fold 1 0.9000 0.8000 0.8133
Fold 2 1.0000 1.0000 1.0000
Fold 3 1.0000 1.0000 1.0000
Fold 4 1.0000 0.9500 0.9722
Average 0.9250 0.8500 0.8567
Std. Dev. 0.0500 0.1000 0.0958
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5.3.2.3 Patient Level Biomarker Status Prediction

Patient-level evaluation of biomarkers is an extension of slide level evaluation by con-

sidering patches from multiple slide images of a patient. In the clinical procedure, nor-

mally 10 hotspots in the pathology slides are evaluated to predict patient level biomarker

status. In the proposed method also, all the 10 slide images per biomarker of every pa-

tient sample are considered to make the consolidated patient level biomarker status pre-

diction. For this, the patches are extracted from all the 10 slide images of a biomarker

for a patient and inputted to the CNN for classification. The algorithms and threshold

used to predict the status of ER, PR, and HER2 at the patient level are the same as slide

level prediction. In the case of Ki67, the minimum patch count criteria used is 200 since

10 Ki67 images are considered now for a patient.

Result of patient level biomarker status prediction is shown in Table 5.7. The re-

sults obtained at patient level have remained same or improved for ER, PR, and HER2

whereas the Ki67 results have declined in comparison to slide level predictions. Notice-

ably, ER and PR predictions have been completely correct for all the patient samples

involved in cross-validation. Ki67 and HER2 predictions show scope for further im-

provements in the automated analysis. High variation in the performance is observed

across the cross-validation folds of Ki67 and HER2. In the case of Ki67, the dataset has

more borderline slide images for some patients that are labeled based on small differ-

ences in the nuclei response. Such samples have high chances of being misclassified.

Since at patient-level, the test set has only five patient samples, the cost of one misclas-

sification is high (20%). That leads to high variance in the case of Ki67 performance

across the folds. HER2 status assessment is a three-class problem (+ve/-ve/Equivocal)

and the borderline case samples are relatively high in this case also. The relatively high

variance and lower performance of HER2 status prediction is attributed to the misclas-

sifications of borderline samples. Once the number of patient samples are increased in

the dataset, the performance is likely to stabilize with better generalization of the model

for both Ki67 and HER2.

114



Table 5.8: Result of patient-wise molecular subtype classification.
Cross-validation Fold Precision Recall F1 Score
Fold1 0.7222 0.6667 0.6667
Fold2 1.0000 1.0000 1.0000
Fold3 1.0000 0.8333 0.9048
Fold4 1.0000 1.0000 1.0000
Average 0.9306 0.8750 0.8929
Std. Dev. 0.1389 0.1596 0.1573

5.3.2.4 Molecular Subtype Classification

The patient level molecular subtyping is evaluated in the final set of experiments. The

results of these experiments are presented in Table 5.8. This is the culmination of a

series of automated processes starting with digitized IHC images of the biomarkers ER,

PR, Ki67, and HER2 as the input. Patient level status computed in the previous stage

are combined as per the clinical guidelines summarized in Table 5.1 to determine the

molecular subtype of the breast cancer for a patient under evaluation. The results ob-

tained are promising with an average precision, recall and F1-score of 0.9306, 0.8750

and 0.8929 respectively. The prediction errors found for biomarkers Ki67 and HER2

(Table 5.7) are reflected in the final subtype classification also. For instance, in the pa-

tient level biomarker evaluation, Fold 1 and Fold 3 of Ki67 have given low performance.

Fold 1 of HER2 also shows low performance resulting from misclassifications. Since

molecular subtyping uses the same folds for evaluation, Fold 1 and Fold 3 of molec-

ular subtyping also have given lower performance. Such performance issues can be

addressed by having a large sample size of patients in the dataset that can sufficiently

represent all target classes.

