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ABSTRACT 

The status of soil fertility is a concern, especially in the Deccan plateau vertisols of 

India. Vertisols are productive if they are managed well. Understanding the spatial 

variability of soil nutrients is necessary for agriculture to maintain sustainability. The 

objective of the present study is to characterize the status of soil nutrients, spatial 

variability of selected soil nutrients, and the estimation of the presence of these soil 

nutrients by spaceborne Hyperion data in scattered small-size fields of Gulbarga taluk, 

northern Karnataka, India. This region is known as the "pigeon pea vessel" of the 

state.  

The geostatistical analysis is carried out in SpaceStat 4.0® to find the spatial 

variability of all the selected nutrients. The coefficient of variation monitors the 

variation in the nutrients of the soil. The variogram analysis has shown that all the 

selected nutrients are the best fit for the spherical model except nitrogen, organic 

carbon, and phosphorus. The nugget/sill ratio is utilized to know the spatial 

dependence of soil nutrients. Using the best fit model, surface maps are generated by 

the ordinary kriging method.  

The estimation of soil nutrients from Hyperion data with statistical regression is 

measured as an alternative technique. The spectral information of the visible near 

infrared and short wave infrared range (400-2500 nm) is utilized to characterize soil 

nutrients. The potential of the Hyperion data has not yet been exploited completely 

due to noisy atmospheric components in spectral signatures especially in fields of 

smaller size. Sixty-eight random topsoil samples were collected from small farms, 

which are less than two acres in size. The systematic sampling of soil was conducted 

in the month (third week) of November 2016. This duration is also synchronized with 

the passage of the Hyperion satellite above the study area. The atmospheric 

(FLASSH) and geometric corrections is carried out and then the spectral reflectances 

are extracted. The PLS_Toolbox is used for filtering (Savitzky Golay), and the Partial 

Least square regression (PLSR) technique is applied for the estimation of soil 

nutrients by Hyperion data. The variable importance in projection (VIP) is identified, 

which reduces the non-significant wavelengths for the PLSR model. Two indices are 
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used to assess the prediction accuracy, Coefficient of determination (R2), and root 

mean square error (RMSE).  

From analysis of soil nutrients, it is observed that the spatial variability maps 

exhibited a heterogeneous pattern of soil nutrients because of individual farming 

methods. The spatial variability maps are used as initial regulation by policymakers 

for site nutrient management, including fertilization in vertisols. This is essential for 

sustainable management of the fields, which are aimed at increasing the productivity 

of the crops; low productivity vertisols are to be used in cultivation on a global scale 

due to the current shortage of food supplies and agricultural resources land. 

The utilization of Hyperion data and PLSR technique showed that it has the low to 

moderate potential to estimate certain vertisols nutrients such as iron (R2=0.40), 

potassium (R2=0.45), and Copper (R2=0.41), and moderate estimation for nitrogen 

(R2=0.54) even though vertisols have less reflectance values compared to other soil 

types. 

The vertisols of India exhibit low reflectance, which are deficient in humus, nitrogen, 

phosphorus, and potassium due to low permeability and moisture stress throughout 

the drought. Hence the presence of soluble nutrients concentration is low compared to 

other soil. Generally, the white color contributes to higher reflectance in all 

wavelengths, so the grey-brown color is natural in the vertisols fields and along with 

less organic matter, which leads to the low reflectance. Hyperion data can be 

inventively utilized to estimate vertisols soil nutrients with reasonable accuracy in 

heterogeneous and small size fields.  

 

Keywords: Vertisols, Soil nutrients, Geostatistics, Spatial variability, Hyperion, 

PLSR, and Sustainable agriculture.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Soil is the soul of all living beings on earth. A soil sustains, monitor, supply and 

provide services to cultural ecosystems, and plays an important role within the global 

framework for primary biogeochemical cycles and energy. Soil formation is attributed 

to parent material, organisms, climate, relief, and time.  

Soil is one of the most vital components of agricultural production and can have a 

prevailing effect on crops quality and yield. For a substantial period of time, 

agriculturist used in-filed soil data to make decisions on crop management practices. 

The highest concentrations of nutrients and microorganisms occur on topsoil (0 to 

20cm) that provides the framework for most of the biological soil activity.  Soil 

characteristics are neither static nor uniform with time and space. Topsoil is mainly 

used in agriculture, since plants gain most of the nutrients from it. The soil properties 

information at finer resolution is vital in many fields, more so in precision agriculture. 

Major types of soils are mountain soils, black soils, laterite soils, red soils, alluvial 

soils, and desert soils. Among these, the worlds black soils (vertisols) occupy a great 

deal territory. Australia (70.5 m ha), India (72.9 m ha), Sudan (40 m ha), Ethiopia (10 

m ha) and Chad (16.5 m ha) are major territories of vertisols and associated soils. 

These five nations comprise more than 80% (250 m ha) of the total vertisols area on 

the planet (Figure 1.1).  

In India, vertisols occur mostly in the peninsular region between 8o 45' and 26o 0' N 

latitude and 66o 0' and 83o 41' E longitude, and approximately 0.42 million km2 of the 

deccan  plateau area covers the vertisols (Sharma et al., 2011). 
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The vertisols are derived from base-rich rocks parent material (basalt), generally 

alkaline. Vertisols are soils that can be easily recognized from their clayey textures 

and dark colours. Generally, for agricultural practices vertisols are not preferred due 

to stickiness and shrink – swell characteristics (Eswaran and Cook, 1987). Besides, 

inadequate soil moisture , poor drainage and poor fertility are the major related 

problems of vertisols (Blaise et al. 2005). Actually, when vertisols are well managed, 

their productivity is high. 

 

Figure 1.1 Distribution of vertisols 

1.2 Sustainable farming 

Around 40 % of the world's total poverty is dominant in the sub- continent’s South 

Asian nations. Major limitations on the improvement of livelihoods among 

agriculturalists in these areas are mainly due to small farms with high cropping 

intensity, various field monitoring practices have been implemented for different 

crops with generalized nutrient recommendation  systems, associated  with inadequate 

technical  support, resulting in insufficient and imbalanced use of plant nutrients, 

resulting in low crop yields in the county (Chatterjee et al., 2015). Over the last 
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decade, the food production has increased, which resulted in the expansion of 

irrigated lands (Ambast et al., 2002), in contrast the poor water management practices 

are disturbing the soil structures. The agricultural practices vary owing to the large 

difference in farmer's knowledge, applications of fertilizers, crop pattern, farm 

management, and use of resources available among farmers lead to the high 

variability of soil nutrients. The application of fertilizers to the soil will go through 

diverse physiochemical reactions thus making nutrients present  in the soil vary from 

place to place (Debnath et al., 2016).  In general, for sustainable development it is 

important to make progress in individual fields and then interlinking them for overall 

sustainable development (Singh et al., 2009). Similarly, in agriculture sectors, 

individual fields need to be addressed and interlinking the fields will lead to overall 

sustainable agricultural development. 

The soil nutrients are essential elements for crop growth. The applications of 

commercial fertilizers contribute to a considerable increase in yields of crops that feed 

the population of the world. For enhancing the availability of nutrients,  application of 

fertilizers are essential (Shrivas et al., 2019). However, excessive use of these 

fertilizers has been recognized as a source of contamination of soil and groundwater. 

Ideally, application rates should be adjusted based on estimations required for optimal 

production at each location as the spatial variability of nutrients will be high within 

individual agricultural fields. 

Precision farming is the integrated agricultural management system integrating 

several technologies. In this sense, the specific management of land is one of the 

efficient procedures for improving the productivity of agricultural land. The soil 

management approach is focused on the application of GIS, GPS, and remote sensing. 

(Mulla and Schepers, 1997). Remote sensing is recognized to be cheaper, faster, and 

relatively precise compared to conventional methods (e.g., Drying combustion 

method for soil organic carbon concentration). Remote sensing imaging is in the 

process of being recognized in precision farming methods for soil property 

determination. 
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1.3 Remote sensing in soil science 

When optical and radiometric instruments were in partial use almost 80 years ago, 

colours were the most recognizable and useful characteristics to chart variations 

between soils. Soil scientists have projected new methods and instruments for 

assessing soil spectra and more specifically linking them to soil properties and 

curving them for remote sensing.  

The primary prerequisite in remote sensing approach is the accessibility of robust 

relationships between soil property of interest and its respective reflectance spectra 

availability (Lagacherie et al., 2008). In the 1930s, when black & white aerial photos 

were prepared as the base plots for soil surveys, the early attempt to use remote 

sensing for soil studies occurred in the US ( Stoner et al., 1980).  

The advent of satellite remote sensing technology and geographic systems has 

contributed a lot to soil studies. Earth-observing optical remote sensing satellite 

systems loaded with sensors that record broad bands in the visible and near-infrared 

spectral regions like Landsat multispectral scanner, Thematic mapper, Enhanced 

thematic mapper, Advanced Spaceborne Thermal Emission and Reflection 

Radiometer, sensors economically provide a wide range of varying spatial resolution. 

Of late, advancements in space-borne remote sensing have led to the introduction of 

hyperspectral sensors. 

 Hyperspectral data analyses are superior to traditional broadband analysis in spectral 

information. In the field of remote sensing, hyperspectral image analysis is one of the 

most influential and fastest-growing technologies. It can reduce methods of collecting 

labour-intensive soil data. It is accepted in digital soil mapping workshop that, poor 

soil dataset has been an issue that can rigorously limit the progress of digital soil 

mapping. Hence it is significant to include the soil sensors that can provide precise 

estimates of soil  property over large areas ( Bottinger et al., 2010). 
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1.4 Spatial variability of soil nutrients 

The soil formation processes and farm management practices vary the topsoil 

properties temporally and spatially. The spatial variability of soil nutrients by Digital 

Soil Mapping (DSM) is one of the key aspects of precision agriculture (Mertens et al., 

2008). The DSM constructs a spatial soil data system-utilizing field and laboratory 

observation techniques in combination with the method of spatial prediction. This is 

supported by advances in soil analysis incorporating mathematical and statistical 

techniques to better predict regions with a minute or no data of soil properties, 

highlighting the uncertainty of such predictions.  The importance of soil nutrients and 

their main functions in crop physiology (Minasny and Hartemink, 2011) is given in 

table 1.1. 

The aim of the soil science is to determine the reason and effect of a connection 

between soil nutrients. Geostatistics (Yost et al., 1982) are often used to deal with the 

spatial distribution of soil nutrients. The estimation and mapping of the soil property 

at un-sampled zones defined as interpolation is the main application of geostatistics in 

soil science (Goovaerts, 1997). One of the key driving factors affecting soil 

management practices is accurate measurement of spatial variability of soil nutrients ( 

Zhang et al., 2014). 

India is classified into fifteen Agro-climatic zones based on soil pattern, climate, 

physiography, and cropping patterns (Venkateswarulu et al., 1996). Small farmlands, 

especially in the Deccan plateau, are a prominent feature for agriculture in India. 

About 80% of the farmers hold approximately 2 hectares, which accounts for > 50% 

of agricultural production. The average size of agricultural land ownership decreased 

from 2.3 ha in 1970 to 1.3 ha in 2000, with 0.32 hectares per capita in 2001 (Mythili 

and Goedecke 2016). These small farms create severe financial pressures for farmers. 

Due to this stress, the use of green fertilizers or soil conservation facilities is restricted 

by labour, land, and capital resources (Bhattacharyya et al., 2015). 

As a direct source of degradation, land scarcity, and poverty, as a whole, leads to 

unsustainable land management practices. The reason for two other immediate causes 
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of soil degradation are inadequate crop rotations and unbalanced use of fertilizers 

(Young, 1994). The use and practices of specific site management are strongly linked 

to the quality of the soil, and the implementation of adequate soil management 

procedures and planning the land use would be useful both to bring back the 

physicochemical quality of the degraded soil and to ensure consistent and sustainable 

soil conductivity (Panday et al., 2019). The specific site management is an alternative 

to traditional practices and cost-effective, which reduces the input of fertilizer 

application (Shaddad et al., 2019).  

Table 1.1 Importance of Nutrients 

NUTRIENT Importance Units 

Nitrogen 

(N) 

Present in a wide range of compounds essential for growth and 

energy transfer, including chlorophyll. Deficiency may lead to 

chlorosis with a pale colour turning to yellow or grey in severe cases, 

and lead to slower growth rates. 

g/Kg 

Phosphorus 

(P) 

An essential part of the process of photosynthesis, respiration, and 

energy transfer in plants. Deficiency may cause stunted form delayed 

maturity and dark green colour. 

g/Kg 

Potassium 

(K) 

Involved in building starch and proteins, an activator of many 

enzymes essential for photosynthesis, and assists in reducing 

diseases. Deficiency may cause chlorosis discoloration and plant 

weakness due to reduced turgor pressure. 

g/Kg 

Iron 

(Fe) 

Essential for the formation of chlorophyll, certain enzymes, and 

proteins that carry electrons during photosynthesis and respiration. 