5.3.2.5 Discussions and Future Scope

The proposed method for automated molecular subtyping is the first ever effort to auto-

mate this clinically relevant procedure in breast cancer treatment. The results obtained

for the proposed method give a promising outlook for the future development and appli-
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cation in clinical practice. The study of the existing literature revealed a few interesting

factors. The various methods in the literature assess one or two individual biomarkers

that are involved in the molecular subtyping (Table 2.5). These methods mostly use

custom datasets that are not available in the public domain. Moreover, there has not

been any attempt to take it to the next level of a comprehensive assessment of all the

biomarkers to determine the molecular subtype. Unavailability of a patient level dataset

covering all the biomarkers is observed as the potential hurdle for this. A dataset of

800 IHC images, collected from 20 patients whose molecular subtypes are known, is

used to develop the proposed method. That means, every patient sample has 40 IHC

images of dimension 1920 × 1440 covering the four biomarkers. The only limitation

observed is in the sample size which is only 20 patients. To increase the sample size

to 50 or so, it requires capturing and labeling a total of 1200 more such images. That

requires substantial effort from pathologists. A positive observation is that even with

the small patient level sample size, the proposed method gives significant performance.

The consistency of the results is verified using cross-validation approach.

Despite the robust performance of the proposed method, there are areas that can

further improve in future. The use of more recent and better performing deep learning

algorithms is one such aspect. Deep learning is a fast-developing domain with newer

and better algorithms being developed more frequently. Replacing the DenseNet ar-

chitecture used in the method with a better performing algorithm can improve results

further. Dataset is another factor that can improve the performance. Sample size of cer-

tain biomarker response classes is relatively small in the dataset used. HER2 Equivocal

class is one such case. It had a negative impact on the performance of HER2 prediction

at different levels. If the dataset contains sufficient samples from all the classes, the

performance can be improved further. It is also preferable to have public datasets that

will help to compare the performance of different methods. The detailed assessment of

biomarker response is another area that to be explored. In this method, the focus is on

molecular subtyping and only the subjective classes of biomarker responses are consid-

ered for it (E.g., ER +ve/-ve, Ki67 low/high etc.). It is also possible to elicit other finer
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details from the IHC images such as count or proportion of cells in different subclasses

of hormone receptor responses (Weak, Intermediate, Strong etc.) (Allred et al., 1998)

that can help oncologists in taking treatment decisions.

5.4 Summary

Molecular subtyping classifies breast cancer based on the expression of underlying ge-

netic factors behind the disease. It helps in prognosis and targeted treatment of the

disease. A commonly used pathology procedure for molecular subtyping involves IHC

analysis of tumor tissues. This manual procedure is tedious and time-consuming. In

this chapter, a novel deep learning-based classifier framework of automated molecular

subtyping of breast cancer is presented. A combination of traditional image processing

and deep learning algorithms are combined in the processing pipeline of the frame-

work. The IHC images of the biomarkers ER, PR, Ki67, and HER2 are independently

processed to predict the status of each of these. The results are then combined to de-

termine the molecular subtype of the cancer as per the clinical guidelines. No such

system is found in literature currently for automated molecular subtyping based on IHC

image analysis. The proposed method is thoroughly evaluated at different levels and

the results are found to be highly in concordance with the pathologists’ evaluation. The

promising results obtained using a small patient sample size is a strong indication of

the possibility of achieving the performance level required for the clinical usage of au-

tomated methods. Improvement of the results is possible using more advanced CNNs

and enhancement of the dataset with more patient samples.
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CHAPTER 6

CONCLUSIONS

Automated analysis of histopathology images has a great potential to improve the man-

ual procedures in cancer diagnosis and treatment planning in terms of accuracy, afford-

ability, and time required. This thesis focuses on breast cancer histopathology image

analysis to develop automated procedures for grading and molecular subtyping of breast

cancer. Towards this, deep learning-based automated methods are proposed for breast

cancer related pathology procedures namely mitosis detection, nuclear atypia scoring,

and molecular subtyping.

The challenges involved in automated mitosis detection are identified through a de-

tailed study of the literature. The study revealed some insightful aspects of existing

methods, mainly the evolution of methodology adopted by researchers over the years

(Appendix B), their preferences for the choice of basic feature extraction and learning

algorithms (Appendix C). The performances of the handcrafted feature-based methods

are observed to saturate over time whereas the application of deep learning algorithms

is constrained by the class-imbalance problem and dataset sample size. Algorithms

trained on single independent datasets are unlikely to perform well on a new dataset

since the impact of staining and acquisition settings is high on H & E images, resulting

in large variations among images from different datasets. In an attempt to develop gen-

eralizable practical solutions based on deep learning algorithms, the proposed method

for mitosis detection resorted to merging of datasets from different sources after re-

quired preprocessing to normalize the variations. Combining this with patch-level aug-

mentation, the use of an advanced CNN like DenseNet is enabled in the proposed pro-

cess pipeline. The performance improvement given by this method is an indication to

the feasibility and promise of the approach adopted.



Automated nuclear atypia scoring posed an additional set of challenges in terms of

the structural complexity of H & E images captured at 20× magnification, large im-

age dimension, inter-class similarity, and intra-class variations. These were bottlenecks

for exploiting the power of deep learning algorithms for this task. The proposed frame-

work for atypia attempted reformulation of the three-class problem of slide level nuclear

atypia scoring into a six-class nuclei classification problem. This way the self-learning

potential of CNNs is fully utilized in the framework. The aggregation of nuclei-level

classification in the post processing stage to predict the atypia score at a slide level

showed significant improvement in performance over the state-of-the-art. An impor-

tant observation from this study is that a combination of conventional image processing

techniques and deep learning algorithms like CNNs together can be quite effective for

problems that are inherently not suitable for direct application of deep learning algo-

rithms. In addition, a brief analysis of pathologists’ disagreement and labeling discrep-

ancies in the dataset are carried out since these problems impact the development of

automated methods.

Mitosis detection and atypia scoring are constituent steps of a higher-level task of

breast cancer grading whereas the proposed method for automated molecular subtyping

is an end-to-end automation of this pathology procedure. IHC images of a biomarker

undergo a series of the processing steps in the different stages of the pipeline to give

the biomarker status as the output. In this framework also, a preprocessing stage of

traditional image processing followed by deep learning and a post processing stage are

involved. Applying this pipeline with minimal variations to all the four biomarkers ER,

PR, Ki67, and HER2 results in patient-level molecular subtyping of breast cancer. The

practical implication of the automation of this task is that the workload of a pathologist

can be significantly reduced. In the manual procedure, around 40 hotspots (equivalent

to 40 IHC images) in the glass slides need to be analyzed by the pathologist for each

patient and literally count the nuclei demonstrating different color expressions. Using

an automated method for independent analysis or as an assistive technology, a great

deal of this workload can be reduced. However, to reach this stage, more research, fine
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tuning, and clinical trials are required. The proposed method is a solid first step in that

direction.

In summary, this thesis analyzes three significant procedures in breast cancer pathol-

ogy i.e., mitosis detection, nuclear atypia scoring, and molecular subtyping to under-

stand the problems of the manual procedures and the limitations of existing automated

methods. Deep learning based automated methods are proposed for these procedures

to address the observed limitations. The positive results shown by the proposed meth-

ods vindicate the potential of the adopted approaches in progressing towards clinically

applicable solutions.
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APPENDIX A

Evaluation Metrics
The evaluation metrics used for various methods presented in the thesis are based on the

elements of a confusion matrix that summarizes the performance of classifier systems

based on the test output. The four elements of the confusion matrix are True Positive

(TP ), True Negative (TN ), False Positive (FP ), and False Negative (FN ). Descrip-

tions of these elements are given in Table A.1. Definitions of precision, recall, F1 score,

and accuracy are shown in Eq. (A.1), Eq. (A.2), Eq. (A.3), and Eq. (A.4) respectively.