Symptoms of Fe deficiency include chlorosis and necrotic lesions. 

mg/Kg 

Zinc 

(Zn) 

Required in trace amounts to activate enzymes and may be required 

for chlorophyll formation. Deficiency may cause chlorosis and 

growth reduction of young foliage. 

mg/Kg 

Calcium 

(Ca) 

A component of plant cell wall structure plays a vital role in the 

transportation and retention of other elements. Deficiency may cause 

low plant strength and poor plant form. 

g/Kg 

Magnesium 

(Mg) 

An essential part of chlorophyll molecules and activates enzymes 

needed for photosynthesis and DNA formation. Deficiency is rare but 

may cause chlorosis. 

g/Kg 

Copper 

(Cu) 

An enzyme activator thought to be involved in chlorophyll formation 

and protein synthesis. Deficiency may cause reduced growth rates, 

poor plant form, and chlorotic needle tips. 

mg/Kg 

  (Source: Sims et al. 2013) 
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1.5 Statement of the problem 

A host of factors in India, such as small farms (less than two hectares in size), poor 

machinery owing to financial constraints and a lack of scientific knowledge have lead 

to lack of awareness in precision agriculture. Human interventions in soil ecosystem 

for producing food to meet the demand are reducing the essential nutrients. In India, 

the continuous cropping system for greater yield eliminates significant amounts of 

topsoil nutrients. In addition, the topsoil losses its fertility status due to poor vertisols 

watershed management. Mapping the spatial variability of soil nutrients and 

understanding the condition of soil nutrients and estimating soil nutrients through 

remote sensing data will be the first step towards the practice of precision agriculture.  

Vertisols are highly productive even with low-input farming when well managed. In 

the Deccan plateau region of India, lower crop productivity is a major concern, 

averaging less than 1600 kg/ha due to poor soil fertility and water scarcity (Vasu et 

al., 2017). Precision farming is the integrated agricultural management system 

integrating several technologies. In this study, an attempt will be made to predict 

vertisols soil nutrients integrating remote sensing, hyperspectral, GPS, and GIS. By 

the development of precision farming, which demand the high spatial resolution of 

properties in-filed soil, engineers and agricultural scientists have turned to remote 

sensing for characterization of soil properties. 

The characterization of the spatial variability of macro and micronutrients in vertisols 

of the Deccan plateau of India is limited. To date, only a few studies have attempted 

the exploitation of existing satellite hyperspectral capabilities for retrieval of soil 

nutrients from vertisols. The scattered and small size fields pose challenges for 

extracting soil properties from satellite data.  

The current chapter has introduced the predicament and an overview of geostatistics 

and remote sensing application in characterizing the soil nutrients. The next chapter 

looks at the research conducted previously in this field. 
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CHAPTER 2 

Literature Review 
 

2.1 General 

This chapter presents a review of relevant literature to bring out the background of the 

study undertaken. Geostatistics and remote sensing techniques play a vital role in the 

estimation and mapping of soil nutrients in small sized fields of marginal farmers. 

2.2 Spatial variability of macro and micro nutrients in the soil 

The precise soil management is an effective technique to increase the productivity of 

agricultural areas in sustainable agriculture (Yasrebi et al., 2008). The management of 

soil also depends on knowledge of the spatial variation in soil, mainly soil nutrients 

(Lagacherie and McBratney, 2007; Mulla, 2015). The precise estimation of spatial 

variability is an essential factor influencing land management practices (Chatterjee et 

al., 2015). 

Soil nutrients change spatially from small field scale to regional scale affected due to 

extrinsic and intrinsic factors such as the soil formation process, crop rotation, soil 

management practices. The variations of soil nutrients are gradual changes in 

geomorphic elements, soil management, functions of landforms, pedogenic factors, 

and soil-forming factors (Cambardella and Karlen 1999). The variations in the yield 

are affected by specific management practices and ecological environments of site. 

The systematic data concerning distribution and spatial variability of soil nutrients is 

important for farmers to increase the production of crops (Tesfahunegn et al., 2011). 

The soil nutrients are categorized into macro and micronutrients, the macronutrients 

(N, P, K) are required in large portion in the life cycle of the crop. The macronutrients 

helps the crop in monitoring the metabolism by protein constituent, helps in energy 

transfer and in osmoregulation which is vital for movement of stomata and cell 

extension (Hawkesford et al., 2012). Other than N, P, K rest all the nutrients are 

considered as micronutrients (Fe, Cu, Zn, and Mn). These micronutrients are taken up 
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by crops in lesser quantity for entire crop life cycle. They play prominent part in crop 

metabolism and its development. Though, the deficiencies of these nutrients hinder 

the quantity and quality of any crops will leads to the diseases in crop life cycle 

(Tripathi et al., 2015). The micronutrients have not for the most part been applied 

consistently to soil related to normal composts and preparing soils with 

macronutrients just is probably going to advance irregularities between these 

supplements of nutrients (Sillanppa ,1982).  

2.2.1 Spatial variability of Macronutrients 

The Spatial analysis of macronutrients is important, given the close relationship to 

soil productivity and the anthropogenic effects (Liu et al., 2014). It was estimated that 

annually about 4.17, 2.13, and 7.42 million tons of nitrogen, phosphorus, and 

potassium respectively are removed in agricultural systems in India, affecting the 

fertility of soil (Bhattacharyya et al., 2015). Hence understanding the spatial 

variability of soil macronutrients is necessary for agriculture to maintain 

sustainability. 

The current agricultural practices are depleting the soil nutrients causing adverse 

affect on soil health. By evaluating the current practices, Uygur et al., (2010) 

characterized the spatial variability of macro nutrients in the amik plain soils, Turkey, 

through the IDW (inverse distance weighting) method. They stated spatial variability 

maps are used to identify the agricultural areas, which require fertilizers for better 

yields and even prevent environmental pollution. This type of practices is to be 

encouraged to increase the productivity of fields of marginal farmers and restore the 

soil nutrients in India. 

The geostatistical approach used to describe  the spatial variability of soil nutrients 

has been discussed by Liu et al., (2014). In their study spatial variability of 

macronutrients, pH, and zinc was explored. The higher nugget to sill ratios indicates 

that soil nutrients are strongly affected by extrinsic factors. They have also found that 

soil variability affects the yield of the rice in South China. Hence it becomes 

important to consider the external factors affecting the agricultural practices while 

evaluating the spatial variability.   
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The characterization of major soil nutrients (N, P, and K)  was carried by Tagore et al. 

(2014) in the malwa plateau of the Indore district, India. Spatial variability was 

quantified by semivariogram analysis, and ordinary kriging is used for generating the 

spatial variability maps. They have estimated the ordinary kriging has predicted 

accurately than assuming the mean of observed value at non-samples locations. The 

geostatistical approach considers the distance between the samples, which makes 

better predictions of spatial variability of soil nutrients. The ordinary kriging for 

interpolation is best suited to provide a balanced prediction for a specific unsampled 

location that reduces the variance error and makes the sum of the sample weights is 

equal to one (Tamburi et al., 2020a). 

The practical application of geostatistics can be seen in the study by Tripathi et al. 

(2015) where they estimated the spatial variability of soil macronutrients, pH, and EC 

in the salt-affected region of Odisha, India. They have developed the spatial 

variability maps by using the best-fit variogram model and ordinary kriging. High-risk 

areas affected with saltwater and nutrient deficiency are identified to provide an 

effective farm management plan to farmers.  

Chatterjee et al. (2015) have carried out a systemic study to characterize the spatial 

variability of macronutrients and organic carbon in the West Bengal’s alluvial soil, 

India, by utilizing geostatistics techniques. The spatial variability maps simplify 

managing the proper regulation of soil nutrients leading to enhanced yield and also 

make sure the protection of the environment. The authors suggest the spatial 

variability maps of macronutrients are to be exploited for developing the nutrient 

management policies among small scale farmers. 

 It is important for knowing macronutrient inputs and their spatial variability for high 

output of  bamboo and timber production in the Moso bamboo area is significant 

(Tang et al., 2016). Ordinary kriging is utilized for spatial interpolation. They have 

found that both extrinsic and intrinsic factors controlled the macronutrients stock. 

Different spatial patterns indicate that different sites require a different ratio of NPK 

fertilizers. This demonstrates the significance of generating the spatial variability 

maps before fertilizers are applied. Similarly, Reza et al. (2017) carried out an 
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extensive study to explore the variability of soil macronutrients along with soil pH, 

organic carbon (OC), and Available Zn northeastern part of Bihar, India using 

geostatistical approach. The maps of spatial variability can be utilized as the primary 

guidance for specific region farm management. 

The kriging is the optimum method, for the  interpolating to know the unsampled 

values, conversely its application should involve a precise determination via 

variogram construction and best model fit (Dey et al., 2017). In the Katni district of 

Madhya Pradesh, India, they have investigated the spatial variation of macronutrients 

along with pH, EC, OC, and zinc by random sampling technique. Ordinary kriging is 

used for developing the spatial variability of soil nutrients. They propose constant 

monitoring of soil nutrients spatial distribution is must, which helps in regulating the 

rate of fertilizers and also to monitor the soil fertility and crop yield. 

The kriging is a statistical estimator that provides weight to each sample so that their 

linear structure is equitable and gives the marginal variance of the estimate (Denton et 

al., 2017). The spatial variability of soil macronutrients, pH, and OC has been 

investigated. They propose that ordinary kriging is ideally suited for predicting the 

spatial variability of soil nutrients. The spatial variability is to be a prerequisite for 

soil management and must be the first step moving towards sustainable agriculture.  

The spatial distribution and heterogeneity of alfisol soil nutrients in the tropical 

landscape of Sri Lanka have been defined by Rosemary et al. (2017). To estimate the 

chemical properties (pH, EC, and OC), they collected 58 soil samples. Ordinary 

kriging is used to assess soil nutrient spatial variability, and its findings are useful for 

site-specific management. Similarly in Nitisols, Laekemariam et al. (2018) conducted 

a geostatistical investigation to establish macronutrients spatial variability maps, 

including other soil nutrients. The long spatial correlation ranges are demonstrated by 

the spatial structure being weak to solid. These results indicate that the variability of 

soil nutrients is affected by external and intrinsic influences. Site-specific, and 

according to crops, should be the rate of fertilizer applications. 
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It is supported by Gao et al. (2019), that the awareness of the spatial variation of soil 

nutrients for the protection of vulnerable ecological areas is important for soil and 

fertilization management. They also established the spatial variability of NPK. The 

nugget-to-sill ratio showed that all soil nutrients showed moderate spatial dependence. 

In the Sichuan Basin, China, the variability of soil nutrients is primarily differentiated 

due to the parent material and land use. They recommend that more attention be paid 

to the implementation of practical land use types. 

The site-specific management is currently urgently required to maximize the use of 

natural resources and to incorporate sustainable agriculture in order to capitalize on 

soil production and minimize costs while minimizing environmental impacts which is 

noted by Shaddad et al. (2019). They also developed a methodology for the 

delineation of fields in Egypt based on geostatistics. To know the spatial variability of 

electrical conductivity, available potassium, available nitrogen, and organic matter, 

ordinary kriging has been used. They state that the guidelines are not for traditional 

farming practices whereas the site-specific practices should be carried out with as 

many benefits as possible; for example, they are efficient and economical. 

Chen et al. (2020) have analysed the spatial variability soil macronutrients by 

comparing the surface maps of 2007 and 2017, which were developed by using the 

ordinary kriging technique. By long term production, the spatial variability and 

dependence of soil nutrients drop. The change in spatial variability is due to extrinsic 

factors, and soil fertility has decreased over the decade. 

The table 2.1 provides the detailed summary of parameters for spatial variability of 

macro nutrients. The efficient technique for determining the spatial variability of 

nutrients in soil and their inconsistencies is carried out by geostatistics (Shukla et al., 

2016). The use of geostatistics for interpolation in soil science is used to estimate the 

soil attributes at a nonsampled location and its mapping (Goovaerts, 1999). The use of 

geostatistics should be used as part of sustainable farming in developing countries 

such as India as it has a long record in soil science applications (Yost et al., 1982; 

Cambardella et al., 1994; Webster and Oliver, 2008). It is significant to recognize the 

spatial variability of soil nutrients in vertisols. In the deccan plateau, the uniform 
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recommendations of fertilizers lead to excess or depletion of macronutrients. The 

spatial analysis of macro nutrients is important, given the close relationship to soil 

productivity and the anthropogenic effects (Liu et al., 2014). 

 

Table 2.1 Summary of spatial variability of soil macronutrients 

Author's Fields nature Soil type Nutrients 
CV 

(%) 

Range 

(m) 
Technique 

 

Uygur et al. 

(2010) 

Agricultural 

land. Amik 

Plain, 

Turkey 

Alluvium, 

Clay chalk 

and 

sandstones 

N 68.97 
 

 

- 

 

IDW 
P 103.90 

K 55.11 

 

Tagore et al. 

(2014) 

Soybean 

farm, Indore, 

India 
Vertisols 

N 20.26 706.7 

 

OK 
P 44.43 3130 

K 42.73 1295 

Liu et al. 

(2014) 

Rice 

cropping 

area, South 

China 

- 

pH 17.38 711 

 

OK 

Avl.N 36.02 1200 

Avl.P 74.66 1200 

Avl.K 52.09 1200 

Avl.Zn 57.46 1200 

 

Tripathi et al. 

 

salt-affected 

coastal parts, 

 

Salt 

affected 

pH 4.43 2981 
OK 

EC 62.50 2998 
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Author's Fields nature Soil type Nutrients 
CV 

(%) 

Range 

(m) 
Technique 

(2015) Odisha, India soils 
OC 50 2220 

Avl.N 37 2899 

Avl.P 25.9 4050 

Tang et al. 

(2016) 

Moso 

bamboo 

forests, 

southern 

China 

Oxisol 

N 27.92 6100 

OK 
P 29.10 30570 

K 29.17 25700 

 

 

Chatterjee et 

al. (2016) 

 

Paddy and 

vegetables, 

West Bengal, 

India 

 

 

Alluvial 

 

OC 

 

21.2 

 

58 
 

 

OK 

Avl. N 10.1 43 

Avl. P 47.8 283 

Avl. K 38.6 55 

Reza et al. 

(2017) 

Alluvial 

plain, Bihar, 

India 

Fluvisols, 

Cambisols, 

Arenosols 

pH 11.3 3315 

OK 

OC 31.3 3101 

Avl.N 23.6 1958 

Avl.P 94.3 2420 

Avl.K 50.6 2345 

Dey et al. Katni Alluvial pH 14.16 95800 OK 
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Author's Fields nature Soil type Nutrients 
CV 

(%) 

Range 

(m) 
Technique 

(2017) district, 

Madhya 

Pradesh, 

India 

soil 
EC 73.51 92570 

OC 25.68 95800 

N 26.29 95800 

P 80.74 24830 

K 41.78 95800 

Zn 140.19 41970 

Rosemary et 

al. (2017) 

Tropical 

landscape, 

Sri Lanka 

Alfisols 

pH 18 
590 

OK EC 
76 830 

OC 
37 984 

Denton et al. 

(2017) 

Local 

government 

area, Oyo 

State, 

Nigeria 

 

- 

pH 9.83 0.0035 

OK 

N 29.30 0.0022 

P 40.19 0.0038 

K 37.93 0.0036 

OC 28.35 0.0022 

   pH 10 523.7  
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Author's Fields nature Soil type Nutrients 
CV 

(%) 

Range 

(m) 
Technique 

 

 

Laekemariam 

et al. (2018) 

 

 

 

 

 

 

Coffee and 

annual crop 

growing 

fields, 

Ethiopia 

 

 

 

 

 

 

Nitisols 

 

 

 

 

 

 

OC 36 777 
 

 

 

 

 

 

OK 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 47 813.5 

Avl.P 236 10606 

K 69 4465.9 

Ca 50 6313 

Mg 45 1833 

Cu 71 276 

Fe 35 536 

Mn 35 15118 

Zn 84 301 

Gao et al. 

(2019) 

Mountain 

area, 

woodland, 

paddy fields, 

Sichuan, 

China 

Alluvium 

and 

Purple sand 

shale 

N 38.75 9500 

OK P 37.68 30900 

K 30.56 31200 
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Author's Fields nature Soil type Nutrients 
CV 

(%) 

Range 

(m) 
Technique 

Chen et al. 

(2020) 

Jianli, 

Central 

China 

paddy soil, 

tidal soil 

2007 

OK 

pH 6.5 4980 

OC 32.6 2760 

Avl.N 31.7 3330 

Avl.P 66.7 5400 

Avl.K 50.9 21900 

2017 

pH 5.8 19560 

OC 22 12287 

Avl.N 12.2 44427 

Avl.P 70.6 5940 

Avl.K 43.2 79880 

 

2.2.2 Spatial variability of Micronutrients 

Over time, the availability of micronutrients is declining and is required to be applied 

externally to maintain soil health and increase crop yield (Kumar and Babel, 2011). 

Micronutrients are depleted by intensive cultivation from the soil. Thus, the 
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evaluation of soil fertility should be performed when intensive cultivation is carried 

out to obtain a high yield (Tamburi et al., 2020b). The evaluation of the spatial 

variability of micronutrients and their mapping is essential to understand soil 

behaviour variations (Denton et al., 2017). 

There are many kriging techniques to estimate the spatial variability, among which  

Wang et al. (2009) have used the Block Kriging (BK) to determine the spatial 

variability of soil micronutrients in paddy fields of Southeast China.  A grid sampling 

with grid intervals (20, 30, and 40m) they have collected the samples of soil as well as 

grains. They recommended the spatial variability of micronutrients in both rice grain 

and soil will ease information regarding fertilization and site-specific farm 

management. 

The sampling density and the uniformity plays vital role in estimation of accurate 

spatial variability of soil nutrients. Weindorf and Zhu (2010) described how the 

optimum sampling density is related to the spatial variability of soil nutrients. They 

selected samples by forming a gridded equilateral triangle and selected three random 

points within the triangle. To generate the spatial variability, they have used ordinary 

kriging techniques. They identified that chemical parameters have strong spatial 

variability than physical parameters. 

As discussed at beginning of this section knowing the spatial variability of 

micronutrients is also important. In that regard, Wani et al. (2013) conducted the 

spatial variability of micro soil nutrients in the region of Kashmir, India. They 

generated spatial variability maps by Ordinary kriging (OK) and Indicator Kriging 

(IK). The nugget effect (the variogram bisects at zero lag distance) and the range 

values are used for assessing spatial dependency. Foroughifar et al. (2013) have done 

sampling by grid method for determining the spatial variability of micronutrients, pH, 

OC, and P. They utilized the Cokriging (CK) technique for semivariogram analysis. 

They found the soils are heterogeneous in nature. Hence, the traditional farm 

practicing will not be supplying the necessary nutrients to crops. 

The comparative study is also carried out by Liu et al. (2013)  to know the spatial 

variability of soil micronutrients between semivariogram and Moran's I method. 
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Semivariogram investigation provided them with the sum of negative and positive 

autocorrelation and the distance of spatial correlation for micronutrients. The spatial 

dependency reflected was similar in both spatial analyses. 

In South Africa, Manyevere et al. (2017) determined the spatial variability and status 

of soil micronutrients in the two zones of the Zanyokwe irrigation scheme in which 

there are maximum small scale farmers. The simple kriging (SK) is utilized for 

developing the spatial variability maps. They recommended the corrective measures 

for low spatial variability of soil micronutrients. Similarly in India, Shukla et al. 

(2017) characterized the spatial variability of soil micronutrients and secondary 

nutrients in the foothill of Himalayas. They tried to describe the potential zones. The 

range of spatial dependency on soil nutrients showed long ranges. The soil pH has 

considerably influenced the variability of soil micronutrients. The spatial variability 

maps produced by the OK method are used as preliminary guidance for site-specific 

farm management.  

The knowledge of understanding the spatial variability of micronutrients is essential 

for the development of a site-specific nutrient recommendation through the purpose of 

improved agriculture and more sustainability in agricultural production. It is estimated 

the delineating management zones in saline soil of eastern India by using OK for 

generating spatial variability maps of both micro and macronutrients (Rahul et 

al.,2019). 

The availability of current knowledge of factors affecting soil micronutrients, in the 

long run, is limited (Zhuo et al.,2019); hence they compared the spatial variability of 

soil micronutrients in 2007 and 2017 in orchids agricultural land of Beijing, China. 

The spatial variability of micronutrients available in soil was mainly influenced by 

random factors like field management, fertilizer application, and land use type, and it 

has been regularly strengthening from 2007 to 2017. 

Paris et al. (2020) state that for agricultural production the soil fertility is the key 

aspect to be monitored. The geostatistical analysis is an adequate method for 

evaluation of the spatial variability of soil micronutrients. They analysed the spatial 

variability of micronutrients by ordinary kriging in the macadamia nut plant fields. 
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The ranges obtained varied due to fertilizer applications. Organic matter in the fields 

correlates micronutrients significantly, and the yield has varied on the available zinc 

in the fields. The table 2.2 provides the detailed summary of parameters for spatial 

variability of micronutrients. 

Table 2.2 Summary of spatial variability of soil micronutrients 

Author's Fields nature Soil type Nutrients 
CV 

(%) 

Range 

(m) 
Technique 

Wang et al. 

(2009) 

Paddy fields, 

Southeast 

China 

- 

pH 7.1 110  

 

BK 

OC 31 60 

Cu 17.7 60 

Fe 29.2 60 

Mn 26.8 60 

Zn 28.6 60 

Weindorf 

and Zhu 

(2010) 

Natural 

vegetation 

(Woody 

species, 

grass, and 

wildflowers), 

New Mexico 

Bandera 

soil, and 

Fallsam 

soil 

pH 8.5 507  

 

OK 

OC 47.26 1554 

Ca 29.77 1845 

Mg 26.61 762 

Zn 61.68 194 

Cu 28.45 299 

Wani et al. Rice and - Cu 38.8 140 OK and IK 
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Author's Fields nature Soil type Nutrients 
CV 

(%) 

Range 

(m) 
Technique 

(2013) 

 

maize crop, 

Kashmir, 

India 

 
Fe 52 120 

 

 

Mn 73 136 

Zn 78 243 

Foroughifar 

et al. 

(2013) 

Wheat and 

barley fields, 

Dasht-e-

Tabriz, Iran 

Salty soil 

(adjacent to 

saline 

Orumieh 

Lake) 

Fe 138 5700  

 

 

CK 

Cu 44.3 6000 

Mn 52.5 7364 

Zn 43.5 2200 

pH 5 1600 

OC 99 2270 

P 69 2150 

Liu et al. 

(2013) 

Agricultural 

development 

land, 

Shandong 

province, 

China 

Halosols, 

Cambosols, 

and 

Luvisols 

Fe 20.29 29700  

 

- 

Mn 15.16 20900 

Cu 30.22 61900 

Zn 21.81 58000 

Manyevere 

et al. 

Maize, 

cabbage and 

butternuts, 

Vertisols, 

Nitisols, 

and 

Zn - 3 4  

SK 
Cu - 6 10 
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Author's Fields nature Soil type Nutrients 
CV 

(%) 

Range 

(m) 
Technique 

(2017) Eastern Cape, 

South Africa 

Fluvisols 
Mn - 10 11 

Fe - 20 13 

Shukla et 

al. (2017) 

 

Green oak, 

silk cotton 

tree, and 

maize 

Shiwalik 

Himalayan 

tract and 

foothills of 

the great 

Himalayas, 

India 

 

 

Alluvial 

soils 

pH 13.83 132000  

 

 

 

OK 

EC 80 65000 

Zn 76.34 66000 

Fe 77.56 82000 

Cu 61.74 70000 

Mn 66.91 80000 

OC 38.85 59000 

Rahul et al. 

(2019) 

Paddy fields, 

Mahakalpada 

block, 

Odisha, India 

- 

pH 7.1 5175  

 

 

 

OK 

EC 100 4950 

Avl.N 40.1 5004 

Avl.K 56.7 4096 

Avl.P 62.7 6425 
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Author's Fields nature Soil type Nutrients 
CV 

(%) 

Range 

(m) 
Technique 

Zn 148.1 3966 

Fe 38.1 9215 

Cu 29 4096 

Mn 160.4 7963 

Zhuo et al. 

(2019) 

 

 

Pinggu 

intermountain 

basin,  

Beijing, 

China 

 

- 

 

 

2007 
 

 

 

OK 

Cu 29.61 1180 

Zn 73.10 720.4 

Fe 57.64 3423.86 

Mn 36.80 7333.0 

2017 

Cu 62.25 697.54 

Zn 128.4 6586.5 

Fe 92.29 503.27 

Mn 95.09 8213.5 
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Author's Fields nature Soil type Nutrients 
CV 

(%) 

Range 

(m) 
Technique 

Paris et al. 

(2020) 

Macadamia 

nut yield, 

Brazil. 

Oxisol 

soils 

Fe 48 34.4  

OK 
Cu 31.9 14.6 

Zn 35.1 55.9 

Mn 47 64 

OM 16.1 133.3 

 

In the Indian context, information on the available calcium status of soils is somewhat 

inadequate. About one-third of India's soil is vertisols. A recent presentation of 

secondary nutrients barely mentions the extent of Ca and Mg deficiencies in India 

(Behera and Shukla, 2015). Due to the low base saturation, especially in areas with 

heavy precipitation, there may be a lack of Ca in many vertisols. No mappings are 

made beyond the pH and macronutrients. Among the nutrients, Ca is the least 

explored in India. Like Ca, deficiency of Mg can be a problem in leached vertisols 

under high rainfall. Mg can be leached out easily as compared to Ca making acid 

(Behera and Shukla, 2015).Over the decades, the declining rate of micronutrients have 

increased, and fertilizers are applied excessively to maintain soil health and increase 

the yield of the crops (Kumar and Babel. 2011). Among the micronutrients, Zn is the 

most important for soil and plants equally. Among all the micronutrients, Zn 

deficiency is the most widely spreading micronutrient disorder among different soils 

(Sharma et al., 2013). 