In the case of multi-class classifiers, the metrics are computed for each class separately

and averaged, the weighted average for precision, recall, F1 score and simple average in

case of accuracy. Precision is also known as positive predictive value (PPV) and recall

has alternate names as sensitivity, hit rate, or true positive rate (TPR).

Table A.1: Definition of confusion matrix elements used in various evaluation metrics.
Parameter Description

True Positive (TP ) Positive sample correctly predicted
True Negative (TN ) Negative sample correctly predicted
False Positive (FP ) Negative sample predicted as positive
False Negative (FN ) Positive sample predicted as negative

Precision/PPV =
TP

TP + FP
(A.1)

Recall/TPR/Sensitivity =
TP

TP + FN
(A.2)

F1 Score =
2× Precision×Recall

Precision+Recall
=

2TP

2TP + FP + FN
(A.3)

Accuracy =
TP + TN

TP + FP + TN + FN
(A.4)



Apart from these metrics, receiver operating characteristic (ROC) graphs generally

used to represent the performance of a classifier system at varying thresholds are also

used. ROC curve is a plot of TPR vs. false positive rate (FPR) for each class label. The

equation for FPR is given in Eq. (A.5).

FPR =
FP

FP + TN
(A.5)
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APPENDIX B

Methodology Adoption Pattern Over the Years for

Automated Mitosis Detection

The mitosis detection methods are broadly grouped into three classes as handcrafted

feature-based, deep learning-based and combination of the two. This grouping is based

on the patterns observed in the existing methods. In the course of this study, some

interesting observations are made about the adoption of these methodologies over the

years. Figure B.1 shows the evolution of methodology adoption pattern in every four

years since 2008. During 2008-11, mitosis detection methods appeared less in literature

and those published used custom datasets that are not available in the public domain.

Figure B.1: Methodology adoption trend over the years

During 2012-15, the sudden surge in methods is driven by the open challenges and

datasets available in the public domain. Among the methods, handcrafted feature-based

methods led the pack. Deep learning was then at an early stage of gaining popularity

in medical image processing. Another factor for poor adoption of deep learning during



this period may be attributed to high computing power and large data required for deep

learning algorithms. Handcrafted feature-based methods do not require a large amount

of data since features are manually extracted, unlike supervised self-learning by deep

learning algorithms.

During 2016-19, the trend was reversed. The number of deep learning and combina-

tion methods overtook handcrafted feature-based methods by a large margin. The avail-

ability of multiple datasets, data augmentation techniques, and availability of comput-

ing power has driven this change. However, the result values obtained by deep learning

methods were not much different from the results of handcrafted feature-based methods.

This is against the trend observed in many other image analysis domains. One possible

reason can be that there are very few mitotic cell samples in HPF images compared to

non-mitotic cell samples. That means, there is a huge imbalance in the positive and

negative samples which affects the process of learning by the deep learning algorithms.
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APPENDIX C

Adoption Pattern of Standard Algorithms for

Automated Mitosis Detection

In the literature study, it is observed that all the reviewed mitosis detection methods use

one or more standard algorithms already available, in isolation or combination. This

observation provided the motivation to investigate the commonly adopted standard al-

gorithms by researchers in developing their methods. Figure C.1 shows the usage pat-

tern of existing algorithms in various mitosis detection methods reviewed. Following

the deep learning trend in recent years, CNNs are used by the maximum number of

methods. This is followed by SVM with different kernel functions, random forest, etc.

These algorithms are used for different tasks such as feature extraction (CLBP, LOG),

segmentation (ACM), classification (RF, DT, CNN), in various phases of mitosis detec-

tion.

Figure C.1: Usage pattern of standard algorithms in the methods reviewed.
(Acronyms: Convolutional neural network (CNN), Support Vector Machine (SVM),
Random forest (RF), Decision tree (DT), Completed local binary pattern (CLBP),
Maximum-likelihood estimation (MLE), Laplacian of Gaussian (LOG), Active con-
tour model (ACM))
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