2.3 Estimation of soil nutrients using remote sensing and statistical techniques. 

Remote sensing data provides continues spectral information that needs to be utilized 

for enhanced characterization and quantification of topsoil nutrients. The spectral 
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performance of soil is a collective property that depends on its structure. The variation 

of the spectral signature data on absorption characteristics can indicate the existence 

or nonexistence of chemical chromospheres (Minu et al., 2017). The remote sensing 

data provides spectral signatures that are processed by standard techniques that 

contribute to better results in the end-user applications (Das et al., 2015). 

In remote sensing, space-based hyperspectral is the future, which provides the digital 

images of the earth's surfaces in a narrow continuous spectral band across the 

electromagnetic spectrum in the form of spectral signatures. Hyperspectral data 

analysis is superior to conventional broadband analysis for spectral information. 

Hyperspectral image analysis is one of the most influential and fastest-growing 

technologies in the field of remote sensing. It has the potential to reduce labour-

intensive methods for collecting soil data. In a workshop on digital soil mapping, it 

was recognized that poor soil data is a factor that can rigorously restrict the progress 

of digital soil mapping. It is, therefore, important to include soil sensors that can 

provide accurate estimates of soil properties over large areas (Boettinger et al., 2010). 

The conventional method for determining the soil nutrients is more time and energy 

consuming than a remote sensing approach.  Hyperspectral remote sensors are utilized 

for the estimation of soil nutrients. The literature of some of the work carried for 

exploring the potential benefits is presented here. 

The organic matter and electrical conductivity were mapped by using DAIS-7915 

hyperspectral scanner from visible to the thermal range, along with the ASD 

spectroradiometer in the agricultural fields of Israel.  Minimum noise fraction (MNF) 

for reduction of noise is carried out as a preprocessing technique by Ben-Dor et al. 

(2002). 

Gomez et al. (2008) estimated the soil organic carbon (SOC) in the cotton and pasture 

fields of Australia using EO1 Hyperion data. The Hyperion data were preprocessed by 

ATREM and 5S code, which are algorithm-based. The PLSR prediction technique 

showed good result. Similarly , Zheng (2008) estimated the soil nutrients such as 

nitrogen, phosphorus, and organic matter using EO1 Hyperion data in agricultural 
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fields of central Indiana, USA. The FLAASH module was used for atmospheric 

correction. The PLSR prediction technique estimated the better R2 values of 0.72, 

0.67, and 0.74 for nitrogen, phosphorus, and organic matter, respectively.  

The partial least squares regression (PLSR) and principal component regression 

(PCR) are the most commonly used techniques. They are useful for reducing multiple 

correlated spectral variables into a few factors to be used in soil variable regression 

(Casa et al., 2013). Zhang et al. (2009) have built a PLSR model for the estimation of 

the organic matter, nitrogen, phosphorus in the open fields of central Indiana, USA. 

The ACRON preprocessing technique is used for atmospheric correction. The 

predicted R2 values for organic matter, phosphorus, and nitrogen are 0.89, 0.69, and 

0.70, respectively. 

Das et al. (2015) compared several studies on estimation of soil properties by 

hyperspectral data, and states that the PLSR technique has gained importance due to 

the Eigenvalue decomposition as it has the good predictive power. The PLSR model 

is built with both response and predictor variables.   

Nowkandeh et al. (2018)  made an attempt for organic matter prediction by Hyperion 

data with available predictive models, in that PLSR, provided adequate accuracy of 

the coefficient of determination (R2= 0.66) with six latent variables. This study was 

carried out in the semi-arid region of Iran. They suggested models must not remain 

generalized for other semi-arid regions and must be verified for more other regions. 

The spectral reflectance of soil is a representative of chromophores (chemical and 

physical factors) for electromagnetic radiation. The incident energy is observed at 

distinct wavelengths from chemical chromophores, whereas the entire spectrum from 

the physical chromophores (Das et al., 2015).The organic matter, texture, moisture 

content, and mineralogy are major components that have their own fundamental 

features in the spectral reflectance.  

The soil nutrients show a significant influence on the spectra of soil. The organic 

matter is reflected in the VIS-NIR wavelength range (520 to 800 nm); the decrease in 

the reflectance spectra over this region indicates the increased content of organic 
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matter (Stoner et al., 1980). The iron contents in the soil are correlated in the visible 

range (600 to 1000 nm) by the absorbance in the spectra. The high organic matter 

content interferes with the absorption of the spectra. The presence of lower albedo 

increases the iron effect in spectra by shallow and broad absorption (Galvao and 

Vitorello, 1998).  The soil nitrogen is found at corresponding wavelengths in the NIR 

region 1800 to 2300 nm range (particularly absorbance at 1702,1870 and 2052 nm) 

are useful in determining soil nitrogen (Ehsani et al., 1999). Gopal et al. (2015) used 

VIP to select effective wavelengths from high spectral dimensionality data. The 

application of the PLSR technique established the relationship between chemical 

components and the reflectance spectra (Bilgili et al. 2010; Zhao et al. 2004). Minu et 

al. (2016) provided a detailed review to predict the soil properties by hyperspectral 

data and the model used for predictions. 

2.3 Summary of literature review and research gap. 

The comprehensive literature indicates that, like traditional techniques, soil nutrients 

can be reliably calculated from remote sensing data. The advantage of these 

techniques is that information on most soil nutrients can be produced from a single 

spectrum. In all approaches, there are advantages and disadvantages; for instance, 

remote sensing provides a piece of information in continuous bands, and a wider 

region is covered, but there are limitations on retrieving information of the soil under 

vegetation. The spectroscopic handling is costly even though it yields better 

predictions due to closer distance reflectance capture. It can be recapitulated from the 

literature that most of the studies considered regional models for the spatial variability 

of soil nutrients and soil reflectance retrieval by trial and error and combinations of 

preprocessing techniques. It indicates that there is no hard universal method/rule to be 

followed for characterizing the soil nutrients. It is important to choose the appropriate 

techniques or methods for a specific region since each region has its predominant 

parent material for soil formation and land management practices, which plays a 

crucial role under regional conditions. The spectral behaviour is also predominantly 

dependent on the parent materials; it becomes important to estimate which part or 

region of spectral reflectance influence for estimation of soil nutrients in vertisols at 

regional level. Therefore, understanding soil nutrients estimations by remote sensing 



 

 

28 

 

data from a region by applying the universal rule may yield erroneous results and lead 

to a wrong interpretation. There is no explicit regionalized model to the best of 

knowledge, and specific wavelengths are identified for vertisols nutrients in deccan 

plateau.  

The primary issue in the Deccan plateau area is lower crop productivity due to water 

scarcity and poor soil fertility (Vasu et al. 2017). The farmers prefer crops such as 

sorghum, maize, cotton, and pigeon pea, grown in India's vertisols. Similarly, in this 

study region, pigeon pea is the predominant crop. The commercial value of pigeon 

peas has increased due to its Geographical Indication tag (GI tag) for its unique taste 

and aroma compared to that grown elsewhere and enhancing its commercial value. 

Consumers are demanding superior products, and farmers are looking for different 

cost-effective methods and evaluate their crops compared to production systems 

where the pigeon pea are of special quality, which leads to a decrease in the status of 

soil fertility due to the consistent application of fertilizers to increase their 

productivity. The primary constraints are farm management practices, and farmers 

expect higher yields through small farm sizes for better livelihood. The traditional 

practices of farmers to monitor soil fertility needs to be restructured towards precision 

agriculture, with scientists and policy makers involvement. 

While substantial progress has been made in soil science to characterize soil nutrients, 

a broad range of soil precursor land studies in different soil types are available to 

evaluate soil nutrient spatial variation and estimate soil nutrients through Hyperion 

data been investigated in large and homogeneous fields. Reaching this gap, the current 

study focuses mainly on two aspects, namely the utilization of geostatistics to 

characterize the spatial variability and assessment using Hyperion's data on soil 

nutrients in small-scale fields of vertisols. 

 

2.6 Research Objectives 

The primary objective of the research is to come up with an inexpensive and fast 

approach for assessment of soil nutrients using satellite data, laboratory 

measurements, and GIS in heterogeneous small-sized agricultural fields of deccan 

plateau, India.  
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Specifically, the evaluation of vertisols nutrients status, characterizing the spatial 

variability by geostatistical techniques and estimations of soil nutrients from Hyperion 

data in the deccan plateau of north Karnataka, India. 

The following chapter discuss the materials and methodology adopted to achieve the 

research objective.  
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CHAPTER 3 

Materials and Methodology 

 

3.1 Introduction 

 This chapter explains the monitored approach to achieve the objectives of the study. 

Soil nutrients are dynamic in nature and modify ceaselessly to long and short term 

changes in land utilization and atmospheric conditions. Soil quality estimations from 

agricultural lands are regularly called 'Soil quality observing. The topsoil is losing its 

fertility status because of a variety of reasons. Hence, it is very important to know the 

status of soil nutrients. This section describes the methodology adopted to explore the 

spatial viability and utilization of remote sensing data, preprocessing of Hyperion 

data, and software techniques for the estimation of vertisols soil nutrients. 

3.2 Description of the study area 

The study area is situated in Kalaburagi taluk, Karnataka, India (Figure 3.1); it is 

recognized as the 'Turdal bowl of Karnataka, i.e., the pigeon pea vessel of Karnataka 

state. The commercial value of pigeon peas has increased due to its Geographical 

Indication tag (GI tag) for its unique taste and aroma compared to that grown 

elsewhere and enhancing its commercial value. The study area covers 183.8 km²; the 

area consists of flat terrain with stones of deccan trap and basalt. The temperature 

ranges from 260 C to 380 C and 550 mm as the average annual rainfall. The vertisols 

are predominantly covered. The map of the soil association with soil type code 

(Figure 3.2) and they are characterized by their major taxonomy and coverages (Table 

3.1). Vertisols are dominant with a water retention capacity of 200-300 mm and are 

suitable for pigeon pea cultivation. Major crops cultivated are pigeon pea, Gulbarga 

tur dal (received GI tag recently 2019), jowar, and sugarcane. The average size of 

agricultural land holding by the farmers are approximately 2 acres.  It consists of 

scattered agricultural fields, vegetation, built-up lands, and roads. 
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Figure 3.1 Study location with sampling points 

 

 

Figure 3.2 The soil map associations with soil type 
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Table 3.1. The soil association with corresponding major taxonomy and coverage 

Soil 

code 

Major soil Taxonomy Coverage 

(%) 

5 Clayey-skeletal, Kaolinite, Rhodic Paleustalfs 0.81 

46 Very-fine, montmorillonite, Typic Chromusterts 

(Moderately deep) 

16.14 

47 Very-fine, montmorillonite, Typic Chromusterts (Very deep) 6.82 

68 Loamy, mixed, Lithic Ustorthents (moderate erosion) 1.73 

69 Loamy, mixed, Lithic Ustorthents (severe erosion) 27.42 
Source: NBSSLUP Nagpur. India 

3.3 Soil sample and chemical analysis 

The systematic sampling of soil was conducted in the third week of November 2016. 

This duration is also synchronized with the passage of the Hyperion satellite above 

the study area. It was difficult to adopt the uniform sampling method since the fields 

are scattered over a small area and are at random. The topsoil (0 to 15cm) samples are 

collected in 68 locations covering the study region. These sampling locations are 

chosen from the pigeon pea harvested fields of vertisols. During sampling, it was 

found that some fields were waterlogged, and leftover crop residual was burnt due to 

early harvesting as they prepare for the next crops. Such fields are avoided. The 

sampling points were also avoided near to the trees and any kind of structures. The 

geographical coordinates of sampling locations are recorded with the Trimble Juno 

series GPS with an accuracy of 2m. The sample of topsoil is collected with a soil 

auger. Each soil sample consists of five sub-samples mixture with a radius of 5 to 10 

m, which is placed in a plastic bag with a label for shipping (Figure 3.3). 

Prior to analysis, the air-dried soil sample is ground to pass over the 200 μm sieve. 

The chemical analysis for measuring soil properties is carried out according to the 

standard tests recommended by the Food and Agriculture Organization of the United 

Nations (FAO) (Motsara and Roy, 2008). Accordingly, soil pH is measured by a pH 

meter; electrical conductivity is measured using an electrical conductivity meter. 

Available nitrogen is determined using alkaline potassium permanganate by Kjeldahl 

method. Available phosphorus is determined using Olsen's method in a 

spectrophotometer, and available potassium is estimated using a flame photometer in 

the laboratory. The ammonium acetate extraction method for Ca and Mg (Table 3.2). 
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Figure 3.3 Representative images of field sampling and chemical analysis 

Soil micronutrients are also calculated according to Indian standards. DTPA 

extraction method for available Fe, Zn, Cu, and Mn is used. 10 g of soil sample was 

weighed into a polyethylene shaking bottle, and the DTPA reagent of 20 mL was 

added (Lindsay and Norvell 1978). Then after stirring for 120 min, samples were 

filtered over a Whatman #42 filter paper. Micronutrients were estimated in 

Microwave Plasma-atomic emission spectroscopy (MP-AES) (Vysetti et al. 2014).  

3.4 Software used 

In this study, the geostatistical analysis is carried out in SpaceStat 4.0, Hyperspectral 

analysis in ENVI 4.7, and PLS_Toolbox 4.0; and ArcGIS 10.1 for mapping. 

3.4.1 ArcGIS 10.1® 

Environmental Systems Research Institute (ESRI) has developed professional GIS 

software called ArcGIS ®; with ArcGIS, maps can be created, spatial analyses carried 

out, and share intelligent visualizations for superior decisions. It offers several 

comprehensive tools for data visualization and analysis of the processing of geodata. 
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The study uses ArcGIS version 10.1 for the creation of location maps and 

visualization of the soil sampling locations from GPS data. 

Table 3.2 Soil chemical analysis methods  

Test Method adopted Instruments used Reference 

Soil pH pH meter 
EUTECH 

pH 700 model 
(Thomas, 2018) 

Soil EC 
Electrical 

conductivity meter 

Equiptronics 

EQ-660 

Organic carbon 
Walkley and black 

method 
Titration 

(Walkley and 

Black, 1934) 

Available nitrogen 

Kjeldahl method 

(Alkaline 

potassium 

permanganate) 

Kelplus- Elite EX 
(Subbiah and Asija, 

1956) 

Available 

phosphorus 
Olsen's method 

Systronics 

AU-2701 
(Olsen et al., 1954) 

Available 

potassium 

Flam photometer 

(767 nm with red 

filter) 

Systronics (Black et al., 1965) 

Exchangeable 

calcium and 

magnesium 

EDTA Method Titration 
(Tucker and Kurtz, 

1961) 

Estimation of 

micro nutrients 

Plasma-atomic 

emission 

Spectroscopy 

Agilent 

4200 MP-AES 
Vysetti et al., 2014 

 

3.4.2 ENVI 4.7® 

Exelis Visual Information Solutions markets the "ENvironment for Visualizing 

Images," abbreviated as ENVI®, as an application for the analysis and processing of 

geographic images.  ENVI® bundles a number of scientific algorithms for the image 
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analysis and process of entirely multispectral, hyperspectral, SAR, and LiDAR data. 

For the preprocessing of Hyperion data and atmospheric corrections, the study used 

version 4.7.  

3.4.3 PLS_Toolbox 4.0® 

Eigenvector Technologies have developed this multivariate analysis tool that works 

within the MATLAB TM. It allows users to analyze their data and predict models by 

the Partial Least Squares regression technique (PLSR). Version 4.0 is used for the 

statistical analysis of our data.   

3.5 Descriptive statistics and data transformation 

The descriptive statistics such as mean, Coefficient of variation (CV), standard 

deviation (SD), skewness, kurtosis, and Pearson's correlation between soil nutrients 

are calculated with the SPSS® software. To determine the degree of variation in a 

region, the CV is used, and skewness is often used for defining the form of data 

scattering and flatness (Veritas, 2010).  

For semivariogram analysis, the data must follow the normal distribution; otherwise, 

they cause fluctuations of variance, sill, and nugget. Hence the normal distribution 

tests for the original data must be tested (Jing et al., 2014). For the normal distribution 

of data, the skewness coefficient will be zero. If the data distribution differs 

significantly from the normal distribution, data transformation is often achieved to 

moderate the impact of extremely high or low values that are outliers in spatial 

analysis. The Kolmogorov-Smirnov test (K-S test) is carried out for validating the 

normal distribution of original data in SPSS® software. The logarithmic transform is 

applied to data that fails in a normal distribution test (Fu et al., 2010). 

3.6 Geostatistical analysis 

The kriging is used in Geostatistics to interpolate the values of the un-sampled 

location. Ordinary kriging is used to generate maps of the spatial distribution of soil 

nutrients. The variograms are quantified for interpolating the scattered point's data to 

know their spatial structure. The variogram examines the differences between paired 
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data values and provides the spatial structure of variables (Bogunovic et al. 2014). 

The spatial variability in the soil is calculated from the semivariogram 𝛾(ℎ), by 

quantifying the mean difference between the isolated values through the vector(ℎ). 

The empirical variogram is evaluated according to equation 1 (Webster and Oliver 

2008; Fu et al. 2010). 

 𝛾(ℎ) =
1

2𝑛(ℎ)
∑ [𝑧(𝑥𝑖) − 𝑧(𝑥𝑖 + ℎ)]𝑛(ℎ)

𝑖=1
2 [1] 

In the above equation, the number of pairs of samples detached from the interval ℎis 

represented by 𝑛 and 𝑧 (𝑥𝑖)is the value of the single sample under the study region in 

the 𝑖thposition. The theoretical models (Gaussian, Exponential, and Spherical) are 

evaluated on an experimental semivariogram for selecting the best fit model with 

data. The representative model of the variogram is shown in Figure 3.4. 

Nugget: Theoretically, the semivariogram value at the origin (0 lag) should be zero. If 

it differs significantly from zero for lags close to zero, this semivariogram value is 

called the nugget. It also represents the measurement error and variability at a smaller 

distance than the sampling distance.  

Sill: The sill is the total variance at which the model flattens out, which is also the 

sum of the nugget and the sills of each nested structure. 

Range: it is a lag distance were the semivariogram reaches the sill value 
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Figure 3.4 Representative figure of the variogram model 

The variogram best fit is conducted, such as the model fits the experimental values 

closely. The model with minimal MSS error is considered as the most suitable model. 

Then this model is used for prediction, and results are used to compute MAE and 

RMSE. The differences between the mean sum of the squared values of the theoretical 

and experimental models are presented by MSS error, and it can be used to evaluate 

the effect of modifying some factors. The factors of the variogram (range, nugget, sill, 

and semivariance) were clearly defined for the spatial structure of soil nutrients. The 

ratio of the nugget to sill used to calculate the spatial dependence of soil nutrients 

(Bogunovic et al. 2014; Cambardella et al. 1994). The Ordinary kriging is best suited 

for an unbiased prediction of specific un-sampled positions that decrease the variance 

error (Lin and Chang 2000; Montanari et al. 2012; Tesfahunegn et al. 2011; Zhang et 

al. 2014). 

The precision of the best fit variogram model is verified by cross-validation, which 

included performance indicators, the root mean square error (RMSE), and the mean 

absolute error (MAE). MAE (equation 2) measures the sum of the residuals (Voltz 

and Webster 1990). 

 
MAE =

1 

n
∑ z(xi) − z̅

n

i=1

 (xi) 
[2] 
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RMSE = √
∑ [z(xi) − z̅(xi)]2n

i=1

n
 

[3] 

In equations, z̅(xi) indicates the value predicted at the position, and a smaller MAE 

value indicates a smaller error. However, the MAE measured will not disclose a 

degree of error that could come at any point. Therefore, the RMSE (equation 3) is 

considered which at one point takes the square root of the variance that contributes to 

a magnitude of error indication. The smaller the values of RMSE, the better the 

predictions. 

3.7 Hyperion data 

The EO-1 (Earth Observing 1) spaceship was propelled on November 21, 2000, from 

Vandenberg Air for Base, as a component of NASA's new millennium Program. It 

had finished its task in March 2017 following 17 years in orbit. The Spaceship had a 

synchronous with sun orbit at an elevation of 705 Km. its orbital period was 98.9 

minutes and 98.2 degrees of orbit tendency. It had sixteen days repeat cycle with a 

6.74 Km/sec velocity of the nadir point. The Hyperion is the first of its kind of 

hyperspectral sensors, which provided a continuous spectral profile through the 

electromagnetic spectrum, which ranges from 400 nm to 2500 nm with 224 bands. 

The Hyperion is a push-broom imaging instrument. Each image taken in this 

alignment captures the spectrum of a line 30m along-track by 7.5Km wide 

perpendicular to the satellite motion. 

Gulbarga's Hyperion image was captured on November 12, 2016, and soil samples 

were taken in the second week of November (Figure 3.5). There are 220 unique bands 

with a spectral range of 357-2576 nm at a bandwidth of 10 nm. However, there are 

only 198 bands calibrated (bands 8 to 57 for VNIR and 77 to 224 in the SWIR range) 

(Datt et al. 2003). Due to an overlap of the focal planes of VNIR and SWIR, there are 
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only 196 distinct channels. The reason that not all 242 channels are calibrated is a 

weak detector. The uncalibrated bands are set to zero. Characteristics of the Hyperion 

images are shown in table 3.3. 

The preprocessing approaches for Hyperion data are must, as the image needs to be 

converted from radiance to reflectance for analysis. These include removing the bands 

without information, destriping, and atmospheric corrections to convert the radiation 

into reflection. Figure 3.6 shows the steps of preprocessing. 

Table 3.3 Characteristics of Hyperion image 

Sensor altitude 703 Kms Number of rows 256 

Target path 145 Target row 48 

Spatial resolution 30 m 

Number of 

columns 3128 

Radiometric 

resolution 16 Bits VNIR range 0.45-1.35 

Swath 7.2 Kms SWIR 1.40-2.48 

 

3.7.1 Bad band removal 

It was found that some bands are set to zero during the processing of Level 1. The 

zeroed bands are 1 to 7 and 225 to 242 (EO1 User Guide, 2003). Then there are water 

vapour absorption bands that need to be eliminated. The list of bands that are 

eliminated, including the water absorption bands, is given in table 3.4. These bands 

selection is made by using Spectral Subsetting. 
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Table 3.4 Hyperion sensors unused bands 

Bands Characteristics 

1 to 7 Not Illuminated 

58 to 78 Overlap Region 

120 to 132 Water Vapour Absorption Band 

165 to 182 Water Vapour Absorption Band 

185 to 187 Identified by Hyperion Bad Band List 

221 to 224 Water Vapour Absorption Band 

225 to 242 Not Illuminated 

 

3.7.2 Destriping 

The Hyperion datasets contain several damaged pixels and dark vertical stripes, which 

are due to calibration differences in the Hyperion detector array and time Fluctuations 

in the detector response.  These vertical stripes and the damaged pixels are called 

abnormal pixels. The minimal digital number (DN), usually zero or low DN values 

compared to adjacent columns. 

3.7.3 Atmospheric correction 

The Hyperion data acquired from USGS is in radiance. The radiance intensity is a 

physical quantity that measures the amount of light that an object emits and then falls 

in a specific direction into a specific solid angle.  It can also be considered as a 

quantity of light entering the remote sensing instruments.  

However, both the object being observed and the atmosphere are radiated by the 

radiance measured by the instruments. Therefore, atmospheric correction is necessary 

to convert the radiation into reflectance. Reflectance is the ratio between the amount 

of light leaving an object and the amount of light that falls on the object.   
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Figure 3.5 Hyperion image with sampling points 

 

 

Figure 3.6 Flow chart of Hyperion preprocessing 
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The Hyperion images were atmospherically corrected with the ENVI FLAASH 

module, a calibration program used to convert the radiance into reflectance. 

According to the guidance of the EO-1 User Guide, the atmospheric correction was 

completed. 

3.7.4 FLAASH- Fast line-of-sight atmospheric analysis of spectral hypercubes 

FLAASH is an atmospheric correction mechanism based on physics (Golden et al., 

1998). The MODTRAN4 code is used to calculate the parameters required for RT 

equations, giving a surface reflection in return (Minu et al., 2017).  It compensates for 

atmospheric effects and corrects Wavelengths in visible range of the electromagnetic 

spectrum by NIR and SWIR region.  

Every image is provided with information such as the scene centre location, sensor 

altitude, sensor type, ground elevation, satellite zenith, flight time, flight date, and 

azimuth angles were provided for each image. The rural aerosol model and tropical 

atmosphere are assumed in the study region. 

3.7.5 Spatial subsetting 

The spatial subsetting of image is typically used to extract area from the raw Hyperion 

image, which resizes the data. The spectral signatures were extracted using the region 

of interest tool (ROI tool) from the sampling locations. The mean spectral profile of 

the Hyperion image before and after atmospheric correction is presented in figure 3.7. 

 

Figure 3.7 Spectral profile (A) before atmospheric correction (B) after atmospheric correction of 

Hyperion 



 

 

42 

 
 

The work was carried with the detail insightful of the technique based on previous 

literatures. The results acquired with respect to the objectives have been discussed in 

following chapters.  
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CHAPTER 4 

Assessment of the vertisols nutrients status in deccan plateau of 

North Karnataka, India 

 

4.1 Introduction 

The data sets of soil nutrients obtained from the chemical analysis are evaluated for 

descriptive statistics, which investigates the real situation. This chapter deals with the 

descriptive statistics of data sets and nutrient index (NI) of soil properties. 

4.2 Descriptive statistics of vertisols nutrients 

The data sets of soil nutrients obtained from chemical analysis are evaluated for 

descriptive statistics like mean, standard deviation, and Coefficient of variation, 

skewness, and kurtosis (Table 4.1). The violin plots are plotted to know the density of 

samples scattered around the mean and the outliers (Figure 4.1). These plots are 

completely suitable even if the data is normally distributed or not.   

The pH and EC in the study region varied from 6.52 to 8.82 and 0.16 to 0.80 dSm-1, 

with mean values of 7.98 and 0.33 dSm-1, respectively, in the month of November 

2016. The available macronutrients N, P, and K varied from 75.26- 382.59 kg ha-1, 

12.21-93.14 kg ha-1, and 150.39 -1080.04 kg ha-1, with a mean value of 180.83 kg ha-

1, 39.22 kg ha-1, and 417.13 kg ha-1 respectively. The  OC, Ca and Mg varied from 

0.03 - 0.86 %, 18.67 – 79.09 meq 100 g-1, and 5.3 – 44.19 meq 100 g-1 with mean 

values of 0.34 % , 43.82 meq 100 g-1 and 20.43 meq 100 g-1 respectively. In addition, 

the micronutrients Fe, Mn, Zn, and Cu varied from 0.02 – 87.0 ppm, 1.6 – 328.68 

ppm, 0.22 – 11.0 ppm, and 0.54 – 24.44 ppm with a mean value of 22.47 ppm, 80.33 

ppm, 1.98 ppm, and 4.95 ppm respectively. 
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Table.4.1 Descriptive statistics of measured soil properties 

Si. 

No 

Parameters Min Max Mean 
Std. 

Dev 

CV 

(%) 
Skewness kurtosis Skewness# Kurtosis# 

1 pH 6.52 8.82 7.98 0.481 6.0 -0.997 0.590 - - 

2 EC (dS/m) 0.16 0.80 0.32 0.123 37 1.527 3.037 0.504 0.190 

3 OC % 0.03 0.86 0.34 0.203 58.2 0.627 -0.308 -0.888 0.787 

4 N (Kg/ha) 75.26 382.59 180.83 52.91 29.2 1.060 2.749 0.309 1.492 

5 P (Kg/ha) 12.21 93.14 39.22 22.42 57.1 0.647 -0.823 0.039 -1.281 

6 K (Kg/ha) 150.39 1080.04 417.13 216.0 51.8 1.578 2.034 0.441 0.170 

7 Ca(meq/100 g) 18.67 79.09 43.82 11.78 26.8 0.585 0.697 0.393 0.680 

8 Mg(meq/100g) 5.3 44.19 20.43 9.348 45.7 0.505 -0.631 0.385 -0.295 

9 Fe (ppm) 0.02 87.0 22.47 18.40 81.8 1.668 2.742 0.643* 0.466* 

10 Mn (ppm) 1.6 328.68 80.33 86.00 107 1.129 0.092 0.099* 1.108* 

11 Zn (ppm) 0.22 11.0 1.98 1.410 70.9 4.683 7.838 0.586* 6.255* 

12 Cu (ppm) 0.54 24.44 4.95 4.819 97.2 2.261 6.802 0.076* 0.743* 

* Box-Cox transformation 

A fraction of the standard deviation to the mean, articulated in percent, which is a 

valuable indicator of the overall variability, is the coefficient variation (CV). Soil 
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nutrient variability is rated as high (CV > 35 percent), moderate (CV 15-35 percent) 

and low (CV < 15 percent), according to Wilding (1985). 

  

  

  



 

46 
 

  

  

  

Figure 4.1 Violin plots for vertisols nutrients 

In this study, as seen in Table.4.1 EC, OC, P, K, Mg, Fe, Mn, Zn, and Cu are highly 

variable compared to other nutrients. High variability is due to the exceptionally high 

values obtained in certain samples that influence the skewness of the information that 

can be regarded as outliers. How to deal with outliers can be debatable, even if they 

are not estimate errors, they have to be used if possible (Fu et al., 2010); in our study, 

outliers are not excluded. The N and Ca have moderate variability, whereas pH has 
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low variability in study area. The CV value observed in the present study is similar to 

the results of (Virgilio et al., 2007; Fu et al., 2010). The significance of CV is to 

understand how the soil nutrients are varied across the fields.  The variability of soil 

nutrients in the study region ranges from low to high, which may be due to 

topographic variations affected by pedogenic processes (Vasu et al., 2017). The 

variability can also be attributed to farming and fertilizer application methods. 

According to the need, farmers must lower their fertilizer application rate (Liu et al., 

2014; Vasu et al., 2017). 

4.3 Pearson correlation of vertisols nutrients 

The Pearson linear correlation analysis is shown in Table 4.2. It can be observed that 

the soil pH with Ca showed a more positive relationship (r=0.43) and a more negative 

relationship with P (r=-0.24). The water used for agriculture will directly influence 

soil pH as indicated by the positive correlation of EC and soil pH (r=0.11). The soil 

pH correlated positively to Ca significantly (r = 0.438). An indication that the increase 

in pH gradually increases the Ca and vice versa, (Iticha and Takele, 2019) found a 

similar correlation in vertisols. The pH is negatively correlated to Mg, and Zn is not 

as significant. There is a negative correlation between Ca and Mg (r = -0.318); results 

are contradictory to other soil types. This correlation is related to soil acidity and 

fertilizers application rate (Behera and Shukla, 2015; Iticha and Takele, 2019).  

Micronutrients are negatively correlated to soil pH, which indicates that soil pH 

influences the availability of micronutrients. There is no significant correlation 

between micronutrients except Cu and Fe, which are positively correlated (r=0.75). 

The positive relationship between OC and essential plant nutrients, including Mg, Fe, 

Zn, and Cu, are in line with the similar to other studies (Reza et al., 2017). The 

nutrients pairs, which are significantly negative correlated, are predictable to have 

spatial patterns that are mirror images (Corstanje et al., 2006). 

4.4 Nutrient indexing of vertisols 

Assessing the soil fertility of an area is important in the context of sustainable 

agriculture. Soil nutrient availability is periodically estimated due to nutrient removal 
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through intensive cultivation. To compare soil fertility from one region to another, it 

is important to have an individual value for nutrients. The values of the nutrients 

index (NI) for available nutrients present in the vertisols are calculated using the 

formula suggested by  Parker et al., (1951).  The formula is given by equation 4.1. 

 NI =
[(NL × 1) + (NM × 2) + (NH × 3)

NT
 4.1 

 

Here, NL, NM, and NH represent the sample numbers falling in low, medium, and 

high categories of permissible limits of nutrients status and one, two, and three 

weightages are given respectively. The index is classified as low (<1.67), medium 

(1.67-2.33), and high (>2.33). 

Table 4.2 Correlation of soil properties 

 pH 
EC 

(dS/m) 
OC% 

N 

(Kg/ha) 

P 

(Kg/ha) 

K 

(kg/ha) 

Ca 

(meq/ 

100g) 

Mg 

(meq/ 

100g) 

Fe 

(ppm) 

Mn 

(ppm) 

Zn 

(ppm) 

Cu 

(ppm) 

pH 1  
 
 

 

 
 

 
 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 
 

EC (dS/m) 0.11 1  

OC% -0.21 0.15 1 
 
 

 

N (Kg/ha) 0.1 0.28* -0.1 1  

P (Kg/ha) -0.24* -0.02 -0.1 0.07 1  

K(kg/ha) 0.29* 0.07 -0.4 0.22 -0.03 1  

Ca (meq/100g) 0.43** 0.08 -0.4 0.13 -0.19 0.51 1  

Mg (meq/100g) -0.12 0.07 0.06 0.01 -0.29 0.01 -0.31** 1  

Fe (ppm) -0.66 -0.14 0.25 -0.2 0.395 -0.31 -0.35 0.03 1 
 
 Mn (ppm) -0.07 -0.23 -0.1 -0.2 0.33 -0.19 -0.14 -0.1 0.130 1 

Zn (ppm) -0.26 0.15 0.26 -0.1 0.048 -0.05 -0.04 0.08 -0.005 0.013 1 

Cu (ppm) -0.38 0.16 0.39 -0.1 0.332 -0.3 -0.26 0.02 0.756** 0.25* 0.15 1 

** Correlation is significant at the 0.01 level (2-tailed) 

* Correlation is significant at the 0.05 level (2-tailed)  

The results to index of nutrient availability (Table 4.3) indicates for N, P, K, OC, Cu, 

Fe, Mn and Zn 88.4 %, 1.44 %, 15.94 %, 78.26 %, 31.88 %, 2.89 %, 30.43 %, and 

1.44 % found deficient in soil samples ; 11.59 %, 24.63 %, 44.92 %, 17.39 %,15.94 

%, 14.49%, 14.49%, and 15.94 % soil samples were medium and 0 %, 73.91%, 39.13 
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%, 4.34 %, 52.17 %, 82.60% 55.07 %, and 82.60 % samples of soil fall in high 

respectively in the study area.  

Table 4.3 Soil nutrients index of the study area 

Soil Nutrients 

Samples Percent 

NI 

Low Medium High 

Nitrogen (kg/ha) 88.4 11.59 0.00 1.11 

Phosphorus (kg/ha) 1.44 24.63 73.91 1.15 

Potassium (kg/ha) 15.94 44.92 39.13 2.23 

Organic carbon (%) 78.26 17.39 4.34 1.21 

Copper (ppm) 31.88 15.94 52.17 2.20 

Iron (ppm) 2.89 14.49 82.60 2.81 

Manganese (ppm) 30.43 14.49 55.07 1.69 

Zinc (ppm) 1.44 15.94 82.60 2.79 

 

The NI values indicted that N, P, and OC are low with values of 1.11, 1.15, and 1.21, 

respectively. The K, Cu, and Mn are medium with values of 2.23, 2.20, and 1.69, 

respectively. The high nutrient indexes in the study area are shown by Zn and Fe with 

values of 2.81 and 2.79, respectively.  

 

The status of soil nutrients are assessed in the current chapter. Further results for 

characterizing the spatial variability and estimation using Hyperion data of soil 

nutrients have been discussed in the upcoming sections. 



 

 

51 

 

CHAPTER 5 

Characterization of spatial variability of vertisols nutrients by 

geostatistical techniques 

 

5.1 Introduction 

It is important to identify how these soil nutrients vary in diverse land use context; so 

that the best management practices options may be suggested to producers based on 

limited nutrients. For efficient soil nutrients management, spatial variability mapping 

is the important factor for sustainable agriculture (Behera et al., 2016). This chapter 

deals with the analysis of the normal distribution of datasets, descriptive geostatistical 

parameters, selection of semivariogram, range, and spatial dependency of soil 

nutrients in the study area. The spatial variability of soil nutrients obtained by 

ordinary kriging is characterized. 

5.2 Normal distribution 

For the normal distribution of datasets, Q-Q plots for raw datasets are plotted; these 

plots indicate how samples are uniformly distributed across the diagonal line and even 

help to identify the outliers. In this study area, most of the variables are greater than 

zero in skewness and are positively skewed (Table 4.1). The kurtosis values are sharp 

indicating most of the samples grouped at a relatively higher range. Since the points 

are not clustered around the diagonal (Figure 5.1), the data needs to be transformed to 

minimize the effect of extreme values. The log transformation for N, P, K, OC, Ca, 

and Mg; box-cox transformation for Fe, Mn, Zn, and Cu has made data more efficient, 

where the skewness is reduced. 

After transformation, it is observed that the soil nutrients distributed close to the 

diagonal line, which was not normally distributed (Figure 5.1). The reason for non- 

normal distribution of nutrients is the presence of very high or low concentrations of 

nutrients at certain sampling points, i.e., outliers, due to individual farm practices and 

topographic effects (Tesfahunegn et al. 2011). 
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Figure 5.1 Q–Q plots for soil nutrients (*box–cox transformation) 



 

 

56 

 

5.3 Descriptive Geostatistical analysis 

For spatial data, before the variogram touches the sill and stabilizes, semivariance 

increases with distances that are correlated. The dissimilarity rises until it finally 

touches a maximum ϒ at which the variogram flattens out. The lag (h) in which the 

variogram extends the sill variance signifies the range of spatial correlation. It is 

assumed that the observations in the range are spatially correlated, while those larger 

than the range are considered spatially independent (Goovaerts 1997). The variance 

observed at a shorter range than the sampling range will be identified at zero lag 

distance is referred to as the nugget effect. This signifies any measurement errors 

(Burgos et al., 2006).  

The fit of the variogram model is conducted; such the model fits the experimental 

values closely. The MSS error (mean sum of square error) was found to be minimal 

corresponding to the spherical model for all soil nutrients and exponential models for 

OC, N, and P; therefore, both are considered as the most suitable model. Then this 

model is used for estimation, and results can be used to compute MAE (mean absolute 

error) and RMSE (root mean squared error). In this study, the MSS error with the 

least value among models is considered as the best fit model as one of the parameters 

along with the initial flatness of the curve in SpaceStat 4.0® (BioMedware). The 

initial flatness in the model signifies a very strong degree of uniformity along with 

small distances (Goovaerts, 1997). Nugget/sill ratio is used to calculate spatial 

dependency (less than 0.25-strongly spatially dependent, 0.25 to 0.75-moderately 

spatially dependent and greater than 0.75-weakly spatially dependent) (Bogunovic et 

al., 2014; Cambardella et al., 1994) 

The range is the maximum distance to which parameters are spatially correlated. This 

suggests the optimal interval of sampling for an reliable measurement of spatial 

variability. The spatial dependency varied between 878 m and 3723 m for selected 

soil nutrients in vertisols, which indicates there is spatial dependency among the soil 

nutrients within this range. The isotropic semivariogram for all soil parameters was 

calculated, and best fit models were determined by low MSS error and initial flatness 

of the model curve. Based on the results OC, N and P were best fitted for the 
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exponential model, and the rest of the other parameters best fitted for the spherical 

model are tabulated in Table.5.1.  

High spatial correlation to greater distance was shown by EC followed by pH relative 

to other parameters, which could be due to agricultural water; while Fe showed a high 

spatial correlation at small distances, compared to other parameters. The range of pH, 

EC, OC, N, P, K, Ca, Mg, Fe, Mn, Zn, and Cu indicates that the sampling interval can 

be maintained within 3347.84 m, 3723.12 m, 1051.60 m, 1069.88 m, 1898.65 m, 

1787.54 m, 1002.21 m, 923.53 m, 877.90 m, 1737.60 m, 974.06 m and 974.46 m 

respectively for spatial sampling for these properties (Table.5.1).  

Table.5.1 Model parameters for variogram of selected soil properties 

 

Parameters 

 

Variogram parameter 

 

N:S 

Ratio 

 

Spatial 

Dependence 

    

 

Nugget 

 

Sill 

 

Range(m) 

MSS 

ERROR 

Model MAE RMSE 

pH 0.0895 0.1721 3347.84 0.52 moderate 0.3200 spherical 0.34 0.96 

EC 0.0164 0.0254 3723.12 0.64 moderate 0.4016 spherical 0.11 1.04 

OC 0.0040 0.0824 1051.60 0.04 strong 0.2692 exponential 0.24 0.83 

N(Kg/ha) 0.0053 0.00561 1069.88 0.94 weak 0.4995 exponential 0.10 1.019 

P (Kg/ha) 0.0403 0.0857 1898.65 0.47 moderate 0.2268 exponential 0.11 1.18 

K(Kg/ha) 0.0256 0.0926 1787.54 0.27 moderate 0.3345 spherical 0.14 1.10 

Ca (meq/per100 g) 0.0128 0.0104 1002.21 1.23 weak 0.3320 spherical 0.08 0.97 

Mg(meq/per100g) 0.0176 0.0335 923.53 0.52 moderate 0.6299 spherical 0.17 0.98 

Fe (ppm) 1.0487 2.0134 877.90 0.52 moderate 0.2650 spherical 1.305 0.874 

Mn(ppm) 0.2230 0.6788 1737.60 0.382 moderate 0.3353 spherical 0.701 0.887 

Zn (ppm) 0.0279 0.2896 974.06 0.096 strong 0.5967 spherical 0.341 0.961 

Cu (ppm) 0.1649 0.5608 974.46 0.294 moderate 0.2176 spherical 0.647 0.840 
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The low range of spatial dependence indicates that this continuity disappears fast. It 

indicates in this area, beyond this range, the soil nutrients are not spatial correlated. 

Generally, the greater the range indicates the more homogeneity of the soil within its 

scale. About variation in ranges of soil nutrients, Laekemariam et al. (2018) compared 

various ranges, which were attributed to sampling intensities and study area size. 

They reported range varies because of the combined effect of agricultural practices, 

environmental conditions, and parental material. In our study area, the range is varied 

due to agricultural practices (Tamburi et al. 2020c). 

The nugget to sill ratio specifies pH, EC, P, K, Mg, Mn, Fe, Zn, and Cu are 

moderately dependent, whereas nitrogen and calcium showed weak dependency, and 

on the other side organic carbon showed strong spatial dependence. Interestingly the 

nitrogen showed weak spatial dependence when other macronutrients (P and K) have 

moderate spatial dependence; it might be due to the high intake of nitrogen by crops. 

The variation in dependence would be subjected to extrinsic factors, including the rate 

of use of fertilizers by farmers (Cambardella et al., 1994; Geypens et al., 1999; Vasu 

et al., 2017). 

5.4 Spatial distribution of vertisols nutrients 

Maps of the spatial distribution of all soil nutrients prepared using ordinary kriging 

are shown in Figure 5.2. These surface maps provide information regarding the spatial 

distribution of nutrient variations in the soil and their deficiency. The spatial 

variability maps show that pH generally varies from neutral to alkaline in nature, the 

southern part of the area is mostly alkaline, which may be related to the quality of 

irrigation water, as well as the rich presence of calcium carbonate (Srivastava et al., 

2002). The EC is high to the north, indicating normal soil with fewer amounts of 

dissolved salts. 
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Figure 5.2 Spatial variability maps of pH, EC, OC and Macronutrients (NPK) 
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The nitrogen is low towards the southwestern part of the study area, while high to the 

northeast side. On the other hand, with a hot summer period, decomposition of 

organic matter occurs, which leads to a decrease in the nitrogen content (Uygur et al., 

2009). The K content is high to the north of the study area, and to the south, the 

remaining middle portion showed a comparatively low presence of K. Phosphorus 

ranged from medium to high across the study area; only a small portion was low. 

However, due to intensive farming in this area, the soil phosphorus has greatly 

increased. The organic carbon was comparatively higher on the south side of the study 

area, and this variability may due to the use of organic manure and fertilizer 

application. In spatial variability maps, regions where there is more EC also showed a 

high range of organic carbon availability; it is due to positive correlations between EC 

and OC (r = 0.15). The Ca and Mg are negatively correlated (Table 4.2); the spatial 

variability maps indicate similarly as the region in which Ca is low has shown a 

relatively high presence of Mg (Figure 5.3). The calcium content is on higher ranges, 

as well as magnesium. The presence of higher ranges of calcium and magnesium in 

this region may be due to vertisols formation from basalt rocks along with agricultural 

practices (Tamburi et al. 2020a). 

The spatial distribution maps of soil micronutrients are prepared from their 

semivariograms. The transformed dataset of the Box-Cox data set used for 

interpolation, and then the results are transformed again for generating the spatial 

variability maps (Cassie 1993; Fu et al. 2013).  
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Figure 5.3 Spatial variability maps of Ca and Mg 

From spatial distribution maps (Figure 5.4), Fe is distributed evenly in a few areas and 

highly concentrated towards the north and south-west parts of the study area. The 

vertisols generally contain a high amount of Fe due to high adsorption, as clay 

fractions are more (Jelic et al., 2011) Mn is distributed in patches across the study 

area and has no proper distribution. The higher values Mn are distributed across the 

western and eastern borders in patches (3.94-4.5 ppm). Zn is comparatively higher 

towards the northeast and southeast part of the study area; lower Zn content results in 

less productivity. Cu is uniformly distributed at specific regions; it is high in the 

middle part of the study area and low towards the south part. The variability of 

micronutrients is mostly dependent on soil pH, organic matter, and the direct 

application of micronutrients through fertilizers to increase soil health and 
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productivity. Rainfall also influences the distribution of micronutrients in the site 

(Dimkpa and Bindraban, 2016).  

The cross-validation of spatial variability maps is evaluated by MAE and RMSE 

indices (Table 5.1). The lower values indicate that the semivariogram parameters 

better prepare the value of soil property at the non-sampled position than by the 

assumption of the average of the observed value. The kriged maps for micronutrients 

indicates the distribution of micronutrients and helps to plan proper agricultural 

practices, including fertilization (Fu et al., 2010; Ramzan and Wani, 2018). 
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Figure 5.4 Spatial variability maps of Micronutrients (Fe, Mn, Zn and Cu) 

These predictive maps provide accurate information about soil nutrients at arable 

depth. They may be critical to soil nutrient management at specific sites, as well as 

variable application rates of fertilizers. At the same time, regional maps are obtained 

from kriging provides quantitative information about soil nutrients on a wider scale 

and thus facilitate decision making or regional planning, monitoring, and 

environmental protection. Extension officers can communicate to small scale farmers 

regarding the soil health status of their fields. Hence sustainable farming is useful for 

site-specific fertilization for a sustainable environment.  
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CHAPTER 6 

 Hyperion data and PLSR model for estimation of vertisols 

nutrients. 

6.1 Introduction 

The measurement of soil properties by traditional techniques is time-consuming and 

laborious. Hence it becomes important to look for quicker and easier measurements, 

and the remote sensing approach is the alternative approach. Numerous studies have 

been carried out using hyperspectral and multispectral remote sensors. The spectral 

behavior of Indian soils was studied by using the Landsat Multiple Scanning systems 

(Landsat MSS) in the mid-eighties (Sinha, 1986). The discrete bands of multispectral 

sensors limited the study of soil characteristics. Later the hyperspectral remote 

sensing showed the ability for estimation of soil properties (Spaceborne and airborne). 

This chapter looks at using preprocessed Hyperion data to develop the models to 

estimate vertisols nutrients, split data sets for training/calibration, and test/validate to 

estimate the model and determine the significant wavelength estimating vertisols soil 

nutrients. 

6.2 Partial Least Square Regression (PLSR) 

The PLSR is a known chemometric technique based on bilinear regression; it extracts 

a minimum latent factor from large data, which is multidimensional. Then these latent 

factors represent linear combinations of the spectral reflectance and the soil nutrient 

properties (Dhawale et al., 2015). 

The PLSR models are developed by correlating spectra's reflectance from the 

Hyperion image pixels with the soil variables measured at the sample points. It is a 

multivariate method that estimates a dependent variable from a large number of 

correlated variables (reflectance values) by extracting a limited number of 

uncorrelated factors (i.e., latent variables), which has the strongest relationship to the 

dependent variable (soil nutrients). The impact of the latent variables is verified by 

cross-validation (Castaldi et al., 2014). 
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The PLS regression analysis is made by correlating the soil chemical properties with 

atmospheric corrected Hyperion data. For soil parameters, lowest RMSECV (root 

mean square error of cross-validation, highest R2CV (Coefficient of determination in 

cross-validation) and combined with lowest LV numbers (latent variables) are 

selected as the best model. 

6.3 Methodology 

The PLSR models are developed by correlating spectra's reflectance from the 

Hyperion image pixels with the soil variables measured at the sample points. It is a 

multivariate method that predicts a dependent variable from a large number of 

correlated variables (reflectance values) by extracting a limited number of 

uncorrelated factors (i.e., latent variables) that have the strongest relationship to the 

dependent variable (soil nutrients). The effect of the latent variables is checked by 

cross-validation. The models are executed in PLS_Toolbox 4.0. Figure 5.1 shows the 

methodology used for the PLSR model 

 

Figure 6.1 Flowchart for PLSR model  

The identical method for establishing the PLSR models are observed for all soil 

parameters to be predicted. Initially, spectral pretreatment was carried using Savitzky- 

Golay derivatives (first order and second order) (Savitzky and Golay, 1964) and mean 

centering on optimizing the correlation between soil nutrients and spectra.  
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The calculation of the projection with variable importance (VIP) enables us to define 

each wavelength's relative importance or range in the PLSR model to estimate soil 

nutrients (Castaldi et al., 2014). The VIP scores estimate the importance of each 

variable in the projection used in the PLS model. The variable selection improves the 

accuracy of estimation by identifying a subset of important predictors, increasing the 

model interpretability with accurate representation (Farres et al., 2015). A wavelength 

with a VIP value of more than one can be considered significant in a PLSR model 

(Castaldi et al., 2014). As a result, VIP and regression coefficient statistics embedded 

in PLS are used to visualize a subset of independent variables controlling the variation 

in response in diverse disciplines, including soil nutrients and hyperspectral data. 

The PLS regression analysis is made by correlating the soil chemical properties with 

spectral signatures of atmospheric corrected Hyperion data. For soil parameters, 

lowest RMSECV (root mean square error of cross-validation, highest R2CV 

(Coefficient of determination in cross-validation) and combined with lowest LV 

numbers (latent variables) are selected as the best model. The selection of important 

wavelengths are used for PLSR is identified by VIP; the graphs shown are only for 

those soil nutrients which show good estimations. 

 

6.3.1 Data Preprocessing and Sample Separation. 

The preprocessing of the data is carried out by the mean centering and the Savitzky- 

Golay smoothening techniques (Savitzky and Golay, 1964); these pre-processed data 

are used to build the PLSR model. The mean-centred are the values that are subtracted 

by the mean of the response at each wavelength point on all samples by the response 

of spectral value. While the value of the response at each point of wavelength is 

subtracted by the column mean, the data in every row after averaging represents the 

variation between that sample and the mean sample of the original data (Han et al., 

2020). The mean centering has the result that an adjustable intercept is included in 

multivariate models. For example, centering the mean of both the X blocks and the Y 

blocks in a regression model efficiently enables a non- zero regression line 

intersection (Wise et al., 2006), by doing this it is ensured that the interpretation of 

results is around the mean (Jiang et al., 2017).    
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The smoothing is a high-pass filter that removes high-frequency noise from samples 

that are in built-in PLS_Toolbox. This operation is often used for spectra and is 

carried out separately in each row of the data matrix and affects neighbouring 

variables. The Savitzky- Golay smoothness is based on the least-squares fit based on 

polynomials segments of data (Savitzky and Golay, 1964). It is capable of 

differentiation and smoothing. It maintains the shape of the original signal. It has two 

degrees of freedom: the window length and polynomial order (Minu et al., 2016). 

Smoothing presumes that the variables are close to each other in the data matrix (i.e., 

adjacent columns) are connected and included related information that can be 

averaged collectively to reduce the noise without considerable impact loss of the 

signal of interest. The Savitzky Golay algorithm fits characteristic polynomials to 

windows approximately to every point in the spectrum. The algorithm requires the 

selection of both the order of the polynomial and the window size (filter width) (Wise 

et al., 2006). The lower the polynomial order and the larger the window, the more the 

spectrum is smoothed. However, it appears that no hard rules are decided for 

preprocessing to utilize; frequently, trial and error is the only approach. The leave one 

out cross validation is used for determining the optimal numbers of latent variables in 

PLS toolbox.  

To validate the model, the new data set has not been considered, and the 70% of an 

original dataset has been grouped as calibration set and 30% as validation set 

(Dhawale et al., 2015). The selection of the calibration and validation set is divided as 

follows. Initially, the values of the soil nutrients and their corresponding reflectance 

are sorted in ascending order; then, the lowest nutrient value is positioned into a 

validation set and the next three successive samples in the calibration set (Minu and 

Shetty, 2018). The process is continued to alternately place the next sample in the 

validation set and the next three in the calibration set. This selection process for 

calibration and validation sets ensures even distribution of soil nutrients value in the 

calibration set (Mark and Workman, 2003). The selection of important wavelengths 

are used for PLSR is identified by VIP; the graphs shown are only for those soil 

nutrients which show good estimations. 
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The precision of the best fit PLSR model is verified by cross-validation, which 

includes performance indicators, such as: 

(i) Root mean square error (RMSE) for cross validation (RMSECV) and 

prediction (RMSEP).  

(ii) Coefficient of determination for prediction (R2)  

6.4 Results of PLSR model 

6.4.1 Nitrogen 

The results from PLSR model indicate the capability for estimation of soil nitrogen 

from the spectral reflectance of the Hyperion. The medium estimation is obtained for 

nitrogen. The optimal number of LVs for nitrogen is five after cross validation with 

R2 value of 0.547 (Figure 6.2). The low estimation was observed for nitrogen using 

airborne sensor (HyMap) with R2 of 0.28 (Vohland et al. 2017) and R2 of 0.44 for 

total nitrogen (Pechanec et al. 2021).  While estimating better model it is important 

for RMSECV and RMSEP values to be similar or close (Figure 6.2). The prominent 

peaks observed for estimation of soil nitrogen are at wavelengths 1346, 1754, 2072, 

2294, and 2335 nm (Figure 6.3).  

 

Figure 6.2: Results of PLSR model for Nitrogen. 



 

 

68 

 
Figure 6.3: VIP for Nitrogen using PLSR 

6.4.2 Potassium 

The estimation accuracy for potassium is medium with R2 value of 0.455 (Figure 6.4). 

The optimal number of LVs for potassium is four. The similar estimations are shown 

by Bajwa and Tian (2013) using hyperspectral imaging. The potassium content in the 

study area is minimal, and it has been estimated that it is highly soluble and nutrient 

leaching is limited in clay soils. Contrastingly, potassium 's high solubility in sandy 

soils will leach out at higher rates compared to vertisols, resulting in low 

concentrations (Lee et al., 2003). The prominent peaks observed for estimation of soil 

potassium are at wavelengths 437, 671, 882, 892, 1047, 1316, 1548, 1822 and 2335 

nm (Figure 6.5). Lee et al. (2003) had obtained similar prominent peak loading for 

PLSR technique in Florida soils at 430, 522, 612, 1356, 1604, 1912 and 2206 nm. 
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Figure 6.4: Results of PLSR model for Potassium 

 

Figure 6.5: VIP for Potassium using PLSR 

 

6.4.3 Iron 

The results obtained for estimation of iron is medium. The optimal number of LVs for 

iron is six with R2 value of 0.401 (Figure 6.6). The prominent peaks observed for 

estimation of soil iron are at wavelengths 1063, 1194, 1205, 1598, 1729,  and 2183 

nm (Figure 6.7). Ben-Dor et al.(2006) have also observed peaks at 990, 556, and 489 

nm.   
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Figure 6.6: Results of PLSR model for Iron 

 

Figure 6.7: VIP for Iron using PLSR 

6.4.4 Copper 

The dataset analysis by PLSR for estimating the soil copper is medium from Hyperion 

data. The optimal number of LVs for copper is four with the estimations for validation 

is R2 is 0.412 (Figure 6.8). Conversely, low estimation was shown by Kemper and 

Sommer (2002) with R2 of 0.22, and Cheng et al. (2019) with R2 of 0.26. Malley et al. 

(2004) has reported good estimations wit R2 of 0.69 from spectroscopy. The 

prominent peaks observed are 508, 548, 559, 2092, and 2345 nm (Figure 6.9). 
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Figure 6.8: Results of PLSR model for copper 

 

 

Figure 6.9: VIP for Copper using PLSR 

 

 

Mapping the soil nutrients by Hyperion data 

The optimal PLSR models developed from Hyperion data are incorporated for soil 

nutrients mapping. The bare soil pixel are identified by normalized differential 

vegetative index (NDVI) technique (equation 5). Then masked the pixel values more 
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than 0.2 to avoid vegetation interference, and less than 0.1 for water bodies (Stevens 

et al. 2008). This technique avoids the vegetation and water interference.  

 NDVI =
[NIR − RED]

[NIR + RED]
 (5) 

Here reflectance at spectral bands of 833 nm and 660 nm are used for NIR and RED 

respectively. The only soil pixels were considered for mapping; other pixel like 

vegetation and water were removed, which are indicated in white pixels. The relative 

variations can be recognized by these maps (Fig. 14). Except iron, other soil nutrients 

have over predicted the values which is resultant of low prediction accuracy by PLSR 

technique.  

 

India's vertisols exhibit low reflectances that are deficient in humus, nitrogen, 

phosphorus, and potassium due to low permeability and moisture stress throughout 

the drought. Hence the presence of soluble nutrients concentration is low compared to 

other soil. Generally, the white colour contributes to higher reflectance in all 

wavelengths (Sinha, 1986), so the grey-brown colour is natural in the vertisols fields 

and less organic matter, leading to low reflectance. In comparison, relative to airborne 

data, Hyperion satellite hyperspectral data is constrained by a lower spatial resolution 

with a nominal pixel size of 30 m, which increases, for example, the issue of different 

surfaces mixed in one pixel (Vohland et al., 2017). 
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Figure 6.10: (a) Nitrogen (b) Potassium, (c) Copper and (d) Iron, mapping by using Hyperion data.  

The white pixel indicate vegetation and water bodies. 
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CHAPTER 7 

Summary and Conclusions 

 

The primary objective of the work was to characterize the spatial variability of the soil 

nutrients and find the quick estimation of vertisols nutrients through satellite data and 

laboratory measurements using the PLSR technique. The work demonstrated to which 

extent Hyperion data is utilized to predict the macro and micronutrients of vertisols in 

India. The research work was carried in a small region of north Karnataka, India. 

Systematic soil sampling was carried out in the month (third week) of November 

2016. This duration is also synchronized with the passage of the Hyperion satellite 

over the study area. The uniform sampling method was difficult to adopt since the 

fields are scattered over a small area and are random; some fields were waterlogged, 

and leftover crop was burnt, as the farms were preparing for next crop. The chemical 

analysis was conducted according to IS Codes. The nutrient index values and spatial 

variability maps are generated. To obtain the reflectance spectra of Hyperion image, 

suitable preprocessing and filtering methods were applied. Later, the PLSR technique 

is applied to the estimation of vertisols soil nutrients.  

In many underdeveloped and developing countries, including India, various factors, 

such as small agricultural land (less than two acres), failure to manage advanced 

technological equipment due to financial constraints, and lack of technical knowledge 

among farmers, are driving to a decrease in awareness of sustainable and precision 

agriculture. In India, the topsoil layer loses fertility attribute to poor water 

management and the rate of fertilizer application. Under such conditions, initial 

preparation is to map the spatial variability of soil nutrients for nutrients status 

availability, proper planning, and estimation of soil nutrients using remote sensing 

data is important. 
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Specific conclusions drawn from research work: 

 

• The soils in the study area varied from neutral to alkaline, representing the 

soil's calcareous nature. The Coefficient of variation indicated the high 

variability of soil nutrients due to no proper specific agricultural practices over 

the study area. Due to individual agricultural practices, the maximum values 

are on the upper quartile revealing the positive skewness, especially 

micronutrients.  

• The status of macronutrients N, P, and K are low, low, and medium with NI 

values of 1.11, 1.15, and 2.23, respectively. The micronutrients Cu, Fe, Mg, 

and Zn are medium, high, medium, and high with NI values of 2.20, 2.81, 

1.69, and 2.79, respectively. 

• Based on the variogram results, OC, N, and P were best fitted for the 

exponential model, and the rest of the other parameters best fitted for the 

spherical model. The spatial variability maps indicate the heterogeneous 

distribution of soil nutrients. The ranges of spatial dependency indicate that 

approximately up to one kilometre, there is a spatial correlation between 

samples; above this range, soil nutrients are not correlated amongst the 

sampling points. The spatial variability maps are used as a primary guideline 

to farmers for specific site nutrient management. The obtained ranges act as 

adequate information for future sampling in vertisols. 

• The variable important projection facilitates identifying prominent 

wavelengths, thus decreasing the wavelengths used in PLSR. 

• Estimation of soil nutrients using Hyperion data indicates it has potential. The 

PLSR technique, coupled with Hyperion, provides non-destructive and rapid 

determination of soil nutrients in small scattered vertisols fields. The 

estimation of N, K, Fe, and Cu are with an accuracy of 54 %, 45 %, 40%, and 

41%, respectively.  

• The soils exhibited low reflectances, which are deficient in humus and 

macronutrients due to low permeability and moisture stress. Hence the 

presence of nutrients concentration is low. 
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7.1 Limitations of the work 

The ranges obtained to act as adequate information for future sampling in vertisols. 

However, the study has been limited by small sample size and random collection of 

soil. For adequate information on the spatial variability in the small-size farm, a 

design to increase the number of the samples and grid sampling must, therefore, be 

carried out. The low estimation of soil nutrients may be due to low signal to noise 

ratio of Hyperion. Since the work is concentrated for only acquisition of prominent 

spectral information for estimating the soil nutrients, it can be also concentrated to 

establish the spatial information of soil nutrients from Hyperion data.  

 

7.2 Scope for the future work 

• The grid sampling techniques can be used for soil collection.  Only 

Ordinary kriging is used for generating the spatial variability maps, 

other kriging techniques can be used, and comparative studies can be 

carried.  

• The estimation of soil nutrients is influenced only by FLAASH 

atmospheric corrections. However, it is important to use and compare 

other well-defined atmospheric corrections (ATCOR, QUAC, and 6S). 

• Spectral reflectance can be pretreated with other pretreatment methods 

(only Savitzky-Golay is used). Coupled or combination of other 

smoothing techniques can be used for better results. 

• In this research, R2 and RMSE are used for the evaluation of model 

performance. The uncertainty analysis and these global indicators and 

uncertainty due to the choice of calibration set, georeferencing errors, 

and laboratory reference values could also be studied. 

• The data set of estimated regression with better results is to be used for 

precise estimation and mapping of soil nutrients and results to be 

compared with maps produced by geostatistical method.  
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